Research Article
BibTex RIS Cite

Doğal Kil Minerali Beydellit İle Sulu Çözeltilerden Co (II) Adsorpsiyonu

Year 2016, Volume: 16 Issue: 3, 617 - 630, 31.12.2016

Abstract

Bu çalışmada, doğal kil minerali olan beydellit kullanılarak atıksulardan kobalt giderimi araştırılmıştır.
Kobalt adsorbsiyon kapasitesi için beydellit dozajı (0.2-20 g/l), başlangıç Co (II) konsantrasyonu (50-
1000 mg/l), sıcaklık (293-333 0K) ve çözelti pH değerleri 2-7 çalışılmıştır. En yüksek adsorbsiyon pH 6-7
aralığında gözlenmiştir. 100 dakika temas süresi, pH 7 ve 50-400 mg/l kobalt konsantrasyonunda sırası
ile % 99,5-86,8 giderme verimi bulunmuştur. Kinetik verilerden farklı başlangıç kobalt (II)
konsantrasyonlarında (50-1000 mg/l) adsorbsiyonun hızlı ve 40 dakikada tamamlandığı ve daha sonra
dengeye geldiği tespit edilmiştir. Verilerin yalancı ikinci mertebe modele yüksek korelasyon katsayıları
ile uyduğu görülmüştür (r2>0.985). pH 7 ve 50-1000 mg/l de Co (II) adsorbsiyon kapasitesi Langmuir
izoterminden 21,13 mg/g olarak hesaplanmıştır. Entalpi
o (H ), serbest enerji(
o G ) ve entropi
o (S ) gibi termodinamik parametreler 283-333 0K arasında sırası ile -2.01, 7.27-8.31 ve 0.031
kJ/mol oK olarak hesaplanmıştır. Bu sonuçlar göre beydellit üzerine Co (II) üzerine adsorbsiyonu
endotermik bir proses olup adsorpsiyon yüksek sıcaklıkta daha iyi sonuç vermiştir. Bu çalışma
göstermiştir ki doğal kil minerali beydellit atıksulardan kobalt gideriminde etkili bir adsorbenttir.
Adsorption

References

  • Abbas M., Kaddour S., Trari M., 2014 Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon, Journal of Industrial and Engineering Chemistry 20, 745–751.
  • Abdel-Razek A.S., Abdel-Ghany T.M., Mahmoud S. A., El-Sheikh H. H., Mahmoud M. S., 2009.The use of free and immobilized Cunninghamella elegans for removing cobalt ions from aqueous waste solutions, World Journal of Microbiology Biotechnology, 25, 2137-2145.
  • Algarra M., Jimenez M.V., Rodrıguez-Castello E., Jimenez-Lopez A., Jimenez-Jimenez J., 2005. Heavy metals removal from electroplating wastewater by aminopropyl-Si MCM-41, Chemosphere, 59, 779-786.
  • Al-Shahrani S.S., 2014. Treatment of wastewater contaminated with cobalt using Saudi activated bentonite, Alexandria Engineering Journal, 53, 205-211.
  • Aşci Y., Kaya S., 2014. Removal of cobalt ions from water by ion-exchange method, Desalination and Water Treatment, 52, 267-273.
  • Bhatnagar A., Minocha A.K., Sillanpaa M., 2010. Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel asbiosorbent, Biochemical Engineering Journal, 48, 181-186.
  • Brigatti M.F., Malferrari D., Medici L., Poppi L., 2003, Effect of amino acids on the retention of copper by beidellite, Environmental Engineering Science, 20, 601-606.
  • Chen X., Chen Y., Zhou T., Liu D., Hu H., Fan S., 2015. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Management, 38, 349-356.
  • Cojocaru C., Zakrzewska-Trznadel G., Jaworska A., 2009. Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach. part 1: Optimization of complexation conditions, Journal of Hazardous Materials 169, 599–609.
  • da Fonseca M.G., de Oliveira M.M., Arakaki L.N.H., Espinola J.G.P., Airoldi C., Natural vermiculite as an exchanger support for heavy cations in aqueous solutions, Journal of Colloid and Interface Science, 285, 50–55.
  • Erdem E., Karapinar N., Donat R., 2004. The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science 280, 309-314.
  • Etci Ö., Bektaş N., Öncel M.S., 2010. Single and binary adsorption of lead and cadmium ions from aqueous solution using the clay mineral beidellite, Environ Earth Sci, 61,231–240
  • Gasser M.S., El-Hefny N.E., Daoud J.A., 2008. Extraction of Co(II) from aqueous solution using emulsion liquid membrane, Journal of Hazardous Materials, 151, 610–615.
  • Gikas P., 2008. Single and combined effects of nickel (Ni(II)) and cobalt (Co(II)) ions on activated sludge and on other aerobic microorganisms: A review, Journal of Hazardous Materials, 159 187-203.
  • Gupta N., Kushwaha A.K., Chattopadhyaya M.C., 2012. Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution, Journal of the Taiwan Institute of Chemical Engineers 43, 125-131.
  • Gupta V.iK., Jain C.K., Ali I., Sharma M., Saini V.K., 2003. Removal of cadmium and nickel from wastewater using bagasse fly ash-a sugar industry waste, Water Research, 37, 4038-4044.
  • Gutierrez M., Fuentes H.R., 1993. A Langmuir isotherm-based prediction of competitive sorption of Sr Cs and Co in montmorillonite, Waste Management, 13, 327-332.
  • Helios-Rybicka E., 1985. Sorption of Ni, Zn, and Cd on sepiolite, Clay Minerals, 20, 525-527.
  • He M., Zhu Y., Yang Y., Han B., Zhang Y., 2011, Adsorption of cobalt(II) ions from aqueous solutions by palygorskite, Applied Clay Science, 54, 292-296
  • Ilaiyaraja P., Singha Deb A.K., Ponraju D., Venkatraman B., 2014. Removal of cobalt from aqueous solution using xanthate functionalized dendrimer, Desalination and Water Treatment, 52, 438-445.
  • James R.O., Healy T.W., 1972. Adsorption of hydrolyzable metal ions at the oxide-water interface. I. Co (II) Adsorption of SiO2 and TiO2 as model system, Journal of Colloid Interface Science, 40, 42-52.
  • Kara M., Yuzer H., Sabah E., Celik M.S., 2003. Adsorption of cobalt from aqueous solutions onto sepiolite, Water Research, 37, 224-232.
  • Krishnan K.A., 2008. Anirudhan T.S., Kinetic and equilibrium modelling of cobalt(II) adsorption onto bagasse pith based sulphurised activated carbon, Chemical Engineering Journal 137, 257-264.
  • Kuyucak N., Volesky B., 1989. Accumulation of cobalt by marine algae, Biotechnology and Bioengineering, 33, 809-814.
  • Kyzas G. Z., Deliyanni E.A., Matis K.A., 2016. Activated carbons produced by pyrolysis of waste potato peels: Cobalt ions removal by adsorption, Colloids and Surfaces A, 490, 74-83.
  • Larsen E.S., Wherry E.T., 1925. Beidellite, a new mineral name, Journal of the Washington Academy of Sciences, 15, 465-466.
  • Linna A., Oksa P., Palmroos P., Roto P., Laippala P., Uitti J., 2003. Respiratory health of cobalt production workers, American Journal of Industrial Medicine, 44, 124–132.
  • Lison D., De Boeck M., Verougstraete V., Kirsch-Volders M., 2001, Update on the genotoxicity and carcinogenicity of cobalt compounds, Occupational Environmental Medicine, 58, 619-625.
  • Ltaief O.O., Siffert S., Fourmentin S., Benzina M., 2015. Synthesis of Faujasite type zeolite from low grade Tunisian clay for the removal of heavy metals from aqueous waste by batch process: Kinetic and equilibrium study, Comptes Rendus Chimie, 18, 1123-1133.
  • Manohar D.M., Noeline B.F., Anirudhan T.S., 2006. Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(II) from aqueous phase, Applied Clay Science, 31, 194-206.
  • Namasivayam C., Radhika R., Suba S., 2001. Uptake of dyes by a promising locally available agricultural solid waste: coir pith, Waste Management, 21, 381-387.
  • Netzer A., Hughes D.E., 1984. Adsorption of copper, lead and cobalt by activated carbon, Water Research, 18, 927–33.
  • Oladeji S.O., Saeed M.D., 2015. Assessment of cobalt levels in wastewater, soil and vegetable samples grown along Kubanni stream channels in Zaria, Kaduna State, Nigeria, African Journal of Environmental Science and Technology, 9, 776-772.
  • Öncel M.S., 2008. Adsorption of copper(II) from aqueous solution by Beidellite, Environmental Geology, 55, 1767-1775.
  • Pagnanelli F., Moscardini E., Altimari P., Atia T.A., Toro L., 2016. Cobalt products from real waste fractions of end of life lithium ion batteries, Waste Management, 51, 214-221.
  • Pal A., Ghosh S., Paul A.K., 2006, Biosorption of cobalt by fungi from serpentine soil ofAndaman, Bioresource Technology, 97, 1253-1258.
  • Rahman Md.L., Sarkar S.M., Yusoff M.M., 2016, Efficient removal of heavy metals from electroplating wastewater using polymer ligands, Frontiers of Environmental Science and Technology, 10, 352–361
  • Shafaei A., Pajootan E., Nikazar M., Arami M., 2011, Removal of Co(II) from aqueous solution by electrocoagulation process using aluminum electrodes, Desalination, 279, 121-126.
  • Surucu A., Eyupoglu V., Tutkun O., 2012. Selective separation of cobalt and nickel by flat sheet supported liquid membrane using Alamine 300 as carrier, Journal of Industrial and Engineering Chemistry 18, 629-634.
  • Yavuz O., Altunkaynak Y., Güzel F., 2003. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite, Water Research, 37, 948-952.
  • Zhang L., Wei J., Zhao X., Li F., Jiang F., Zhang M., Cheng X., 2016. Competitive adsorption of strontium and cobalt onto tin antimonate, Chemical Engineering Journal, 285, 679-689.
Year 2016, Volume: 16 Issue: 3, 617 - 630, 31.12.2016

Abstract

References

  • Abbas M., Kaddour S., Trari M., 2014 Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon, Journal of Industrial and Engineering Chemistry 20, 745–751.
  • Abdel-Razek A.S., Abdel-Ghany T.M., Mahmoud S. A., El-Sheikh H. H., Mahmoud M. S., 2009.The use of free and immobilized Cunninghamella elegans for removing cobalt ions from aqueous waste solutions, World Journal of Microbiology Biotechnology, 25, 2137-2145.
  • Algarra M., Jimenez M.V., Rodrıguez-Castello E., Jimenez-Lopez A., Jimenez-Jimenez J., 2005. Heavy metals removal from electroplating wastewater by aminopropyl-Si MCM-41, Chemosphere, 59, 779-786.
  • Al-Shahrani S.S., 2014. Treatment of wastewater contaminated with cobalt using Saudi activated bentonite, Alexandria Engineering Journal, 53, 205-211.
  • Aşci Y., Kaya S., 2014. Removal of cobalt ions from water by ion-exchange method, Desalination and Water Treatment, 52, 267-273.
  • Bhatnagar A., Minocha A.K., Sillanpaa M., 2010. Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel asbiosorbent, Biochemical Engineering Journal, 48, 181-186.
  • Brigatti M.F., Malferrari D., Medici L., Poppi L., 2003, Effect of amino acids on the retention of copper by beidellite, Environmental Engineering Science, 20, 601-606.
  • Chen X., Chen Y., Zhou T., Liu D., Hu H., Fan S., 2015. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Management, 38, 349-356.
  • Cojocaru C., Zakrzewska-Trznadel G., Jaworska A., 2009. Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach. part 1: Optimization of complexation conditions, Journal of Hazardous Materials 169, 599–609.
  • da Fonseca M.G., de Oliveira M.M., Arakaki L.N.H., Espinola J.G.P., Airoldi C., Natural vermiculite as an exchanger support for heavy cations in aqueous solutions, Journal of Colloid and Interface Science, 285, 50–55.
  • Erdem E., Karapinar N., Donat R., 2004. The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science 280, 309-314.
  • Etci Ö., Bektaş N., Öncel M.S., 2010. Single and binary adsorption of lead and cadmium ions from aqueous solution using the clay mineral beidellite, Environ Earth Sci, 61,231–240
  • Gasser M.S., El-Hefny N.E., Daoud J.A., 2008. Extraction of Co(II) from aqueous solution using emulsion liquid membrane, Journal of Hazardous Materials, 151, 610–615.
  • Gikas P., 2008. Single and combined effects of nickel (Ni(II)) and cobalt (Co(II)) ions on activated sludge and on other aerobic microorganisms: A review, Journal of Hazardous Materials, 159 187-203.
  • Gupta N., Kushwaha A.K., Chattopadhyaya M.C., 2012. Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution, Journal of the Taiwan Institute of Chemical Engineers 43, 125-131.
  • Gupta V.iK., Jain C.K., Ali I., Sharma M., Saini V.K., 2003. Removal of cadmium and nickel from wastewater using bagasse fly ash-a sugar industry waste, Water Research, 37, 4038-4044.
  • Gutierrez M., Fuentes H.R., 1993. A Langmuir isotherm-based prediction of competitive sorption of Sr Cs and Co in montmorillonite, Waste Management, 13, 327-332.
  • Helios-Rybicka E., 1985. Sorption of Ni, Zn, and Cd on sepiolite, Clay Minerals, 20, 525-527.
  • He M., Zhu Y., Yang Y., Han B., Zhang Y., 2011, Adsorption of cobalt(II) ions from aqueous solutions by palygorskite, Applied Clay Science, 54, 292-296
  • Ilaiyaraja P., Singha Deb A.K., Ponraju D., Venkatraman B., 2014. Removal of cobalt from aqueous solution using xanthate functionalized dendrimer, Desalination and Water Treatment, 52, 438-445.
  • James R.O., Healy T.W., 1972. Adsorption of hydrolyzable metal ions at the oxide-water interface. I. Co (II) Adsorption of SiO2 and TiO2 as model system, Journal of Colloid Interface Science, 40, 42-52.
  • Kara M., Yuzer H., Sabah E., Celik M.S., 2003. Adsorption of cobalt from aqueous solutions onto sepiolite, Water Research, 37, 224-232.
  • Krishnan K.A., 2008. Anirudhan T.S., Kinetic and equilibrium modelling of cobalt(II) adsorption onto bagasse pith based sulphurised activated carbon, Chemical Engineering Journal 137, 257-264.
  • Kuyucak N., Volesky B., 1989. Accumulation of cobalt by marine algae, Biotechnology and Bioengineering, 33, 809-814.
  • Kyzas G. Z., Deliyanni E.A., Matis K.A., 2016. Activated carbons produced by pyrolysis of waste potato peels: Cobalt ions removal by adsorption, Colloids and Surfaces A, 490, 74-83.
  • Larsen E.S., Wherry E.T., 1925. Beidellite, a new mineral name, Journal of the Washington Academy of Sciences, 15, 465-466.
  • Linna A., Oksa P., Palmroos P., Roto P., Laippala P., Uitti J., 2003. Respiratory health of cobalt production workers, American Journal of Industrial Medicine, 44, 124–132.
  • Lison D., De Boeck M., Verougstraete V., Kirsch-Volders M., 2001, Update on the genotoxicity and carcinogenicity of cobalt compounds, Occupational Environmental Medicine, 58, 619-625.
  • Ltaief O.O., Siffert S., Fourmentin S., Benzina M., 2015. Synthesis of Faujasite type zeolite from low grade Tunisian clay for the removal of heavy metals from aqueous waste by batch process: Kinetic and equilibrium study, Comptes Rendus Chimie, 18, 1123-1133.
  • Manohar D.M., Noeline B.F., Anirudhan T.S., 2006. Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(II) from aqueous phase, Applied Clay Science, 31, 194-206.
  • Namasivayam C., Radhika R., Suba S., 2001. Uptake of dyes by a promising locally available agricultural solid waste: coir pith, Waste Management, 21, 381-387.
  • Netzer A., Hughes D.E., 1984. Adsorption of copper, lead and cobalt by activated carbon, Water Research, 18, 927–33.
  • Oladeji S.O., Saeed M.D., 2015. Assessment of cobalt levels in wastewater, soil and vegetable samples grown along Kubanni stream channels in Zaria, Kaduna State, Nigeria, African Journal of Environmental Science and Technology, 9, 776-772.
  • Öncel M.S., 2008. Adsorption of copper(II) from aqueous solution by Beidellite, Environmental Geology, 55, 1767-1775.
  • Pagnanelli F., Moscardini E., Altimari P., Atia T.A., Toro L., 2016. Cobalt products from real waste fractions of end of life lithium ion batteries, Waste Management, 51, 214-221.
  • Pal A., Ghosh S., Paul A.K., 2006, Biosorption of cobalt by fungi from serpentine soil ofAndaman, Bioresource Technology, 97, 1253-1258.
  • Rahman Md.L., Sarkar S.M., Yusoff M.M., 2016, Efficient removal of heavy metals from electroplating wastewater using polymer ligands, Frontiers of Environmental Science and Technology, 10, 352–361
  • Shafaei A., Pajootan E., Nikazar M., Arami M., 2011, Removal of Co(II) from aqueous solution by electrocoagulation process using aluminum electrodes, Desalination, 279, 121-126.
  • Surucu A., Eyupoglu V., Tutkun O., 2012. Selective separation of cobalt and nickel by flat sheet supported liquid membrane using Alamine 300 as carrier, Journal of Industrial and Engineering Chemistry 18, 629-634.
  • Yavuz O., Altunkaynak Y., Güzel F., 2003. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite, Water Research, 37, 948-952.
  • Zhang L., Wei J., Zhao X., Li F., Jiang F., Zhang M., Cheng X., 2016. Competitive adsorption of strontium and cobalt onto tin antimonate, Chemical Engineering Journal, 285, 679-689.
There are 41 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Mehmet Salim Öncel

Publication Date December 31, 2016
Submission Date June 28, 2016
Published in Issue Year 2016 Volume: 16 Issue: 3

Cite

APA Öncel, M. S. (2016). Doğal Kil Minerali Beydellit İle Sulu Çözeltilerden Co (II) Adsorpsiyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 16(3), 617-630.
AMA Öncel MS. Doğal Kil Minerali Beydellit İle Sulu Çözeltilerden Co (II) Adsorpsiyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2016;16(3):617-630.
Chicago Öncel, Mehmet Salim. “Doğal Kil Minerali Beydellit İle Sulu Çözeltilerden Co (II) Adsorpsiyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 16, no. 3 (December 2016): 617-30.
EndNote Öncel MS (December 1, 2016) Doğal Kil Minerali Beydellit İle Sulu Çözeltilerden Co (II) Adsorpsiyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 16 3 617–630.
IEEE M. S. Öncel, “Doğal Kil Minerali Beydellit İle Sulu Çözeltilerden Co (II) Adsorpsiyonu”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 16, no. 3, pp. 617–630, 2016.
ISNAD Öncel, Mehmet Salim. “Doğal Kil Minerali Beydellit İle Sulu Çözeltilerden Co (II) Adsorpsiyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 16/3 (December 2016), 617-630.
JAMA Öncel MS. Doğal Kil Minerali Beydellit İle Sulu Çözeltilerden Co (II) Adsorpsiyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2016;16:617–630.
MLA Öncel, Mehmet Salim. “Doğal Kil Minerali Beydellit İle Sulu Çözeltilerden Co (II) Adsorpsiyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 16, no. 3, 2016, pp. 617-30.
Vancouver Öncel MS. Doğal Kil Minerali Beydellit İle Sulu Çözeltilerden Co (II) Adsorpsiyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2016;16(3):617-30.