Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Nanocellulose Production and It's Modification with TEMPO, PINO, Periodate

Year 2018, Volume 18, Issue 1, 357 - 365, 30.04.2018

Abstract

In this study, wood pulp was produced using Eucalyptus camaldulensis plant. In further step, nanocellulose was produced from the obtained wood pulp. Afterward, the nanocellulose was interacted with TEMPO (2,2,6,6- Tetramethyl-piperidin-1-yl)oxyl), PINO (Phthalimide N-Oxyl) and Periodate to modify the nanocellulose. Chemical, rheological and thermal properties were
carried out by using CP-MAS 13C-NMR, rheometer and thermogravimetric analysis device, respectively. As the result of present study, structures obtained from TEMPO and PINO revealed similar properties in that chemical property. Modifications that applied to the nanocellulose caused to increase both viscosity and amorphism for all of the samples. Besides, it was seen that
substances has lower thermal stability compared to the that of the nanocellulose. It has been thought that the present study will make extra contribution to industry and literature.

References

  • Andresen, M., Stenius, P. 2007. Water-in-oil Emulsions Stabilized by Hydrophobized Microfibrillated Cellulose. Journal of Dispersion Science and Technology, 28(6), 837-844.
  • Biliuta, G, Fras, L, Drobota, M, Persin, Z, Kreze, T, Stana-Kleinschek, K, Ribitsch, V, Harabagiu, V. 2013. Comparison study of TEMPO and phthalimide-N-oxyl (PINO) radicals on oxidation efficiency toward cellulose. Carbohydrate Polymers, 91(2), 502-507.
  • Besbes, I., Alila, S., Boufi, S. 2011. Nanofibrillated Cellulose from TEMPO-Oxidized Eucalyptus Fibres: Effect of The Carboxyl Content. Carbohydrate Polymers, 84, 975-983.
  • Bettaieb, F., Nechyporchuk, O., Khiari, R., Mhenni, M.F., Dufresne, A., Belgacem, M. N. 2015. Effect of The Oxidation Treatment on The Production of Cellulose Nanofiber Suspensions from Posidonia oceanica: The Rheological Aspect. Carbohydrate Polymers, 134, 664–672.
  • Bismarck, A., Mishra, S., Lampke, T. 2005. Plant fibres as reinforcement for green composites, in: A.K. Mohanty, M. Misra, L.T. Drzal (Eds.), Natural Fibres, Biopolymers, and Biocomposites, CRC Press, Boca Raton, 37-108.
  • Codou, A., Guigo, N., Heux, L., Sbirrazzuoli, N. 2015. Partial Periodate Oxidation and Thermal Cross-Linking For The Processing of Thermoset All-Cellulose Composites. Composite Science Technology, 117, 54-61
  • Güven, O, Monteiro, S, Mourac, E, Drelich. 2016. J. Re-Emerging Field of Lignocellulosic Fiber – Polymer Composites and Ionizing Radiation Technology in their Formulation. Polymer Reviews, 56, 4, 702-736
  • Hayaka, F., Saito, T., Iwata, T., Kumamoto, Y., Isogai, A. 2009. Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation. Biomacromolecules, 10(1), 162-165.
  • Huang, C-F., Chen, J-K., Tsai, T-Y., Hsieh, K-Y. A. 2015. Dual-Functionalized Cellulose Nanofibrils Prepared Through TEMPO Mediated Oxidation and Surface-İnitiated ATRP. Polymer, 72, 395-405.
  • Klemm, D. Kramer, F. Moritz, S. Lindström, T. Ankerfors, M. Gray, D. Dorris, A. 2011. Nanocellulose: A new Family of Nature-Based Materials. Angewandte Chemie International Edition, 50, 5438-5466.
  • Kono, H.,Yunoki, S., Shikano, T., Fujiwara, M., Erata, T., Takai, M. 2002. CP/MAS 13C NMR Study of Cellulose and Cellulose Derivatives. 1. Complete Assignment of the CP/MAS 13C NMR Spectrum of the Native Cellulose. Journal of American Chemical Society, 124 (25), 7506–7511.
  • Pääkko, M., Ankerfors, M., Kosonen, H., Nykanen, A., Ahola, S., Osterberg, M., Ruokolainen, J., Laine, J., Larsson, P. T., Ikkala, O., Lindstrom, T. 2007. Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromolecules, 8(6), 1934-1941.
  • Poyraz, B, Tozluoğlu, A, Candan, Z, Yavuz, M, and Demir, A. 2017. Influence of PVA and silica on chemical, thermo-mechanical and electrical properties of Celluclast-treated nanofibrillated cellulose composites. International Journal of Biological Macromolecules, 104, 92-102
  • Teotia, A. 2012. Modification of Carboxymethyl Cellulose Through Oxidation. Carbohydrate Polymers, 87, 457– 460.
  • Tozluoğlu, A, Poyraz, B, Candan, Z, Yavuz, M, and Arslan, R. 2017. Biofilms from Micro/Nanocellulose Of Nabh4-Modified Kraft Pulp. Bulletin of Material Science, 40, 4, 699–710.
  • Velásquez-Cock, J., Ramírez, E., Betancourt, S., Putaux, J.-L., Osorio, M., Castro, C., Ganan, P., Zuluaga, R. 2014. Influence of the acid type in the production of chitosan films reinforced with bacterial nanocellulose. International Journal of Biological Macromolecule. 69, 208–213.
  • Wuhrmann, K., Heuberger, A., Mühlethaler, K. 1946. Elektronenmikroskopische Untersuchungen and Zellulosefasern nach Behandlung mit Ultraschall. Experientia, 2(3), 105-107.
  • Zimmermann, T., Bordeanu, N., Strub, E. 2010. Properties of Nanofibrillated Cellulose from Different Raw Materials and Its Reinforcement Potential. Carbohydrate Polymers, 79, 1086-1093.
  • Zuckerstätter, G., Schild, G., Wollboldt, P., Röder, T., Weber, H. K., Sixta, H. 2009. The Elucidation of Cellulose Supramolecular Structure by 13C CP-MAS NMR. Lenzinger Berichte, 87, 38-46.
  • Xuejuan, J., Chen, Y., Shi, C., Ye, Y., Abid, M., Jabbar, S., Wang, P., Zeng, X., Wu, T. 2014. "Rheological Properties of An Amorphous Cellulose Suspension. Food Hydrocolloids, 39, 27-33.

Nanoselüloz Üretimi ve TEMPO, PINO, Periyodat ile Modifikasyonu

Year 2018, Volume 18, Issue 1, 357 - 365, 30.04.2018

Abstract

Bu çalışmada Eucalyptus camaldulensis bitkisi kullanılarak odun hamuru üretilmiştir. Ardından üretilen odun hamurundan nanoselüloz elde edilmiştir. Elde edilen nanoselüloz üzerine 2,2,6,6-Tetrametil-piperidin-1-il)-oksil (TEMPO), Ftalimit N-Oksil (PINO) ve Periyodat ilave edilerek nanoselülozun modifikasyonu gerçekleştirilmiştir. Elde edilen modifiye nanoselülozların kimyasal, reolojik ve termal özellikleri CP-MAS 13C-NMR, reometre ve TGA cihazları kullanılarak incelenmiştir. Çalışma sonucunda TEMPO ve PINO'nun modifikasyonu sonucu oluşan yapıların benzer kimyasal özellik gösterdiği görülmüştür. Modifikasyonlar ile örneklerin viskozluğu ve amorfluğu artarken termal kararlılıklarının ise daha düşük değerde olduğu gözlenmiştir. Mevcut çalışmanın endüstriye ve literatüre katkı sağlayacağı düşünülmektedir.

References

  • Andresen, M., Stenius, P. 2007. Water-in-oil Emulsions Stabilized by Hydrophobized Microfibrillated Cellulose. Journal of Dispersion Science and Technology, 28(6), 837-844.
  • Biliuta, G, Fras, L, Drobota, M, Persin, Z, Kreze, T, Stana-Kleinschek, K, Ribitsch, V, Harabagiu, V. 2013. Comparison study of TEMPO and phthalimide-N-oxyl (PINO) radicals on oxidation efficiency toward cellulose. Carbohydrate Polymers, 91(2), 502-507.
  • Besbes, I., Alila, S., Boufi, S. 2011. Nanofibrillated Cellulose from TEMPO-Oxidized Eucalyptus Fibres: Effect of The Carboxyl Content. Carbohydrate Polymers, 84, 975-983.
  • Bettaieb, F., Nechyporchuk, O., Khiari, R., Mhenni, M.F., Dufresne, A., Belgacem, M. N. 2015. Effect of The Oxidation Treatment on The Production of Cellulose Nanofiber Suspensions from Posidonia oceanica: The Rheological Aspect. Carbohydrate Polymers, 134, 664–672.
  • Bismarck, A., Mishra, S., Lampke, T. 2005. Plant fibres as reinforcement for green composites, in: A.K. Mohanty, M. Misra, L.T. Drzal (Eds.), Natural Fibres, Biopolymers, and Biocomposites, CRC Press, Boca Raton, 37-108.
  • Codou, A., Guigo, N., Heux, L., Sbirrazzuoli, N. 2015. Partial Periodate Oxidation and Thermal Cross-Linking For The Processing of Thermoset All-Cellulose Composites. Composite Science Technology, 117, 54-61
  • Güven, O, Monteiro, S, Mourac, E, Drelich. 2016. J. Re-Emerging Field of Lignocellulosic Fiber – Polymer Composites and Ionizing Radiation Technology in their Formulation. Polymer Reviews, 56, 4, 702-736
  • Hayaka, F., Saito, T., Iwata, T., Kumamoto, Y., Isogai, A. 2009. Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation. Biomacromolecules, 10(1), 162-165.
  • Huang, C-F., Chen, J-K., Tsai, T-Y., Hsieh, K-Y. A. 2015. Dual-Functionalized Cellulose Nanofibrils Prepared Through TEMPO Mediated Oxidation and Surface-İnitiated ATRP. Polymer, 72, 395-405.
  • Klemm, D. Kramer, F. Moritz, S. Lindström, T. Ankerfors, M. Gray, D. Dorris, A. 2011. Nanocellulose: A new Family of Nature-Based Materials. Angewandte Chemie International Edition, 50, 5438-5466.
  • Kono, H.,Yunoki, S., Shikano, T., Fujiwara, M., Erata, T., Takai, M. 2002. CP/MAS 13C NMR Study of Cellulose and Cellulose Derivatives. 1. Complete Assignment of the CP/MAS 13C NMR Spectrum of the Native Cellulose. Journal of American Chemical Society, 124 (25), 7506–7511.
  • Pääkko, M., Ankerfors, M., Kosonen, H., Nykanen, A., Ahola, S., Osterberg, M., Ruokolainen, J., Laine, J., Larsson, P. T., Ikkala, O., Lindstrom, T. 2007. Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromolecules, 8(6), 1934-1941.
  • Poyraz, B, Tozluoğlu, A, Candan, Z, Yavuz, M, and Demir, A. 2017. Influence of PVA and silica on chemical, thermo-mechanical and electrical properties of Celluclast-treated nanofibrillated cellulose composites. International Journal of Biological Macromolecules, 104, 92-102
  • Teotia, A. 2012. Modification of Carboxymethyl Cellulose Through Oxidation. Carbohydrate Polymers, 87, 457– 460.
  • Tozluoğlu, A, Poyraz, B, Candan, Z, Yavuz, M, and Arslan, R. 2017. Biofilms from Micro/Nanocellulose Of Nabh4-Modified Kraft Pulp. Bulletin of Material Science, 40, 4, 699–710.
  • Velásquez-Cock, J., Ramírez, E., Betancourt, S., Putaux, J.-L., Osorio, M., Castro, C., Ganan, P., Zuluaga, R. 2014. Influence of the acid type in the production of chitosan films reinforced with bacterial nanocellulose. International Journal of Biological Macromolecule. 69, 208–213.
  • Wuhrmann, K., Heuberger, A., Mühlethaler, K. 1946. Elektronenmikroskopische Untersuchungen and Zellulosefasern nach Behandlung mit Ultraschall. Experientia, 2(3), 105-107.
  • Zimmermann, T., Bordeanu, N., Strub, E. 2010. Properties of Nanofibrillated Cellulose from Different Raw Materials and Its Reinforcement Potential. Carbohydrate Polymers, 79, 1086-1093.
  • Zuckerstätter, G., Schild, G., Wollboldt, P., Röder, T., Weber, H. K., Sixta, H. 2009. The Elucidation of Cellulose Supramolecular Structure by 13C CP-MAS NMR. Lenzinger Berichte, 87, 38-46.
  • Xuejuan, J., Chen, Y., Shi, C., Ye, Y., Abid, M., Jabbar, S., Wang, P., Zeng, X., Wu, T. 2014. "Rheological Properties of An Amorphous Cellulose Suspension. Food Hydrocolloids, 39, 27-33.

Details

Primary Language Turkish
Subjects Science
Journal Section Articles
Authors

Bayram POYRAZ

Publication Date April 30, 2018
Application Date October 1, 2017
Acceptance Date April 18, 2018
Published in Issue Year 2018, Volume 18, Issue 1

Cite

Bibtex @research article { akufemubid538640, journal = {Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi}, issn = {}, eissn = {2149-3367}, address = {}, publisher = {Afyon Kocatepe University}, year = {2018}, volume = {18}, pages = {357 - 365}, doi = {}, title = {Nanoselüloz Üretimi ve TEMPO, PINO, Periyodat ile Modifikasyonu}, key = {cite}, author = {Poyraz, Bayram} }
APA Poyraz, B. (2018). Nanoselüloz Üretimi ve TEMPO, PINO, Periyodat ile Modifikasyonu . Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi , 18 (1) , 357-365 . Retrieved from https://dergipark.org.tr/en/pub/akufemubid/issue/43824/538640
MLA Poyraz, B. "Nanoselüloz Üretimi ve TEMPO, PINO, Periyodat ile Modifikasyonu" . Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18 (2018 ): 357-365 <https://dergipark.org.tr/en/pub/akufemubid/issue/43824/538640>
Chicago Poyraz, B. "Nanoselüloz Üretimi ve TEMPO, PINO, Periyodat ile Modifikasyonu". Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18 (2018 ): 357-365
RIS TY - JOUR T1 - Nanoselüloz Üretimi ve TEMPO, PINO, Periyodat ile Modifikasyonu AU - Bayram Poyraz Y1 - 2018 PY - 2018 N1 - DO - T2 - Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi JF - Journal JO - JOR SP - 357 EP - 365 VL - 18 IS - 1 SN - -2149-3367 M3 - UR - Y2 - 2018 ER -
EndNote %0 Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi Nanoselüloz Üretimi ve TEMPO, PINO, Periyodat ile Modifikasyonu %A Bayram Poyraz %T Nanoselüloz Üretimi ve TEMPO, PINO, Periyodat ile Modifikasyonu %D 2018 %J Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi %P -2149-3367 %V 18 %N 1 %R %U
ISNAD Poyraz, Bayram . "Nanoselüloz Üretimi ve TEMPO, PINO, Periyodat ile Modifikasyonu". Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18 / 1 (April 2018): 357-365 .
AMA Poyraz B. Nanoselüloz Üretimi ve TEMPO, PINO, Periyodat ile Modifikasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2018; 18(1): 357-365.
Vancouver Poyraz B. Nanoselüloz Üretimi ve TEMPO, PINO, Periyodat ile Modifikasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2018; 18(1): 357-365.
IEEE B. Poyraz , "Nanoselüloz Üretimi ve TEMPO, PINO, Periyodat ile Modifikasyonu", Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 18, no. 1, pp. 357-365, Apr. 2018