Research Article
BibTex RIS Cite

Beyşehir-Hoyran Ofiyoliti İçerisindeki Tektonitlerin Dokusal ve Jeokimyasal Özellikleri: Beyşehir (Konya) Güneyinden Bir Örnek

Year 2018, Volume: 18 Issue: 3, 1067 - 1082, 30.12.2018

Abstract

Toros Kuşağı içerisinde Kırkkavak ve Ecemiş fayları arasında kalan Beyşehir-Hoyran Ofiyoliti, Jura sonu-Kretase başında kapanmaya başlayan Neotetis Okyanusu’na ait önemli kayıtlara sahiptir. Beyşehir-Hoyran Ofiyoliti inceleme alanında tektonitler (harzburjit, dünit), kümülatlar (gabro, piroksenolit, pegmatoitik gabro) ve ofiyolit tabanı metamorfiklerinden (amfibolit) oluşan bir istif sunmaktadır. Tektonitler ofiyolit istifi içerisinde hacimsel olarak en önemli bölümünü oluşturmaktadır. Genel olarak harzburjitlerden oluşan tektonitler yer yer dünitik ve kromitik seviyeler içermektedir. Foliyasyon-lineasyon gösteren tektonitler, kristal içi kayma, öğütülme ve yeniden kristallenme özellikleri ile üst mantoya ait plastik deformasyonun izlerini taşımaktadır. Harzburjitler genel olarak olivin, ortopiroksen, daha az oranlarda klinopiroksen ve kromit minerallerinden oluşmaktadır. Olivinler özşekilsiz, orta taneli kristaller halinde gözlenirken, ortopiroksenler olivinlere oranla daha iri kristaller şeklinde bulunur. Ortopiroksenler, tane sınırları ufalanmış ikincil olivin mineralleri tarafından çevrelenmiştir. Harzburjitler genel olarak milonitik doku sunmaktadır. Bu birimin en belirleyici özelliği plastik deformasyonun izlerini taşıyor olmasıdır. Makroskobik olarak ortopiroksen ve kromit gibi minerallerdeki yassılaşma ve uzamaya bağlı olarak kayaçta bir foliyasyon düzleminin varlığı ayırt edilebilmektedir. Birimlerde öğütülme ve yeniden kristalleşme izlerine rastlanmaktadır. İnce kesitlerde uzama gösteren olivin ve enstatit minerallerinde sıklıkla deformasyon lamellerine (kink-band) rastlanmaktadır. Yapılan jeokimyasal çalışmalarla Mg# değerlerinin 90,80-92,20, ateşte kayıp (LOI) değerlerinin ise 2,5% ile 8,5% arasında bir değişim göstermektedir. Bu değerler bize harzburjit örneklerinin kısmen serpantinleşme sürecine başladığını işaret etmektedir. Peridotitlerin uyumlu elementlerce zenginleşirken, uyumsuz elementlerce tüketildiği görülmektedir. Bu özellik hem abisal hem de okyanus içi yitim zonu peridotitleri için tipiktir.

References

  • Aldanmaz, E., Yalınız, M.K., Güçtekin, A., Göncüoğlu, M.C., 2008. Geochemical characteristics of mafic lavas from the Neotethyan ophiolites in western Turkey: implications for heterogeneous source contribution during variable stages of ocean crust generation. Geological Magazine145, 37–54.
  • Andrew, T., Robertson, A.H.F., 2002. The Beyşehir-Hoyran-Hadim Nappes: Genesis and emplacement of Mesozoic marginal and oceanic units of the northern Neotethys in southern Turkey. Journal of the Geological Society, 159, 529–543.
  • Bağcı, U., Parlak, O., Hock, V., 2006 Geochemical character and tectonic environment of ultramafic to mafic cumulates from the Tekirova (Antalya) ophiolite (southern Turkey). Geological Journal, 41, 193–219.
  • Barth, M.G., Mason, P.R.D., Davies, G.R., Dijkstra, A.H., Drury, M.R., 2003. Geochemistry of the othris ophiolite, Greece: evidence for refertilization? Journal of Petrology 44, 1757–1785.
  • Bizimis, M., Salters, V.J.M., Bonatti, E., 2000. Trace an REE content of clinopyroxenes from suprasubduction zone peridotites. Implications for melting and enrichment processes in island arc. Chemical Geology, 165(1-2), 67-85.
  • Bortolotti, V., Marroni, M., Pandolfi, L., Principi, G., Saccani, E., 2002. Interaction between mid-ocean ridge and subduction magmatism in Albanian ophiolites. Journal of Geology, 110, 561 – 576.
  • Chen, G., Xia, B., 2008. Platinum-group elemental geochemistry of mafic and ultramafic rocks from the Xigaze ophiolite, southern Tibet. Journal of Asian Earth Sciences, 32, 406-422.
  • Collins, A.S., Robertson, A.H.F., 1997. The Lycian Mélange, southwest Turkey: an emplaced accretionary complex. Geology, 25, 255- 258.
  • Collins, A.S., Robertson, A.H.F., 1998. Processes of Late Cretaceous to Late Miocene episodic thrust sheet translation in the Lycian Taurides, SW Turkey. Journal of the Geological Society London,155, 759-772.
  • Coogan, L.A., Thompson, G.M., MacLeod, C.J., Dick, H.J.B.,Edwards, S.J., Hosford Scheirer, A., Barry, T.L., 2004. A combined basalt and peridotite perspective on 14 million years of melt generation at the Atlantis Bank segment of the Southwest Indian Ridge: Evidence for temporal changes in mantle dynamics? Chemical Geology, 207(1–2), 13–30.
  • Çakır, Ü., 2009. Structural and geochronological relationships of metamorphic soles of eastern Mediterrranean ophiolites to surrounding units: indicators of intra-oceanic subduction and emplacement. International Geology Review, 51, 189–215.
  • Çelik, Ö.F., 2007. Metamorphic sole rocks and their mafic dykes in the eastern Tauride belt ophiolites (southern Turkey):Implications for OIB type magma generation following slab break-off. Geological Magazine, 144, 849–866.
  • Çelik, Ö.F., Chiaradia, M., 2008. Geochemical and petrological aspects of dyke intrusions in the Lycian ophiolites (SW Turkey): A case study for the dyke emplacement along the Tauride Belt Ophiolites. International Journal of Earth Sciences, 97, 1151–1164.
  • Çelik, Ö.F., Delaloye, M., 2003. Origin of metamorphic soles and their post-kinematic mafic dyke swarms in the Antalya and Lycian ophiolites, SW Turkey. Geological Journal, 38, 235–256.
  • Çelik, Ö.F., Delaloye, M.F., 2006. Characteristics of ophiolite-related metamorphic rocks in the Beyşehir ophiolitic melange (Central Taurides, Turkey), deduced from whole rock and mineral chemistry. Journal of Asian Earth Sciences, 26, 461–476.
  • Dick, H.J.B., Natland, J.H., 1995. Late stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise, in: Mevel, C. (Ed.), Proc. Ocean Drilling Program, Scientific Results. College Station, Texas (Ocean Drilling Program), 147, 103–134.
  • Dilek, Y., Thy, P., Hacker, B.R., Grundvig, S., 1999. Structure and petrology of Tauride ophiolites and mafic dike intrusions (Turkey): Implications for the Neotethyan ocean. Geological Society of America Bulletin, 111, 1192–1216.
  • Dilek, Y., Whitney, D.L., 1997. Counterclockwise P-T-t trajectory from the metamorphic sole of a Neo-Tethyan ophiolite (Turkey). Tectonophysics, 280, 295–310.
  • Elitok, O., Druppel, K., 2008. Geochemistry and tectonic significance of metamorphic sole rocks beneath the Beyşehir-Hoyran ophiolite (SW-Turkey). Lithos, 100, 322–353.
  • Elitok, Ö., 2001. Geochemistry and Tectonic Significance of the Kızıldağ Ophiolite in Beyşehir-Hoyran Nappes, SW Turkey. 4th. International Symposum, Eastern Mediterranean Geology, 63, Suleyman Demirel University, Isparta, Abstract, 21.
  • Godard, M., Lagabrielle, Y., Alard, O., Harvey, J., 2008. Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): Implications for mantle Dynamics beneath a slow spreading ridge. Earth and Planetary Science Letters, 267, 410–425.
  • Jameison, R.A., 1986. P-T Paths from High Temperature Shear Zones beneath Ophiolites. Journal of Metamorphic Geology, 4, 3–22.
  • Kapsiotis, A., 2014. Composition and aletration of Cr-spinels from Milia and Pefki serpentinized mantle peridotites (Pindos Ophiolite complex, Greece). Geologica Carpathica, 65(1), 83-95.
  • Kavak, K.Ş., Parlak, P., Temiz, H., 2017. Geochemical characteristics of ophiolitic rocks from the southern margin of the Sivas basin and their implications for the Inner Tauride Ocean, Central-Eastern Turkey. Geodinamica Acta, 29 (1), 160-180.
  • Koglin, N., Kostopoulos, D., Reischmann, T., 2009. The Lesvos mafic–ultramafic complex, Greece: Ophiolite or incipient rift? Lithos, 108, 243-261.
  • Lyer, K., Jamtveit, B., Mathiesen, J., Malthe-Sørenssen, A., Feder, J., 2008. Reactionassisted hierarchical fracturing during serpentinization. Earth Planet. Sci. Lett. 267, 503–516.
  • Lytwyn, J.N., Casey, J.F. 1995. The geochemistry of postkinematic mafic dike swarms and subophiolitic metabasites, Pozantı-Karsantı ophiolite, Turkey: Evidence for ridge subduction. Geological Society of American Bulletin, 107, 830-850.
  • McDonough, W.F., Sun, S., 1995. The Composition of the Earth. Chemical Geology, 120, 223-253.
  • Monod, O., 1977. Récherches géologiques dans le Taurus occidentalausud de Beyşehir (Turquie). PhD Thesis, Université de Paris Sud, Orsay, 450.
  • Niu, Y., 2004. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45, 2423–2458.
  • Özgül, N., 1984. Stratigraphy and Tectonic Evolution of the Central Taurides. In Tekeli, O., Göncüoğlu, M.C., (Eds), Geology of the Taurus Belt. MTA, Ankara, 77-90.
  • Özgül, N., 1997. Bozkır-Hadım-Taşkent (Orta Torosların Kuzey Kesimi) Dolayında yer alan Tektono- Stratigrafik Birliklerin Stratigrafisi. Maden Tetkik Arama Enstitüsü Dergisi, 119, 113-174.
  • Parkinson, I.J., Pearce, J.A., 1998. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a suprasubduction zone setting. Journal of Petrology, 39, 1577–1618.
  • Parlak, O., 2016. The Tauride Ophiolites of Anatolia (Turkey): A Review. Journal of Earth Science, 27 (6), 901–934.
  • Parlak, O., Delaloye, M., 1996. Geochemistry and timing of post-metamorphic dyke emplacement in the Mersin ophiolite (southern Turkey): New age constraints from 40Ar/39Ar geochronology. Terra Nova, 8, 585–592.
  • Parlak, O., Delaloye, M., Bingol, E., 1996. Mineral chemistry of ultramafic and mafic cumulates as an indicator of the arc-related origin of the Mersin ophiolite (southern Turkey). Geologische Rundschau, 85, 647–661.
  • Parlak, O., Hock, V., Delaloye, M., 2002. The suprasubduction Pozantı-Karsantı ophiolite, southern Turkey: Evidence for high pressure crystal fractionation of ultramafic cumulates. Lithos, 65, 205–224.
  • Parlak, O., Robertson, A.H.F., 2004. The ophiolite related Mersin Melange, southern Turkey: Its role in the tectonicsedimentary setting of Tethys in the Eastern Mediterranean region. Geological Magazine, 141, 257–286.
  • Parlak, O., Yılmaz, H., Boztuğ, D., 2006. Origin and tectonic significance of the metamorphic sole and isolated dikes of the Divriği Ophiolite (Sivas, Turkey): Evidence for slab break-off prior to ophiolite emplacement. Turkish Journal of Earth Sciences, 15, 25–45.
  • Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J., Leat, P.T., 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South 450 Atlantic. Contributions to Mineralogy and Petrology, 139, 36–53.
  • Pearce, J.A., Harris, N.B.W., Tindle, A.J., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983.
  • Pearce, J.A., Vander Laan, S.R., Arculus, R.J., Murton, B.J., Ishii, T., Peate, D.W., and Parkinson, I.J., 1992. Boninite and harzburgite from Leg 125 (Bonin-Mariana forearc): A case study of magma genesis during the initial stages of subduction, in Fryer, P., et al., Proceeding of the Ocean Drilling Program, Scientific Results, Site 778–786, Bonin-Mariana Region: College Station, Texas, Ocean Drilling Program, p. 623–659.
  • Polat, A., Casey, J.F., Kerrich, R., 1996. Geochemical Characteristics of Accreted Material beneath the Pozantı-Karsantı Ophiolite, Turkey: Intra-Oceanic Detachment, Assembly and Obduction. Tectonophysics, 263, 249–276.
  • Rajabzadeh, M.A., Dehkardi, T.N, Caran, Ş., 2013. Mineralogy, geochemistry and geotectonic significance of mantle peridotites with high-Cr chromitites in the Neyriz ophiolite from the outer Zagros ophiolite belts, Iran. Journal of African Earth Science, 78, 1-15.
  • Robertson, A. H. F., Woodcock, N.H., 1982. Sedimentary history of the southwestern segment of the Mesozoictertiary Antalya continental margin, southwestern Turkey. Eclogae Geologica Helvetica, 75, 517–562.
  • Robertson, A.H.F. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65, 1–67.
  • Robertson, A.H.F. 2004. Development of concepts concerning the genesis and emplacement of Tethyan ophiolites in the Eastern Mediterranean and Oman regions. Earth Science Review, 66, 331–387.
  • Robertson, A.H.F., Dixon, J.A., 1984. Introduction: Aspects of the Geological Evolution of the Eastern Mediterranean. In: Dixon, J. A., Robertson, A. H. F., eds., The Geological Evolution of the Eastern Mediterranean. Geological Society of London Special Publication, 17, 1–74.
  • Robertson, A.H.F., Parlak, O., Metin, Y., Vergili, Ö., Taslı, K., İnan, N., Soycan, H., 2013. Late Palaeozoic-Cenozoic tectonic development of carbonate platform, margin and oceanic units in the Eastern Taurides, Turkey. In A. H. F. Robertson, O. Parlak, & U. C. Ünlügenç (Eds.), Geological development of Anatolia and the Easternmost Mediterranean region. London: Geological Society Special Publication,372, 167–218.
  • Robertson, A.H.F., Woodcock, N.H., 1981a. Bilelyeri Group, Antalya Complex: Deposition on a Mesozoic passive continental margin, south-west Turkey. Sedimentology, 28, 381–399.
  • Robertson, A.H.F., Woodcock, N.H., 1981b. Alakırçay Group, Antalya Complex, SW Turkey: A deformed Mesozoic carbonate margin. Sedimentary Geology, 30, 95–131.
  • Saccani, E., Beccaluva, L., Photiades, A., Zeda, O., 2011.Petrogenesis and tectono-magmatic significance of basalts and mantle peridotites from the Albanian–Greek ophiolites and sub-ophiolitic mélanges. New constraints for the Triassic–Jurassic evolution of the Neo-Tethys in the Dinaride sector. Lithos, 124 (3-4), 227-242.
  • Salters, V.J.M., Stracke, A., 2004. Composition of depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5), 1-27.
  • Shi, R., Griffin, W.L., O Reilly, S.Y., Huange, Q., Zhang, X., Liu, D., Zhi, X., Xia, Q., Ding, L., 2012. Melt/mantle mixing produces podiform chromite deposits in ophiolites: implications of Re–Os systematics in the Dongqiao Neo-Tethyan ophiolite, northern Tibet. Gondwana Research, 21, 194–206.
  • Spray, J.G., 1984. Possible Causes and Consequences of Upper Mantle Decoupling and Ophiolite Displacement. In: Gass, I.G., Lippard, S. J., Shelton, A. W., (eds.,) Ophiolites and Oceanic Lithosphere. Geological Society, London, Special Publications, 13(1), 255–268.
  • Stern, R. J., Bloomer, S. H., 1992. Subduction Zone Infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California. Geological Society of America Bulletin, 104, 1621–1636.
  • Sun, S.S., McDonough, W., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42 (1), 313–345.
  • Şengör, A.M.C., Yılmaz, Y., 1981. Tethyan Evolution of Turkey: Plate Tectonic Aproach. Tectonophysics, 75, 181-241.
  • Vergili, Ö., Parlak, O., 2005. Geochemistry and tectonic significance of metamorphic sole rocks and mafic dikes from the Pınarbaşı (Kayseri) ophiolite, Central Anatolia (Turkey). Ofioliti, 30 (1), 37–52.
  • Whitechurch, H., Juteau, T., Montigny, R., 1984. Role of the Eastern Mediterranean Ophiolites (Turkey, Syria, Cyprus) in the History of the Neo-Tethys. In: Dixon, J.E., and Robertson, A.H.F., (eds) the Geological Evolution of the Eastern Mediterranean. Special Publication of Geological Society of London, 17, 111-126.
  • Williams, H., Smyth, W.R., 1973. Metamorphic Aureoles beneath Ophiolite Suites and Alpine Peridotites; Tectonic Implications with West Newfoundland Examples. American Journal of Science, 273 (7), 594–621.
  • Workman, R.K., Hart, S.R., 2005, Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231 (1), 53–72.
  • Xu, X.Z., Yang, J.S., Ba, D.Z., et al. 2011a. Petrogenesis of the Kangjinla Peridotite in the Luobusa Ophiolite, Southern Tibet. Journal of Asian Earth Sciences, 42 (4), 553-568.
  • Xu, X.Z., Yang, J.S., Guo, G.L., et al. 2011b. Lithological Research on the Purang Mantle Peridotite in Western Yarlung-Zangbo Suture Zone in Tibet. Acta Petrologica Sinica, 27(11), 3179–3196.
  • Zhou, M.F., Robinson, P.T., Su, B.X., Gao, J.F., Li, J.Q., Yang, J.S., Malpas, J., 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: the role of slab contamination of asthenospheric melts in suprasubduction zone. Gondwana Research, 26, 262-283.
Year 2018, Volume: 18 Issue: 3, 1067 - 1082, 30.12.2018

Abstract

References

  • Aldanmaz, E., Yalınız, M.K., Güçtekin, A., Göncüoğlu, M.C., 2008. Geochemical characteristics of mafic lavas from the Neotethyan ophiolites in western Turkey: implications for heterogeneous source contribution during variable stages of ocean crust generation. Geological Magazine145, 37–54.
  • Andrew, T., Robertson, A.H.F., 2002. The Beyşehir-Hoyran-Hadim Nappes: Genesis and emplacement of Mesozoic marginal and oceanic units of the northern Neotethys in southern Turkey. Journal of the Geological Society, 159, 529–543.
  • Bağcı, U., Parlak, O., Hock, V., 2006 Geochemical character and tectonic environment of ultramafic to mafic cumulates from the Tekirova (Antalya) ophiolite (southern Turkey). Geological Journal, 41, 193–219.
  • Barth, M.G., Mason, P.R.D., Davies, G.R., Dijkstra, A.H., Drury, M.R., 2003. Geochemistry of the othris ophiolite, Greece: evidence for refertilization? Journal of Petrology 44, 1757–1785.
  • Bizimis, M., Salters, V.J.M., Bonatti, E., 2000. Trace an REE content of clinopyroxenes from suprasubduction zone peridotites. Implications for melting and enrichment processes in island arc. Chemical Geology, 165(1-2), 67-85.
  • Bortolotti, V., Marroni, M., Pandolfi, L., Principi, G., Saccani, E., 2002. Interaction between mid-ocean ridge and subduction magmatism in Albanian ophiolites. Journal of Geology, 110, 561 – 576.
  • Chen, G., Xia, B., 2008. Platinum-group elemental geochemistry of mafic and ultramafic rocks from the Xigaze ophiolite, southern Tibet. Journal of Asian Earth Sciences, 32, 406-422.
  • Collins, A.S., Robertson, A.H.F., 1997. The Lycian Mélange, southwest Turkey: an emplaced accretionary complex. Geology, 25, 255- 258.
  • Collins, A.S., Robertson, A.H.F., 1998. Processes of Late Cretaceous to Late Miocene episodic thrust sheet translation in the Lycian Taurides, SW Turkey. Journal of the Geological Society London,155, 759-772.
  • Coogan, L.A., Thompson, G.M., MacLeod, C.J., Dick, H.J.B.,Edwards, S.J., Hosford Scheirer, A., Barry, T.L., 2004. A combined basalt and peridotite perspective on 14 million years of melt generation at the Atlantis Bank segment of the Southwest Indian Ridge: Evidence for temporal changes in mantle dynamics? Chemical Geology, 207(1–2), 13–30.
  • Çakır, Ü., 2009. Structural and geochronological relationships of metamorphic soles of eastern Mediterrranean ophiolites to surrounding units: indicators of intra-oceanic subduction and emplacement. International Geology Review, 51, 189–215.
  • Çelik, Ö.F., 2007. Metamorphic sole rocks and their mafic dykes in the eastern Tauride belt ophiolites (southern Turkey):Implications for OIB type magma generation following slab break-off. Geological Magazine, 144, 849–866.
  • Çelik, Ö.F., Chiaradia, M., 2008. Geochemical and petrological aspects of dyke intrusions in the Lycian ophiolites (SW Turkey): A case study for the dyke emplacement along the Tauride Belt Ophiolites. International Journal of Earth Sciences, 97, 1151–1164.
  • Çelik, Ö.F., Delaloye, M., 2003. Origin of metamorphic soles and their post-kinematic mafic dyke swarms in the Antalya and Lycian ophiolites, SW Turkey. Geological Journal, 38, 235–256.
  • Çelik, Ö.F., Delaloye, M.F., 2006. Characteristics of ophiolite-related metamorphic rocks in the Beyşehir ophiolitic melange (Central Taurides, Turkey), deduced from whole rock and mineral chemistry. Journal of Asian Earth Sciences, 26, 461–476.
  • Dick, H.J.B., Natland, J.H., 1995. Late stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise, in: Mevel, C. (Ed.), Proc. Ocean Drilling Program, Scientific Results. College Station, Texas (Ocean Drilling Program), 147, 103–134.
  • Dilek, Y., Thy, P., Hacker, B.R., Grundvig, S., 1999. Structure and petrology of Tauride ophiolites and mafic dike intrusions (Turkey): Implications for the Neotethyan ocean. Geological Society of America Bulletin, 111, 1192–1216.
  • Dilek, Y., Whitney, D.L., 1997. Counterclockwise P-T-t trajectory from the metamorphic sole of a Neo-Tethyan ophiolite (Turkey). Tectonophysics, 280, 295–310.
  • Elitok, O., Druppel, K., 2008. Geochemistry and tectonic significance of metamorphic sole rocks beneath the Beyşehir-Hoyran ophiolite (SW-Turkey). Lithos, 100, 322–353.
  • Elitok, Ö., 2001. Geochemistry and Tectonic Significance of the Kızıldağ Ophiolite in Beyşehir-Hoyran Nappes, SW Turkey. 4th. International Symposum, Eastern Mediterranean Geology, 63, Suleyman Demirel University, Isparta, Abstract, 21.
  • Godard, M., Lagabrielle, Y., Alard, O., Harvey, J., 2008. Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): Implications for mantle Dynamics beneath a slow spreading ridge. Earth and Planetary Science Letters, 267, 410–425.
  • Jameison, R.A., 1986. P-T Paths from High Temperature Shear Zones beneath Ophiolites. Journal of Metamorphic Geology, 4, 3–22.
  • Kapsiotis, A., 2014. Composition and aletration of Cr-spinels from Milia and Pefki serpentinized mantle peridotites (Pindos Ophiolite complex, Greece). Geologica Carpathica, 65(1), 83-95.
  • Kavak, K.Ş., Parlak, P., Temiz, H., 2017. Geochemical characteristics of ophiolitic rocks from the southern margin of the Sivas basin and their implications for the Inner Tauride Ocean, Central-Eastern Turkey. Geodinamica Acta, 29 (1), 160-180.
  • Koglin, N., Kostopoulos, D., Reischmann, T., 2009. The Lesvos mafic–ultramafic complex, Greece: Ophiolite or incipient rift? Lithos, 108, 243-261.
  • Lyer, K., Jamtveit, B., Mathiesen, J., Malthe-Sørenssen, A., Feder, J., 2008. Reactionassisted hierarchical fracturing during serpentinization. Earth Planet. Sci. Lett. 267, 503–516.
  • Lytwyn, J.N., Casey, J.F. 1995. The geochemistry of postkinematic mafic dike swarms and subophiolitic metabasites, Pozantı-Karsantı ophiolite, Turkey: Evidence for ridge subduction. Geological Society of American Bulletin, 107, 830-850.
  • McDonough, W.F., Sun, S., 1995. The Composition of the Earth. Chemical Geology, 120, 223-253.
  • Monod, O., 1977. Récherches géologiques dans le Taurus occidentalausud de Beyşehir (Turquie). PhD Thesis, Université de Paris Sud, Orsay, 450.
  • Niu, Y., 2004. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45, 2423–2458.
  • Özgül, N., 1984. Stratigraphy and Tectonic Evolution of the Central Taurides. In Tekeli, O., Göncüoğlu, M.C., (Eds), Geology of the Taurus Belt. MTA, Ankara, 77-90.
  • Özgül, N., 1997. Bozkır-Hadım-Taşkent (Orta Torosların Kuzey Kesimi) Dolayında yer alan Tektono- Stratigrafik Birliklerin Stratigrafisi. Maden Tetkik Arama Enstitüsü Dergisi, 119, 113-174.
  • Parkinson, I.J., Pearce, J.A., 1998. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a suprasubduction zone setting. Journal of Petrology, 39, 1577–1618.
  • Parlak, O., 2016. The Tauride Ophiolites of Anatolia (Turkey): A Review. Journal of Earth Science, 27 (6), 901–934.
  • Parlak, O., Delaloye, M., 1996. Geochemistry and timing of post-metamorphic dyke emplacement in the Mersin ophiolite (southern Turkey): New age constraints from 40Ar/39Ar geochronology. Terra Nova, 8, 585–592.
  • Parlak, O., Delaloye, M., Bingol, E., 1996. Mineral chemistry of ultramafic and mafic cumulates as an indicator of the arc-related origin of the Mersin ophiolite (southern Turkey). Geologische Rundschau, 85, 647–661.
  • Parlak, O., Hock, V., Delaloye, M., 2002. The suprasubduction Pozantı-Karsantı ophiolite, southern Turkey: Evidence for high pressure crystal fractionation of ultramafic cumulates. Lithos, 65, 205–224.
  • Parlak, O., Robertson, A.H.F., 2004. The ophiolite related Mersin Melange, southern Turkey: Its role in the tectonicsedimentary setting of Tethys in the Eastern Mediterranean region. Geological Magazine, 141, 257–286.
  • Parlak, O., Yılmaz, H., Boztuğ, D., 2006. Origin and tectonic significance of the metamorphic sole and isolated dikes of the Divriği Ophiolite (Sivas, Turkey): Evidence for slab break-off prior to ophiolite emplacement. Turkish Journal of Earth Sciences, 15, 25–45.
  • Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J., Leat, P.T., 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South 450 Atlantic. Contributions to Mineralogy and Petrology, 139, 36–53.
  • Pearce, J.A., Harris, N.B.W., Tindle, A.J., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983.
  • Pearce, J.A., Vander Laan, S.R., Arculus, R.J., Murton, B.J., Ishii, T., Peate, D.W., and Parkinson, I.J., 1992. Boninite and harzburgite from Leg 125 (Bonin-Mariana forearc): A case study of magma genesis during the initial stages of subduction, in Fryer, P., et al., Proceeding of the Ocean Drilling Program, Scientific Results, Site 778–786, Bonin-Mariana Region: College Station, Texas, Ocean Drilling Program, p. 623–659.
  • Polat, A., Casey, J.F., Kerrich, R., 1996. Geochemical Characteristics of Accreted Material beneath the Pozantı-Karsantı Ophiolite, Turkey: Intra-Oceanic Detachment, Assembly and Obduction. Tectonophysics, 263, 249–276.
  • Rajabzadeh, M.A., Dehkardi, T.N, Caran, Ş., 2013. Mineralogy, geochemistry and geotectonic significance of mantle peridotites with high-Cr chromitites in the Neyriz ophiolite from the outer Zagros ophiolite belts, Iran. Journal of African Earth Science, 78, 1-15.
  • Robertson, A. H. F., Woodcock, N.H., 1982. Sedimentary history of the southwestern segment of the Mesozoictertiary Antalya continental margin, southwestern Turkey. Eclogae Geologica Helvetica, 75, 517–562.
  • Robertson, A.H.F. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65, 1–67.
  • Robertson, A.H.F. 2004. Development of concepts concerning the genesis and emplacement of Tethyan ophiolites in the Eastern Mediterranean and Oman regions. Earth Science Review, 66, 331–387.
  • Robertson, A.H.F., Dixon, J.A., 1984. Introduction: Aspects of the Geological Evolution of the Eastern Mediterranean. In: Dixon, J. A., Robertson, A. H. F., eds., The Geological Evolution of the Eastern Mediterranean. Geological Society of London Special Publication, 17, 1–74.
  • Robertson, A.H.F., Parlak, O., Metin, Y., Vergili, Ö., Taslı, K., İnan, N., Soycan, H., 2013. Late Palaeozoic-Cenozoic tectonic development of carbonate platform, margin and oceanic units in the Eastern Taurides, Turkey. In A. H. F. Robertson, O. Parlak, & U. C. Ünlügenç (Eds.), Geological development of Anatolia and the Easternmost Mediterranean region. London: Geological Society Special Publication,372, 167–218.
  • Robertson, A.H.F., Woodcock, N.H., 1981a. Bilelyeri Group, Antalya Complex: Deposition on a Mesozoic passive continental margin, south-west Turkey. Sedimentology, 28, 381–399.
  • Robertson, A.H.F., Woodcock, N.H., 1981b. Alakırçay Group, Antalya Complex, SW Turkey: A deformed Mesozoic carbonate margin. Sedimentary Geology, 30, 95–131.
  • Saccani, E., Beccaluva, L., Photiades, A., Zeda, O., 2011.Petrogenesis and tectono-magmatic significance of basalts and mantle peridotites from the Albanian–Greek ophiolites and sub-ophiolitic mélanges. New constraints for the Triassic–Jurassic evolution of the Neo-Tethys in the Dinaride sector. Lithos, 124 (3-4), 227-242.
  • Salters, V.J.M., Stracke, A., 2004. Composition of depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5), 1-27.
  • Shi, R., Griffin, W.L., O Reilly, S.Y., Huange, Q., Zhang, X., Liu, D., Zhi, X., Xia, Q., Ding, L., 2012. Melt/mantle mixing produces podiform chromite deposits in ophiolites: implications of Re–Os systematics in the Dongqiao Neo-Tethyan ophiolite, northern Tibet. Gondwana Research, 21, 194–206.
  • Spray, J.G., 1984. Possible Causes and Consequences of Upper Mantle Decoupling and Ophiolite Displacement. In: Gass, I.G., Lippard, S. J., Shelton, A. W., (eds.,) Ophiolites and Oceanic Lithosphere. Geological Society, London, Special Publications, 13(1), 255–268.
  • Stern, R. J., Bloomer, S. H., 1992. Subduction Zone Infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California. Geological Society of America Bulletin, 104, 1621–1636.
  • Sun, S.S., McDonough, W., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42 (1), 313–345.
  • Şengör, A.M.C., Yılmaz, Y., 1981. Tethyan Evolution of Turkey: Plate Tectonic Aproach. Tectonophysics, 75, 181-241.
  • Vergili, Ö., Parlak, O., 2005. Geochemistry and tectonic significance of metamorphic sole rocks and mafic dikes from the Pınarbaşı (Kayseri) ophiolite, Central Anatolia (Turkey). Ofioliti, 30 (1), 37–52.
  • Whitechurch, H., Juteau, T., Montigny, R., 1984. Role of the Eastern Mediterranean Ophiolites (Turkey, Syria, Cyprus) in the History of the Neo-Tethys. In: Dixon, J.E., and Robertson, A.H.F., (eds) the Geological Evolution of the Eastern Mediterranean. Special Publication of Geological Society of London, 17, 111-126.
  • Williams, H., Smyth, W.R., 1973. Metamorphic Aureoles beneath Ophiolite Suites and Alpine Peridotites; Tectonic Implications with West Newfoundland Examples. American Journal of Science, 273 (7), 594–621.
  • Workman, R.K., Hart, S.R., 2005, Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231 (1), 53–72.
  • Xu, X.Z., Yang, J.S., Ba, D.Z., et al. 2011a. Petrogenesis of the Kangjinla Peridotite in the Luobusa Ophiolite, Southern Tibet. Journal of Asian Earth Sciences, 42 (4), 553-568.
  • Xu, X.Z., Yang, J.S., Guo, G.L., et al. 2011b. Lithological Research on the Purang Mantle Peridotite in Western Yarlung-Zangbo Suture Zone in Tibet. Acta Petrologica Sinica, 27(11), 3179–3196.
  • Zhou, M.F., Robinson, P.T., Su, B.X., Gao, J.F., Li, J.Q., Yang, J.S., Malpas, J., 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: the role of slab contamination of asthenospheric melts in suprasubduction zone. Gondwana Research, 26, 262-283.
There are 65 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Tijen Üner

İrem Aksoy This is me

Publication Date December 30, 2018
Submission Date January 30, 2018
Published in Issue Year 2018 Volume: 18 Issue: 3

Cite

APA Üner, T., & Aksoy, İ. (2018). Beyşehir-Hoyran Ofiyoliti İçerisindeki Tektonitlerin Dokusal ve Jeokimyasal Özellikleri: Beyşehir (Konya) Güneyinden Bir Örnek. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 18(3), 1067-1082.
AMA Üner T, Aksoy İ. Beyşehir-Hoyran Ofiyoliti İçerisindeki Tektonitlerin Dokusal ve Jeokimyasal Özellikleri: Beyşehir (Konya) Güneyinden Bir Örnek. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2018;18(3):1067-1082.
Chicago Üner, Tijen, and İrem Aksoy. “Beyşehir-Hoyran Ofiyoliti İçerisindeki Tektonitlerin Dokusal Ve Jeokimyasal Özellikleri: Beyşehir (Konya) Güneyinden Bir Örnek”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18, no. 3 (December 2018): 1067-82.
EndNote Üner T, Aksoy İ (December 1, 2018) Beyşehir-Hoyran Ofiyoliti İçerisindeki Tektonitlerin Dokusal ve Jeokimyasal Özellikleri: Beyşehir (Konya) Güneyinden Bir Örnek. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18 3 1067–1082.
IEEE T. Üner and İ. Aksoy, “Beyşehir-Hoyran Ofiyoliti İçerisindeki Tektonitlerin Dokusal ve Jeokimyasal Özellikleri: Beyşehir (Konya) Güneyinden Bir Örnek”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 18, no. 3, pp. 1067–1082, 2018.
ISNAD Üner, Tijen - Aksoy, İrem. “Beyşehir-Hoyran Ofiyoliti İçerisindeki Tektonitlerin Dokusal Ve Jeokimyasal Özellikleri: Beyşehir (Konya) Güneyinden Bir Örnek”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18/3 (December 2018), 1067-1082.
JAMA Üner T, Aksoy İ. Beyşehir-Hoyran Ofiyoliti İçerisindeki Tektonitlerin Dokusal ve Jeokimyasal Özellikleri: Beyşehir (Konya) Güneyinden Bir Örnek. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2018;18:1067–1082.
MLA Üner, Tijen and İrem Aksoy. “Beyşehir-Hoyran Ofiyoliti İçerisindeki Tektonitlerin Dokusal Ve Jeokimyasal Özellikleri: Beyşehir (Konya) Güneyinden Bir Örnek”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 18, no. 3, 2018, pp. 1067-82.
Vancouver Üner T, Aksoy İ. Beyşehir-Hoyran Ofiyoliti İçerisindeki Tektonitlerin Dokusal ve Jeokimyasal Özellikleri: Beyşehir (Konya) Güneyinden Bir Örnek. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2018;18(3):1067-82.