Research Article
BibTex RIS Cite

Unimodüler f(R) Teoride Skaler Alanlı (1+1)-Boyutlu Karadelikler

Year 2018, Volume: 18 Issue: 1, 75 - 82, 30.04.2018

Abstract

Bu çalışmada, unimodüler f(R) gravitasyon teorisi çerçevesinde (1+1)-boyutlu Schwarzschild karadelikleri skaler alan varlığında araştırılmıştır. Unimodüler f(R) gravitasyon teorisinin (3+1)-boyutlu uzay-zaman geometrileri için tanımlanmış olan alan denklemleri, (1+1)-boyut için elde edilmiştir. Unimodüler f(R) gravitasyon teorisine ait enerji-momentum korunum denklemi, etkin enerji-momentum tensörü kullanılarak (3+1) ve (1+1)-boyutlu uzay-zamanlar için tanımlanmıştır. Tanımlanan korunum denklemi ve Klein-Gordon denklemlerinden faydalanılarak alan denklemi çözümleri elde edilmiştir. Keyfi sabitlerin farklı seçimleri için f(R) ve skaler alan fonksiyonlarının grafikleri gösterilmiştir. Elde edilen sonuçlar fiziksel ve geometrik açıdan tartışılmıştır.

References

  • Achucarro, A. and Ortiz, M.E., 1993. Relating black holes in two and three dimensions. Physical Review D, 48(8), 3600-3605.
  • Ahmed, J. and Saifullah, K., 2016. Greybody factor of scalar field from Reissner-Nordstrom-de Sitter black hole. arXiv preprint arXiv:1610.06104 [gr-qc],1-13.
  • Alvarez, E., 2005. Can one tell Einstein’s unimodular theory from Einstein’s general relativity? Journal of High Energy Physics, 2005(03), 002, 1-14.
  • Anderson, J.L. and Finkelstein, D., 1971. Cosmological constant and fundamental length. American Journal of Physics, 39(8), 901-904.
  • Brown, J.D., Henneaux, M. and Teitelboim, C., 1986. Black holes in two spacetime dimensions. Physical Review D, 33(2), 319-323.
  • Buchdahl, H. A., 1970. Non-linear lagrangians and cosmological theory. Monthly Notices of the Royal Astronomical Society, 150, 1-8.
  • Cadoni, M. and Franzin, E., 2015. Asymptotically flat black holes sourced by a massless scalar field. Physical Review D, 91(10), 104011, 1-10.
  • Carroll, S., 2004. Spacetime and Geometry: An Introduction to General Relativity. Addison-Wesley, San Francisco, USA, 155-156.
  • Clifton, T., 2006. Alternative theories of gravity. PhD Dissertation, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK, 205. Detweiler, S., 1980. Klein-Gordon equation and rotating black holes. Physical Review D, 22(10), 2323-2326.
  • Eichhorn, A., 2015. The renormalization group flow of unimodular f(R) gravity. Journal of High Energy Physics, 2015(04), 096, 1-27.
  • Faraoni, V., 2008. f(R) gravity: successes and challenges. arXiv preprint arXiv:0810.2602 [gr-qc],1-18. Fiol, B. and Garriga, J., 2010. Semiclassical unimodular gravity. Journal of Cosmology and Astroparticle Physics, 2010(08), 015, 1-13.
  • Lobo, F.S.N. and Oliveira, M.A., 2009. Wormhole geometries in f(R) modified theories of gravity. Physical Review D, 80(10), 104012, 1-9.
  • Nojiri, S., Odintsov, S.D. and Oikonomou, V. K., 2016a. Unimodular F(R) gravity. Journal of Cosmology and Astroparticle Physics, 2016(05), 046, 1-24.
  • Nojiri, S., Odintsov, S.D. and Oikonomou, V.K., 2016b. Bounce universe history from unimodular F(R) gravity. Physical Review D, 93(8), 084050, 1-14.
  • Ortiz, L., 2012. The energy-momentum tensor in the 1+1 dimensional non-rotating BTZ black hole. General Relativity and Gravitation, 44(11), 2857-2863.
  • Panotopoulos, G. and Rincon, A., 2017. Greybody factors for a nonminimally coupled scalar field in BTZ black hole background. Physics Letters B, 772, 523-528.
  • Rajabi, F. and Nozari, K., 2017. Unimodular f(R,T) gravity. Physical Review D, 96(8), 084061, 1-15.
  • Riess, A. G., 1998. An accelerating universe and other cosmological implications from SNe IA. Bulletin of the American Astronomical Society, 30, 843-844.
  • Starobinsky, A.A., 2007. Disappearing cosmological constant in f(R) gravity. JETP Letters, 86(3), 157-163.
  • Zhang, C., Tang, Z. and Wang, B., 2016. Gravitational collapse of massless scalar field in f(R) gravity. Physical Review D, 94(10), 104013, 1-11.
Year 2018, Volume: 18 Issue: 1, 75 - 82, 30.04.2018

Abstract

References

  • Achucarro, A. and Ortiz, M.E., 1993. Relating black holes in two and three dimensions. Physical Review D, 48(8), 3600-3605.
  • Ahmed, J. and Saifullah, K., 2016. Greybody factor of scalar field from Reissner-Nordstrom-de Sitter black hole. arXiv preprint arXiv:1610.06104 [gr-qc],1-13.
  • Alvarez, E., 2005. Can one tell Einstein’s unimodular theory from Einstein’s general relativity? Journal of High Energy Physics, 2005(03), 002, 1-14.
  • Anderson, J.L. and Finkelstein, D., 1971. Cosmological constant and fundamental length. American Journal of Physics, 39(8), 901-904.
  • Brown, J.D., Henneaux, M. and Teitelboim, C., 1986. Black holes in two spacetime dimensions. Physical Review D, 33(2), 319-323.
  • Buchdahl, H. A., 1970. Non-linear lagrangians and cosmological theory. Monthly Notices of the Royal Astronomical Society, 150, 1-8.
  • Cadoni, M. and Franzin, E., 2015. Asymptotically flat black holes sourced by a massless scalar field. Physical Review D, 91(10), 104011, 1-10.
  • Carroll, S., 2004. Spacetime and Geometry: An Introduction to General Relativity. Addison-Wesley, San Francisco, USA, 155-156.
  • Clifton, T., 2006. Alternative theories of gravity. PhD Dissertation, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK, 205. Detweiler, S., 1980. Klein-Gordon equation and rotating black holes. Physical Review D, 22(10), 2323-2326.
  • Eichhorn, A., 2015. The renormalization group flow of unimodular f(R) gravity. Journal of High Energy Physics, 2015(04), 096, 1-27.
  • Faraoni, V., 2008. f(R) gravity: successes and challenges. arXiv preprint arXiv:0810.2602 [gr-qc],1-18. Fiol, B. and Garriga, J., 2010. Semiclassical unimodular gravity. Journal of Cosmology and Astroparticle Physics, 2010(08), 015, 1-13.
  • Lobo, F.S.N. and Oliveira, M.A., 2009. Wormhole geometries in f(R) modified theories of gravity. Physical Review D, 80(10), 104012, 1-9.
  • Nojiri, S., Odintsov, S.D. and Oikonomou, V. K., 2016a. Unimodular F(R) gravity. Journal of Cosmology and Astroparticle Physics, 2016(05), 046, 1-24.
  • Nojiri, S., Odintsov, S.D. and Oikonomou, V.K., 2016b. Bounce universe history from unimodular F(R) gravity. Physical Review D, 93(8), 084050, 1-14.
  • Ortiz, L., 2012. The energy-momentum tensor in the 1+1 dimensional non-rotating BTZ black hole. General Relativity and Gravitation, 44(11), 2857-2863.
  • Panotopoulos, G. and Rincon, A., 2017. Greybody factors for a nonminimally coupled scalar field in BTZ black hole background. Physics Letters B, 772, 523-528.
  • Rajabi, F. and Nozari, K., 2017. Unimodular f(R,T) gravity. Physical Review D, 96(8), 084061, 1-15.
  • Riess, A. G., 1998. An accelerating universe and other cosmological implications from SNe IA. Bulletin of the American Astronomical Society, 30, 843-844.
  • Starobinsky, A.A., 2007. Disappearing cosmological constant in f(R) gravity. JETP Letters, 86(3), 157-163.
  • Zhang, C., Tang, Z. and Wang, B., 2016. Gravitational collapse of massless scalar field in f(R) gravity. Physical Review D, 94(10), 104013, 1-11.
There are 20 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Hüseyin Aydın This is me

Melis Ulu Doğru This is me

Publication Date April 30, 2018
Submission Date April 20, 2017
Published in Issue Year 2018 Volume: 18 Issue: 1

Cite

APA Aydın, H., & Ulu Doğru, M. (2018). Unimodüler f(R) Teoride Skaler Alanlı (1+1)-Boyutlu Karadelikler. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 18(1), 75-82.
AMA Aydın H, Ulu Doğru M. Unimodüler f(R) Teoride Skaler Alanlı (1+1)-Boyutlu Karadelikler. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. April 2018;18(1):75-82.
Chicago Aydın, Hüseyin, and Melis Ulu Doğru. “Unimodüler f(R) Teoride Skaler Alanlı (1+1)-Boyutlu Karadelikler”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18, no. 1 (April 2018): 75-82.
EndNote Aydın H, Ulu Doğru M (April 1, 2018) Unimodüler f(R) Teoride Skaler Alanlı (1+1)-Boyutlu Karadelikler. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18 1 75–82.
IEEE H. Aydın and M. Ulu Doğru, “Unimodüler f(R) Teoride Skaler Alanlı (1+1)-Boyutlu Karadelikler”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 18, no. 1, pp. 75–82, 2018.
ISNAD Aydın, Hüseyin - Ulu Doğru, Melis. “Unimodüler f(R) Teoride Skaler Alanlı (1+1)-Boyutlu Karadelikler”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18/1 (April 2018), 75-82.
JAMA Aydın H, Ulu Doğru M. Unimodüler f(R) Teoride Skaler Alanlı (1+1)-Boyutlu Karadelikler. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2018;18:75–82.
MLA Aydın, Hüseyin and Melis Ulu Doğru. “Unimodüler f(R) Teoride Skaler Alanlı (1+1)-Boyutlu Karadelikler”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 18, no. 1, 2018, pp. 75-82.
Vancouver Aydın H, Ulu Doğru M. Unimodüler f(R) Teoride Skaler Alanlı (1+1)-Boyutlu Karadelikler. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2018;18(1):75-82.