Research Article
BibTex RIS Cite

Al-MCM-41 Tipi Mezogözenekli Katalizörlerin Hidrotermal ve Sonokimyasal Yöntemle Sentezi ve Katalitik Uygulaması

Year 2016, Volume: 16 Issue: 3, 521 - 530, 31.12.2016

Abstract

Bu çalışma kapsamında alüminyum metali ile desteklenmiş Al-MCM-41 tipi mezogözenekli katalizörler hidrotermal ve sonokimyasal olmak üzere iki farklı yöntemle sentezlenmiştir. Elde edilen katalizörlerin yapısı X-ışını kırınım deseni (XRD), taramalı elektron mikroskobu (SEM), enerji dağılımlı X-ışını spektroskopisi (EDS) ve Brunauer Emmett Teller (BET) metotları ile karakterize edilmiş ve karakterizasyon sonuçları incelenerek, farklı sentez metotlarının katalizörlerin fiziksel özellikleri üzerindeki etkileri belirlenmiştir. Elde edilen sonuçlara göre sonokimyasal yöntemle sentezlenen katalizörlerin daha düzenli kristal yapısına, yüksek yüzey alanına ve mezogözenek dağılımına sahip olduğu belirlenmiştir. Düzgün gözenek boyut dağılımı ve yüksek yüzey alanına sahip MCM-41 katalizörü yeterli katalitik aktiviteye sahip olmadığı için, alüminyum metali kullanılarak silis yapısının modifikasyonu ile katalitik aktivitenin arttırılması amaçlanmıştır. Bu amaçla elde edilen Al-MCM-41 atık cep telefonu devre kartlarının pirolizinde katalizör olarak kullanılarak sıvı ürün verimi üzerine katalitik etkisi araştırılmıştır.

References

  • Adam, J., Antonakou, E., Lappas, A., Stöcker, M., Nilsen, M. H., Bouzga, A., Hustad, J. E. and Øye, G., 2006. In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Microporous and Mesoporous Materials, 96, 93–100.
  • Aguado, J., Serran, D.P. and Escola, J. M., 2000. A sol–gel approach for the room temperature synthesis of Al-containing micelle-templated silica. Microporous and Mesoporous Materials, 34, 43–54.
  • Antonakou, E., Lappas, A., Nilsen, M. H., Bouzga, A. and Stöcker, M., 2006. Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals. Fuel, 85, 2202–2212.
  • Atasever, Ş., Bozkurt, P. A. and Canel, M., 2015. Pyrolysis of waste printed circuit board particles. International Journal of Energy Optimization and Engineering, 4, 73-78.
  • Bagshaw, S. A. and Testa, F., 2000. Wairakei geothermal silica, a low cost reagent for the synthesis of mesostructured M41S alumino-silicate molecular sieves. Microporous and Mesoporous Materials, 39, 67-75.
  • Beck, J., Vartuli, J., Roth, W., Leonowicz, M., Kresge, C., Schmitt, K., Chu, C., Olson, D., Sheppard, E., McCullen, S., Higgins, J. and Schlenker, J., 1992. A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of American Chemical Society, 114, 10834-10843.
  • Bhattacharyya, K. G., Talukdar, A. K., Dasa, P. and Sivasanker, S., 2003. Al-MCM-41 catalysed alkylation of phenol with methanol. Journal of Molecular Catalysis A: Chemical, 197, 255–262
  • . Bozkurt, P. A., Tosun, O. and Canel, M., 2016. The synergistic effect of co-pyrolysis of oil shale and low density polyethylene mixtures and characterization of pyrolysis liquid. Journal of the Energy Institute, In press (DOI: 10.1016/j.joei.2016.04.007)
  • Busio, M., Janchen, J. and van Hooff, J. H. C., 1995. Aluminum incorporation in MCM-41 mesoporous molecular sieves. Microporous Materials, 5, 211-218.
  • Chaudhari, K., Bal, R., Srinivas, D., Chandwadkar, A. J. and Sivasanker, S., 2001. Redox behavior and selective oxidation properties of mesoporous titanoand zirconosilicate MCM-41 molecular sieves. Microporous and Mesoporous Materials, 50, 209-218.
  • Corma, A., Martınez, A. and Martınez-Soria V., 1997. Hydrogenation of aromatics in diesel fuels on Pt/MCM-41 catalysts. Journal of Catalysis, 169, 480–489.
  • Corma, A., 1997. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 97, 2373 -2419.
  • Corma, A., Fornes, V., Navarro, M. T. and Perez-Pariente, J., 1994. Acidity and stability of MCM-41 crystalline aluminosilicates. Journal of Catalysis, 148, 569-574.
  • Eimer, G. A., Pierella, L. B., Monti, G. A. and Anunziata, O. A., 2002. Synthesis and characterization of Al-MCM-41 and Al-MCM-48 mesoporous materials. Catalysis Letters, 78, 65-75.
  • Ghodke, S., Patel, R. and Chudasama, U., 2015. Mesoporous Zr-MCM-41 and Ti-MCM-41 as solid oxidation catalysts in the synthesis of epichlorohydrin. International Journal of Innovative Research in Science, Engineering and Technology, 4, 18735-18743.
  • Hall, W. J. and Williams, P. T., 2008. Removal of organobromine compounds from the pyrolysis oils of flame retarded plastics using zeolite catalyst. Journal of Analytical and Applied Pyrolysis, 81, 139–147.
  • Han, Y., Xiao, F., Wu, S., Sun, Y., Meng, X., Li, D, Lin, S., Deng, F. and Ai, X., 2001. A novel method for incorporation of heteroatoms into the framework of ordered mesoporous silica materials synthesized in strong acidic media. Journal of Physical Chemistry B, 105, 7963-7966.
  • Hui, K. S. and Chao, C. Y. H., 2006. Synthesis of MCM-41 from coal fly ash by a green approach: Influence of synthesis pH. Journal of Hazardous Materials, 137, 1135-1148.
  • Kong, Y., Zhu, H., Yang, G., Guo, X., Hou, W., Yan, Q., Gu, M. and Hu, C., 2004. Investigation of the structure of MCM-41 samples with a high copper content. Advanced Functional Materials, 14, 816-820.
  • Kresge, C. T., Leonowicz,M. E., Roth, W. J., Vartulli, J. C. and Beck, J. S., 1992. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359, 710-712
  • . Kwak, J. H., Herrera, J. E., Hu, Z. J., Wang, Y. and Peden, C. H. F., 2006. A new class of highly dispersed VOx catalysts on mesoporous silica: Synthesis, characterization, and catalytic activity in the partial oxidation of ethanol. Applied Catalysis, 300, 109-119.
  • Laha, S. C., Mukherjee, P., Sainkar,S. R. and Kumar, R., 2002. Cerium containing MCM-41-type mesoporous materials and their acidic and redox catalytic properties. Journal of Catalysis, 207, 213–223.
  • Lewandowska, A., Monteverdi, S., Bettahar, M. and Ziolek, M., 2002. MCM-41 mesoporous molecular sieves supported nickel—physico-chemical properties and catalytic activity inhydrogenation of benzene. Journal of Molecular Catalysis A: Chemical, 188, 85–95.
  • Lindlar, B., Kogelbaue, A. and Prins, R., 2000. Chemical, structural, and catalytic characteristics of Al-MCM-41 prepared by pH-controlled synthesis. Microporous and Mesoporous Materials, 38, 167-176.
  • Makhlid, I. A., Mohamed, R. M., El-Midany, A. A., Ibrahim, I. A. and El-Mossal, E. H., 2010. Preparation and characterization of nanosized Al-MCM-41 using different silica sources. Journal of Environmental Science and Engineering, 4, 21-28.
  • Ocelli, M. L., Biz, S. and Auroux, A., 1999. Effects of isomorphous substitution of Si with Ti and Zr in mesoporous silicates with the MCM-41 structure. Applied Catalysis A: General, 183, 231-239.
  • Sekkiou, H., Hamacha, R., Ali-Dahmane, T., Morsli, A. and Bengueddach, A., 2013. The effect of the method of copper incorporation on the structure of Si-MCM-41 and Al-MCM-41. Journal de la Société Chimique de Tunisie, 15, 93-99.
  • Selvam, P., Bhatia, S. K. and Sonwane, C. G., 2001. Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves. Industrial Engineering Chemistry Research, 40, 3237-3261.
  • Suslick, K. S., 1990. Sonochemistry. Science, 247, 1439-1445.
  • Suslick, K. S., 1995. Applications of ultrasound to materials chemistry. MRS Bulletin, 20, 29-34.
  • Wang, X., Jia, J., Zhao, L. and Sun, T., 2008. Mesoporous SBA-15 supported iron oxide: A potent catalyst for hydrogen sulfide removal. Water, Air and Soil Pollution, 193, 247-257.
  • Vartuli, J. C., Kresge, C. T., Leonowicz, M. E., Chu, A. S., McCullen, S. B., Johnson, I. D. and Sheppard, E. W., 1994. Synthesis of mesoporous materials: liquid-crystal templating versus intercalation of layered silicates. Chemistry of Mateials, 6, 2070-2077.
  • Vartuli, J. C., Schmitt, K. D., Kresge, C. T., Roth, W. J., Leonowicz, M. E., McCullen, S. B., Hellring, S. D., Beck,J. S., Schlenker, J. L., Olson, D. H. and Sheppard, E. W., 1994. Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications. Chemistry of Mateials, 6, 2317-2326.
  • Zanjanchi, M.A and Asgari, S., 2004. Incorporation of aluminum into the framework of mesoporous MCM-41: the contribution of diffuse reflectance spectroscopy. Solid State Ionics, 171, 277–282.
Year 2016, Volume: 16 Issue: 3, 521 - 530, 31.12.2016

Abstract

References

  • Adam, J., Antonakou, E., Lappas, A., Stöcker, M., Nilsen, M. H., Bouzga, A., Hustad, J. E. and Øye, G., 2006. In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Microporous and Mesoporous Materials, 96, 93–100.
  • Aguado, J., Serran, D.P. and Escola, J. M., 2000. A sol–gel approach for the room temperature synthesis of Al-containing micelle-templated silica. Microporous and Mesoporous Materials, 34, 43–54.
  • Antonakou, E., Lappas, A., Nilsen, M. H., Bouzga, A. and Stöcker, M., 2006. Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals. Fuel, 85, 2202–2212.
  • Atasever, Ş., Bozkurt, P. A. and Canel, M., 2015. Pyrolysis of waste printed circuit board particles. International Journal of Energy Optimization and Engineering, 4, 73-78.
  • Bagshaw, S. A. and Testa, F., 2000. Wairakei geothermal silica, a low cost reagent for the synthesis of mesostructured M41S alumino-silicate molecular sieves. Microporous and Mesoporous Materials, 39, 67-75.
  • Beck, J., Vartuli, J., Roth, W., Leonowicz, M., Kresge, C., Schmitt, K., Chu, C., Olson, D., Sheppard, E., McCullen, S., Higgins, J. and Schlenker, J., 1992. A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of American Chemical Society, 114, 10834-10843.
  • Bhattacharyya, K. G., Talukdar, A. K., Dasa, P. and Sivasanker, S., 2003. Al-MCM-41 catalysed alkylation of phenol with methanol. Journal of Molecular Catalysis A: Chemical, 197, 255–262
  • . Bozkurt, P. A., Tosun, O. and Canel, M., 2016. The synergistic effect of co-pyrolysis of oil shale and low density polyethylene mixtures and characterization of pyrolysis liquid. Journal of the Energy Institute, In press (DOI: 10.1016/j.joei.2016.04.007)
  • Busio, M., Janchen, J. and van Hooff, J. H. C., 1995. Aluminum incorporation in MCM-41 mesoporous molecular sieves. Microporous Materials, 5, 211-218.
  • Chaudhari, K., Bal, R., Srinivas, D., Chandwadkar, A. J. and Sivasanker, S., 2001. Redox behavior and selective oxidation properties of mesoporous titanoand zirconosilicate MCM-41 molecular sieves. Microporous and Mesoporous Materials, 50, 209-218.
  • Corma, A., Martınez, A. and Martınez-Soria V., 1997. Hydrogenation of aromatics in diesel fuels on Pt/MCM-41 catalysts. Journal of Catalysis, 169, 480–489.
  • Corma, A., 1997. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 97, 2373 -2419.
  • Corma, A., Fornes, V., Navarro, M. T. and Perez-Pariente, J., 1994. Acidity and stability of MCM-41 crystalline aluminosilicates. Journal of Catalysis, 148, 569-574.
  • Eimer, G. A., Pierella, L. B., Monti, G. A. and Anunziata, O. A., 2002. Synthesis and characterization of Al-MCM-41 and Al-MCM-48 mesoporous materials. Catalysis Letters, 78, 65-75.
  • Ghodke, S., Patel, R. and Chudasama, U., 2015. Mesoporous Zr-MCM-41 and Ti-MCM-41 as solid oxidation catalysts in the synthesis of epichlorohydrin. International Journal of Innovative Research in Science, Engineering and Technology, 4, 18735-18743.
  • Hall, W. J. and Williams, P. T., 2008. Removal of organobromine compounds from the pyrolysis oils of flame retarded plastics using zeolite catalyst. Journal of Analytical and Applied Pyrolysis, 81, 139–147.
  • Han, Y., Xiao, F., Wu, S., Sun, Y., Meng, X., Li, D, Lin, S., Deng, F. and Ai, X., 2001. A novel method for incorporation of heteroatoms into the framework of ordered mesoporous silica materials synthesized in strong acidic media. Journal of Physical Chemistry B, 105, 7963-7966.
  • Hui, K. S. and Chao, C. Y. H., 2006. Synthesis of MCM-41 from coal fly ash by a green approach: Influence of synthesis pH. Journal of Hazardous Materials, 137, 1135-1148.
  • Kong, Y., Zhu, H., Yang, G., Guo, X., Hou, W., Yan, Q., Gu, M. and Hu, C., 2004. Investigation of the structure of MCM-41 samples with a high copper content. Advanced Functional Materials, 14, 816-820.
  • Kresge, C. T., Leonowicz,M. E., Roth, W. J., Vartulli, J. C. and Beck, J. S., 1992. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359, 710-712
  • . Kwak, J. H., Herrera, J. E., Hu, Z. J., Wang, Y. and Peden, C. H. F., 2006. A new class of highly dispersed VOx catalysts on mesoporous silica: Synthesis, characterization, and catalytic activity in the partial oxidation of ethanol. Applied Catalysis, 300, 109-119.
  • Laha, S. C., Mukherjee, P., Sainkar,S. R. and Kumar, R., 2002. Cerium containing MCM-41-type mesoporous materials and their acidic and redox catalytic properties. Journal of Catalysis, 207, 213–223.
  • Lewandowska, A., Monteverdi, S., Bettahar, M. and Ziolek, M., 2002. MCM-41 mesoporous molecular sieves supported nickel—physico-chemical properties and catalytic activity inhydrogenation of benzene. Journal of Molecular Catalysis A: Chemical, 188, 85–95.
  • Lindlar, B., Kogelbaue, A. and Prins, R., 2000. Chemical, structural, and catalytic characteristics of Al-MCM-41 prepared by pH-controlled synthesis. Microporous and Mesoporous Materials, 38, 167-176.
  • Makhlid, I. A., Mohamed, R. M., El-Midany, A. A., Ibrahim, I. A. and El-Mossal, E. H., 2010. Preparation and characterization of nanosized Al-MCM-41 using different silica sources. Journal of Environmental Science and Engineering, 4, 21-28.
  • Ocelli, M. L., Biz, S. and Auroux, A., 1999. Effects of isomorphous substitution of Si with Ti and Zr in mesoporous silicates with the MCM-41 structure. Applied Catalysis A: General, 183, 231-239.
  • Sekkiou, H., Hamacha, R., Ali-Dahmane, T., Morsli, A. and Bengueddach, A., 2013. The effect of the method of copper incorporation on the structure of Si-MCM-41 and Al-MCM-41. Journal de la Société Chimique de Tunisie, 15, 93-99.
  • Selvam, P., Bhatia, S. K. and Sonwane, C. G., 2001. Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves. Industrial Engineering Chemistry Research, 40, 3237-3261.
  • Suslick, K. S., 1990. Sonochemistry. Science, 247, 1439-1445.
  • Suslick, K. S., 1995. Applications of ultrasound to materials chemistry. MRS Bulletin, 20, 29-34.
  • Wang, X., Jia, J., Zhao, L. and Sun, T., 2008. Mesoporous SBA-15 supported iron oxide: A potent catalyst for hydrogen sulfide removal. Water, Air and Soil Pollution, 193, 247-257.
  • Vartuli, J. C., Kresge, C. T., Leonowicz, M. E., Chu, A. S., McCullen, S. B., Johnson, I. D. and Sheppard, E. W., 1994. Synthesis of mesoporous materials: liquid-crystal templating versus intercalation of layered silicates. Chemistry of Mateials, 6, 2070-2077.
  • Vartuli, J. C., Schmitt, K. D., Kresge, C. T., Roth, W. J., Leonowicz, M. E., McCullen, S. B., Hellring, S. D., Beck,J. S., Schlenker, J. L., Olson, D. H. and Sheppard, E. W., 1994. Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications. Chemistry of Mateials, 6, 2317-2326.
  • Zanjanchi, M.A and Asgari, S., 2004. Incorporation of aluminum into the framework of mesoporous MCM-41: the contribution of diffuse reflectance spectroscopy. Solid State Ionics, 171, 277–282.
There are 34 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Pınar Acar Bozkurt

Ümran Gedikli This is me

Publication Date December 31, 2016
Submission Date May 26, 2016
Published in Issue Year 2016 Volume: 16 Issue: 3

Cite

APA Acar Bozkurt, P., & Gedikli, Ü. (2016). Al-MCM-41 Tipi Mezogözenekli Katalizörlerin Hidrotermal ve Sonokimyasal Yöntemle Sentezi ve Katalitik Uygulaması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 16(3), 521-530.
AMA Acar Bozkurt P, Gedikli Ü. Al-MCM-41 Tipi Mezogözenekli Katalizörlerin Hidrotermal ve Sonokimyasal Yöntemle Sentezi ve Katalitik Uygulaması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2016;16(3):521-530.
Chicago Acar Bozkurt, Pınar, and Ümran Gedikli. “Al-MCM-41 Tipi Mezogözenekli Katalizörlerin Hidrotermal Ve Sonokimyasal Yöntemle Sentezi Ve Katalitik Uygulaması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 16, no. 3 (December 2016): 521-30.
EndNote Acar Bozkurt P, Gedikli Ü (December 1, 2016) Al-MCM-41 Tipi Mezogözenekli Katalizörlerin Hidrotermal ve Sonokimyasal Yöntemle Sentezi ve Katalitik Uygulaması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 16 3 521–530.
IEEE P. Acar Bozkurt and Ü. Gedikli, “Al-MCM-41 Tipi Mezogözenekli Katalizörlerin Hidrotermal ve Sonokimyasal Yöntemle Sentezi ve Katalitik Uygulaması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 16, no. 3, pp. 521–530, 2016.
ISNAD Acar Bozkurt, Pınar - Gedikli, Ümran. “Al-MCM-41 Tipi Mezogözenekli Katalizörlerin Hidrotermal Ve Sonokimyasal Yöntemle Sentezi Ve Katalitik Uygulaması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 16/3 (December 2016), 521-530.
JAMA Acar Bozkurt P, Gedikli Ü. Al-MCM-41 Tipi Mezogözenekli Katalizörlerin Hidrotermal ve Sonokimyasal Yöntemle Sentezi ve Katalitik Uygulaması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2016;16:521–530.
MLA Acar Bozkurt, Pınar and Ümran Gedikli. “Al-MCM-41 Tipi Mezogözenekli Katalizörlerin Hidrotermal Ve Sonokimyasal Yöntemle Sentezi Ve Katalitik Uygulaması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 16, no. 3, 2016, pp. 521-30.
Vancouver Acar Bozkurt P, Gedikli Ü. Al-MCM-41 Tipi Mezogözenekli Katalizörlerin Hidrotermal ve Sonokimyasal Yöntemle Sentezi ve Katalitik Uygulaması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2016;16(3):521-30.