GNSS-PPP ile Elde Edilen Düşey Yerdeğiştirmenin Doğruluğu
Year 2018,
Volume: 18 Issue: 2, 605 - 615, 31.08.2018
Cüneyt Aydın,
,
N. Onur Aykut,
Burak Akpınar
Abstract
Bu çalışmada GNSS–PPP (GNSS-Precise Point Positioning/Küresel Konumlama Uydu Sistemi-Hassas Konum Belirleme) tekniği ile elde edilen düşey yerdeğiştirmenin (çökme ya da yükselmenin) doğruluğu incelenmektedir. Bu amaçla, bir test noktasında başlangıç periyoduna ve bu periyoda göre yükseklikleri çok iyi bilinen beş periyoda ilişkin GNSS (statik) çift frekans gözlemleri günlük olarak elde edilmiştir. Güvenilirliği arttırmak için 6 periyotluk deney farklı koşullarda üç kez tekrarlanmıştır. GNSS gözlemleri T=2 saatlikten T=12 saatliğe kadar değişen süreler için 4 farklı durumda (1: GPS-PPP gözlemi-sonuç yörünge; 2: GPS/GLONASS gözlemi-sonuç yörünge; 3: GPS-PPP gözlemi-hızlı yörünge, ve 4: GPS/GLONASS gözlemi-hızlı yörünge) CSRS (Canadian Spatial Reference System)-PPP internet servisi yardımıyla değerlendirilmiştir. Söz konusu 4 farklı durum ve gözlem süreleri için periyotlar arasındaki gözlenen ve bilinen düşey yerdeğiştirmeler karşılaştırılmıştır. Karşılaştırmalar sonucunda belirlenen hatalar yardımıyla her bir durum ve gözlem süresi için karesel ortalama hata elde edilmiştir. Yapılan analizlere göre, GPS ve GPS/GLONASS gözlem türlerine ilişkin karesel ortalama hataların hemen hemen özdeş olduğu, gözlem süresi ve yörünge türüne bağlı olarak açıklanabileceği görülmüştür. GNSS-PPP düşey yerdeğiştirme karesel ortalama hatası, sonuç yörünge koordinatları kullanılması durumunda 3.9/(T0.5), hızlı yörünge koordinatları kullanılması durumunda ise 4.2/(T0.5) [cm/saat0.5] şeklinde modellenmiştir. Bu sonuç, her iki yörünge koordinatları kullanılarak T=4 saatlik gözlem süresi için 6 cm’lik bir düşey yerdeğiştirmenin %80 doğrulukla belirlenebileceğini göstermektedir. Bu büyüklük, gözlem süresi arttıkça küçülmektedir.
References
- Abdallah, A., ve Schwieger, V. 2016. Static GNSS precise point positioning using free online services for Africa, Survey Review, 48(306), 61-77.
- Abd Rabbou, M., El-Rabbany, A. 2016. Single-frequency precise point positioning using multi-constellation GNSS: GPS, GLONASS, Galileo and BeiDou, Geomatica, 70(2), 113-122.
- Afifi, A. ve El-Rabbany, A. 2017. Improved dual frequency PPP model using GPS and BeiDou observations, Journal of Geodetic Science, 7, 1-8.
- Akpınar, B. ve Aykut, N.O. 2017. Determining the Coordinates of Control Points in Hydrographic Surveying by the Precise Point Positioning Method, The Journal of Navigation, 70(2), 1241-1252.
- Alkan, R. M., İlci, V., Ozulu İ. M., Saka, M. H. 2015. A comparative study for accuracy assessment of PPP technique using GPS and GLONASS in urban areas, Measurement, 69, 1-8.
- Amiri-Simkooei, A. R., Alaei-Tabatabaei, S. M., Zangeneh-Nejad, F., and Voosoghi, B. 2017. Stability analysis of deformation-monitoring network points using simultaneous observation adjustment of two epochs, Journal of Surveying Engineering, 143(1), doi: 10.1061/(ASCE)SU.1943-5428.0000195.
- Aydin, C., ve Demirel, H. 2005. Computation of Baarda’s lower bound of the non-centrality parameter, Journal of Geodesy, 78(7-8), 437-441.
- Aydin, C. 2012. Power of global test in deformation analysis, Journal of Surveying Engineering, 138(2), 51–56.
- Aydin, C. 2017. Effect of displaced reference points on deformation analysis, Journal of Surveying Engineering, 143(3), doi: 10.1061/(ASCE)SU.1943-5428.0000216.
- Aydin, C., Uygur S. Ö., Çetin S., Özdemir, A., Doğan U. 2018. Ability of GPS PPP in 2D deformation analysis with respect to GPS network solution, Survey Review, doi: 10.1080/00396265.2017.1415664.
- Bertiger W., Desai S. D., Haines B., Harvey N., Moore A. W., Owen, S., Weiss J. P. 2010. Single receiver phase ambiguity resolution with GPS data, Journal of Geodesy, 84, 327-337.
- Caspary, W. F. 2000. Concepts of network and deformation analysis, The University of New South Wales. Kensington, Australia.
- Choy S., Bisnath, S., Rizos C. 2017. Uncovering common misconceptions in GNSS Precise Point Positioning and its future prospect, GPS Solutions, 21, 13-22.
- Cooper, M. A. R. 1987. Control surveys in civil engineering, Collins, London.
- Dach, R., S. Lutz, P. Walser, P. Fridez (Eds), 2015. Bernese GNSS Software Version 5.2. User Manual, Astronomical Institude, University of Bern, Bern Open Publishing, doi: 10.7892/boris.72297; ISBN: 978-3-906813-05-9.
- Duchnowski, R. 2010. Median-based estimates and their application in controlling reference mark stability, Journal of Surveying Engineering, 136(2), 47-52.
- Duchnowski, R., ve Wisniewski, Z. 2012. Estimation of the shift between parameters of functional models of geodetic observations by applying Msplit estimation, Journal of Surveying Engineering, 138(1), 1-8.
- Ebner, R., ve Featherstone, W. E. 2008. How well can online GPS PPP post-processing services be used to establish geodetic survey control networks?, Journal of Applied Geodesy, 2, 149-157.
- Eckl, M. C., Snay R. A., Soler T., Cline M. W., Mader, G. L. 2001. Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration, Journal of Geodesy, 75, 633-640.
- Herring, T. A., King, R. W., Floyd, M. A., McClusky S. C. 2015, Introduction to GAMIT/GLOBK, Release 10.6, Mass Inst. of Technol., Cambridge.
- Herring, T. A., Melbourne, T. I., Murray, M. H., Floyd, M. A., Szeliga, W. M., King, R. W. , Philips, D. A. , Puskas, C. M., Santillan, M., Wang, L, 2016. Plate Boundary
Observatory and related networks: GPS data analysis methods and geodetic products, Reviews of Geophysics, 54, 759-808.
- Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E. 2008. GNSS-Global Navigation Satellite System GPS, GLONASS, Galileo&more, Springer, Austria.
- Holden, L., Silcock, D., Choy S., Cas, R., Ailleres, L., Fournier N. 2017. Evaluating a campaign GNSS velocity field derived from an online precise point positioning service. Geophysical Journal International, 208, 246-256.
- Guo, Q. 2015. Precision comparison and analysis of four online free PPP services in static positioning andtropospheric delay estimation, GPS Solutions, 19, 537-544.
- Kouba J., ve Springer T. 2001. New IGS station and satellite clock combination, GPS Solutions, 4, 31-36.
- Kouba J. 2005. A possible detection of the 26 December 2004 great Sumatra-Andaman Islands earthquake with solution products of the International GNSS Service, Studia Geophysica et Geodaetica, 49, 463-483.
- Niemeier, W. 1985. Deformationsanalyse, Geodaetische Netze in Landes-und Ingenieurvermessung II, H. Pelzer (Hrsg.), Verlag Konrad Wittwer, Stuttgart, 559-623.
- Nowel, K. 2015. Robust estimation in analysis of control network deformations: Classical and new method, Journal of Surveying Engineering, 141(4), 1-9.
- Mohammed, J., Moore, T., Hill, C., Bingley R. M., Hansen, D. N. 2016. An assessment of static precise point positioning using GPS only, GLONASS only, and GPS plus
GLONASS, Measurement, 88, 121-130.
- Pan, L., Xiaohong, Z., Liu, J., Li, X., Li, X, 2017a. Performance evaluation of single-frequency precise point positioning with GPS, GLONASS, BeiDou and Galileo, The Journal of Navigation, 70(3), 465-482.
- Pan, L., Xiaohong, Z., Fei, G. 2017b. Ambiguity resolved precise point positioning with GPS and BeiGou, Journal of Geodesy, 91, 25-40.
- Saracoglu, A., ve Sanli, D. U. 2016. Seasonal effects on GPS PPP accuracy, Geophysical Research Abstracts, 18, EGU General Assembly 2016, Vienna.
- Wang, G., 2013. Milimeter-accuracy GPS landslide monitoring using Precise Point Positioning with Single Receiver Phase Ambiguity (PPP-SRPA) resolution: a case study in Puerto Rico, Journal of Geodetic Science, 3(1), 22-31.
- Wang, G., Kearn T. J., Yu, J., Saenz, G. 2014a. A stable reference frame for lanslide monitoring using GPS in the Puerto Rico and Virgin Islands region, Landslides, 11, 119-129.
- Wang, G., Yu, J., Kearns, T. J., Ortega, J. 2014b. Assessing the accuracy of long-term subsidence derived from borehole extensometer data using GPS observations: case study in Houston, Texas, Journal of Surveying Engineering, 140(3), doi: 10.1061/(ASCE)SU.1943-5438.0000133.
- Xu, P., Shi, C., Fang, R., Liu, J., Niu, X., Zhang, Q., Yanagidani, T. 2013. High-rate precise point positioning (PPP) to measure seismic wave motions: an experimental comparison of GPS PPP with inertial measurement units, Journal of Geodesy, 87, 361-372.
- Yigit C. O., Coskun, M. Z., Yavasoglu, H., Arslan A., Kalkan, Y. 2016. The potential of GPS procise point positioning method for point displacement monitoring: a case study, Measurement, 91, 398-404.
- Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., and Webb, F. H. 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research, 102:B3, 5005-5017.
Year 2018,
Volume: 18 Issue: 2, 605 - 615, 31.08.2018
Cüneyt Aydın,
,
N. Onur Aykut,
Burak Akpınar
References
- Abdallah, A., ve Schwieger, V. 2016. Static GNSS precise point positioning using free online services for Africa, Survey Review, 48(306), 61-77.
- Abd Rabbou, M., El-Rabbany, A. 2016. Single-frequency precise point positioning using multi-constellation GNSS: GPS, GLONASS, Galileo and BeiDou, Geomatica, 70(2), 113-122.
- Afifi, A. ve El-Rabbany, A. 2017. Improved dual frequency PPP model using GPS and BeiDou observations, Journal of Geodetic Science, 7, 1-8.
- Akpınar, B. ve Aykut, N.O. 2017. Determining the Coordinates of Control Points in Hydrographic Surveying by the Precise Point Positioning Method, The Journal of Navigation, 70(2), 1241-1252.
- Alkan, R. M., İlci, V., Ozulu İ. M., Saka, M. H. 2015. A comparative study for accuracy assessment of PPP technique using GPS and GLONASS in urban areas, Measurement, 69, 1-8.
- Amiri-Simkooei, A. R., Alaei-Tabatabaei, S. M., Zangeneh-Nejad, F., and Voosoghi, B. 2017. Stability analysis of deformation-monitoring network points using simultaneous observation adjustment of two epochs, Journal of Surveying Engineering, 143(1), doi: 10.1061/(ASCE)SU.1943-5428.0000195.
- Aydin, C., ve Demirel, H. 2005. Computation of Baarda’s lower bound of the non-centrality parameter, Journal of Geodesy, 78(7-8), 437-441.
- Aydin, C. 2012. Power of global test in deformation analysis, Journal of Surveying Engineering, 138(2), 51–56.
- Aydin, C. 2017. Effect of displaced reference points on deformation analysis, Journal of Surveying Engineering, 143(3), doi: 10.1061/(ASCE)SU.1943-5428.0000216.
- Aydin, C., Uygur S. Ö., Çetin S., Özdemir, A., Doğan U. 2018. Ability of GPS PPP in 2D deformation analysis with respect to GPS network solution, Survey Review, doi: 10.1080/00396265.2017.1415664.
- Bertiger W., Desai S. D., Haines B., Harvey N., Moore A. W., Owen, S., Weiss J. P. 2010. Single receiver phase ambiguity resolution with GPS data, Journal of Geodesy, 84, 327-337.
- Caspary, W. F. 2000. Concepts of network and deformation analysis, The University of New South Wales. Kensington, Australia.
- Choy S., Bisnath, S., Rizos C. 2017. Uncovering common misconceptions in GNSS Precise Point Positioning and its future prospect, GPS Solutions, 21, 13-22.
- Cooper, M. A. R. 1987. Control surveys in civil engineering, Collins, London.
- Dach, R., S. Lutz, P. Walser, P. Fridez (Eds), 2015. Bernese GNSS Software Version 5.2. User Manual, Astronomical Institude, University of Bern, Bern Open Publishing, doi: 10.7892/boris.72297; ISBN: 978-3-906813-05-9.
- Duchnowski, R. 2010. Median-based estimates and their application in controlling reference mark stability, Journal of Surveying Engineering, 136(2), 47-52.
- Duchnowski, R., ve Wisniewski, Z. 2012. Estimation of the shift between parameters of functional models of geodetic observations by applying Msplit estimation, Journal of Surveying Engineering, 138(1), 1-8.
- Ebner, R., ve Featherstone, W. E. 2008. How well can online GPS PPP post-processing services be used to establish geodetic survey control networks?, Journal of Applied Geodesy, 2, 149-157.
- Eckl, M. C., Snay R. A., Soler T., Cline M. W., Mader, G. L. 2001. Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration, Journal of Geodesy, 75, 633-640.
- Herring, T. A., King, R. W., Floyd, M. A., McClusky S. C. 2015, Introduction to GAMIT/GLOBK, Release 10.6, Mass Inst. of Technol., Cambridge.
- Herring, T. A., Melbourne, T. I., Murray, M. H., Floyd, M. A., Szeliga, W. M., King, R. W. , Philips, D. A. , Puskas, C. M., Santillan, M., Wang, L, 2016. Plate Boundary
Observatory and related networks: GPS data analysis methods and geodetic products, Reviews of Geophysics, 54, 759-808.
- Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E. 2008. GNSS-Global Navigation Satellite System GPS, GLONASS, Galileo&more, Springer, Austria.
- Holden, L., Silcock, D., Choy S., Cas, R., Ailleres, L., Fournier N. 2017. Evaluating a campaign GNSS velocity field derived from an online precise point positioning service. Geophysical Journal International, 208, 246-256.
- Guo, Q. 2015. Precision comparison and analysis of four online free PPP services in static positioning andtropospheric delay estimation, GPS Solutions, 19, 537-544.
- Kouba J., ve Springer T. 2001. New IGS station and satellite clock combination, GPS Solutions, 4, 31-36.
- Kouba J. 2005. A possible detection of the 26 December 2004 great Sumatra-Andaman Islands earthquake with solution products of the International GNSS Service, Studia Geophysica et Geodaetica, 49, 463-483.
- Niemeier, W. 1985. Deformationsanalyse, Geodaetische Netze in Landes-und Ingenieurvermessung II, H. Pelzer (Hrsg.), Verlag Konrad Wittwer, Stuttgart, 559-623.
- Nowel, K. 2015. Robust estimation in analysis of control network deformations: Classical and new method, Journal of Surveying Engineering, 141(4), 1-9.
- Mohammed, J., Moore, T., Hill, C., Bingley R. M., Hansen, D. N. 2016. An assessment of static precise point positioning using GPS only, GLONASS only, and GPS plus
GLONASS, Measurement, 88, 121-130.
- Pan, L., Xiaohong, Z., Liu, J., Li, X., Li, X, 2017a. Performance evaluation of single-frequency precise point positioning with GPS, GLONASS, BeiDou and Galileo, The Journal of Navigation, 70(3), 465-482.
- Pan, L., Xiaohong, Z., Fei, G. 2017b. Ambiguity resolved precise point positioning with GPS and BeiGou, Journal of Geodesy, 91, 25-40.
- Saracoglu, A., ve Sanli, D. U. 2016. Seasonal effects on GPS PPP accuracy, Geophysical Research Abstracts, 18, EGU General Assembly 2016, Vienna.
- Wang, G., 2013. Milimeter-accuracy GPS landslide monitoring using Precise Point Positioning with Single Receiver Phase Ambiguity (PPP-SRPA) resolution: a case study in Puerto Rico, Journal of Geodetic Science, 3(1), 22-31.
- Wang, G., Kearn T. J., Yu, J., Saenz, G. 2014a. A stable reference frame for lanslide monitoring using GPS in the Puerto Rico and Virgin Islands region, Landslides, 11, 119-129.
- Wang, G., Yu, J., Kearns, T. J., Ortega, J. 2014b. Assessing the accuracy of long-term subsidence derived from borehole extensometer data using GPS observations: case study in Houston, Texas, Journal of Surveying Engineering, 140(3), doi: 10.1061/(ASCE)SU.1943-5438.0000133.
- Xu, P., Shi, C., Fang, R., Liu, J., Niu, X., Zhang, Q., Yanagidani, T. 2013. High-rate precise point positioning (PPP) to measure seismic wave motions: an experimental comparison of GPS PPP with inertial measurement units, Journal of Geodesy, 87, 361-372.
- Yigit C. O., Coskun, M. Z., Yavasoglu, H., Arslan A., Kalkan, Y. 2016. The potential of GPS procise point positioning method for point displacement monitoring: a case study, Measurement, 91, 398-404.
- Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., and Webb, F. H. 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research, 102:B3, 5005-5017.