Research Article
BibTex RIS Cite

Farklı Ortam Koşullarının Micrococcus sp. Ekzopolisakkarit Üretimine Etkisi

Year 2019, Volume: 19 Issue: 1, 40 - 46, 28.05.2019
https://doi.org/10.35414/akufemubid.387249

Abstract

Endüstriyel atıksulardan izole edilen Micrococcus
sp. ile yapılan çalışmada, farklı pH değerlerinin, Remazol Blue
konsantrasyonlarının, sıcaklık derecelerinin ve inkübasyon sürelerinin
bakterinin ürettiği ekzopolisakkarit (EPS) miktarına etkisi araştırılmıştır.
Remazol Blue içeren ortamlarda pH 6-9 aralığında 30
°C de yapılan denemelerde, pH 6’da yüksek miktarda EPS
üretildiği belirlenmiştir. Bakteri 100-400 mg/l arasındaki başlangıç Remazol
Blue konsantrasyonlarında (pH 6, 30
°C) en iyi EPS üretimini, 200 mg/l Remazol Blue konsantrasyonunda 234.8
mg/l olarak yapmıştır. Artan sıcaklık derecelerinin Micrococcus sp.
tarafından üretilen EPS miktarlarına etkisinin araştırıldığı denemelerde ise en
yüksek EPS üretimine 40 °C’de
ulaşıldığı görülmüştür. İnkübasyon süresinin üretilen EPS miktarına etkisi
araştırıldığında, artan inkübasyon süresinin EPS üretimini azalttığı, en yüksek
EPS üretimine biyokütle üretiminin yeni başladığı 48 saatlik inkübasyon süresi
sonunda ulaşıldığı belirlenmiştir. Denemeler sonunda en yüksek EPS üretimi, pH
6’ da, 100 mg/l Remazol Blue içeren besiyerinde, 40
°C’de ve 48 saat inkübasyon süresi sonrasında 257.2 mg/l
olarak elde edilmiştir. 

References

  • Ozdemir, G., Ozturk, T., Ceyhan, N., Isler, R. and Cosar, T., 2003. Heavy metal biosorption by biomass of Ochrobactrum antropi producing exopolysaccharide in activated sludge. Bioresource Technology, 90, 71-74.
  • Aksu, Z., 2005. Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 40, 997-1026.
  • Aksu, Z. and Dönmez, G., 2005. Combined effects of molasses sucrose and reactive dye on the growth and dye bioaccumulation properties of Candida tropicalis. Process Biochemistry, 40, 1437-44.
  • Shah, V., Garg, N. and Madamwar, D., 1999. An integrated process of textile dye removal and hydrogen evolution using cyanobacterium, Phormidium valderianum. World of Journal Microbiology and Biotechnology, 17, 499-504.
  • Velasco, S., Arsköld, E., Paese, M., Grage, H., Irastorza, A., Radström, P. and van Niel, E.W.J., 2006. Environmental factors influencing growth of and exopolysaccharide formation by Pedicoccus parvulus 2.6. International Journal of Food Microbiology, 111, 252-258.
  • Zhang, D., Wang, J. and Pan, X., 2006. Cadmium sorption by EPSs produced by anaerobic sludge under sulfate-reducing conditions. Journal of Hazardous Materials, B138, 589-593.
  • Chen, B. 2002., Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics. Process Biochemistry, 38, 437-46.
  • Allegre, C., Moulin, P., Maisseu, M. and Charbit, F., 2006. Treatment and reuse of reactive dyeing effluents. Journal of Membrane Science, 269, 15-34.
  • Cérantola, S., Bounéry, J., Segonds, C., Marty, N. and Montrozie, H., 2000. Exopolysaccharide production by mucoid and non-mucoid strains of Burkholderia cepacia. FEMS Microbiology Letters, 185, 243-46.
  • Crini, G. 2006., Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97, 1061-85.
  • Khehra, M.S., Saini, H.S., Sharma, D.K., Chadha, B.S. and Chimni, S.S., 2006. Biodegradation of azo dye C.I. Acid Red 88 by an anoxiceaerobic sequential bioreactor. Dyes and Pigments, 70, 1-7.
  • Iyer, A., Mody, K. and Jha, B., 2004. Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Marine Pollution Bulletin, 49, 974-77.
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. 1956., Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350-56.
  • Flemming, H-C., Wingender, J., Szewzyk,U., Steinberg, P., Scott A. Rice, S.A. and Kjelleberg, S., 2016. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology, 14, 563-75.
  • Guibaud, G., Comte, S., Bordas, F., Dupuy, S. and Baudu, M., 2005. Comparison of the complexation potential extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere, 59, 629-638.
  • Nicolaus, B., Lama, L., Panico, A., Moriello, V.S., and Romano, I., 2002. Production and characterization of exopolysaccharides extcreted by thermophilic bacteria from shallow, marine hydrothermal vents of flegrean areas (Italy). System. Appl. Microbiol., 25, 319-325.
  • Kılıç, N.K., Nielsen, J.L., Yüce, M. and Dönmez, G., 2007. Characterization of a simple bacterial consortium for effective treatment of wastewaters with reactive dyes and Cr(VI). Chemosphere, 67, 826-31.
  • Kılıç, N. and Dönmez, G., 2008 Environmental conditions affecting exopolysaccharide production by Pseudomonas aeruginosa, Micrococcus sp., Ochrobactrum sp. Journal of Hazardus Materials, 154, 1019-24.
  • Leppard, G.G., Droppo, I.G., West, M.M. and Liss, S.N., 2003. Compartmentalization of metals within the diverse collodial matrices comprising activated sludge microbial flocs. J. Environ. Qual., 32, 2100-08.
  • Lodato, A., Alfieri, F., Olivieri, G., Di Donato, A., Marzocchella, A. and Salatino, P., 2007. Azo-dye conversion by means of Pseudomonas sp. OX1. Enzyme and Microbial Technology, 41, 646-652.
  • Sadettin, S. and Dönmez, G., 2006. Bioaccumulation of reactive dyes by thermophilic cyanobacteria. Process Biochemistry, 41, 836-841.
  • Nandal, K., Sehrawat, A.R., Yadav, A.S., Vashishat, R.K. and Boora, K.S., 2005. High temperature-induced changes in exopolysaccharides, lipopolysaccharides and protein profile of heat-resistant mutants of Rhizobium sp. (Cajanus). Microbial Bioresearch, 160, 367-373.
  • Nigam, P., Banat, I.M., Singh, D. and Marchant, R., 1995. Microbial process for the decolorization of textile effluents containing azo, diazo and reactive dyes. Process Biochemistry, 31, 435-442.
Year 2019, Volume: 19 Issue: 1, 40 - 46, 28.05.2019
https://doi.org/10.35414/akufemubid.387249

Abstract

References

  • Ozdemir, G., Ozturk, T., Ceyhan, N., Isler, R. and Cosar, T., 2003. Heavy metal biosorption by biomass of Ochrobactrum antropi producing exopolysaccharide in activated sludge. Bioresource Technology, 90, 71-74.
  • Aksu, Z., 2005. Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 40, 997-1026.
  • Aksu, Z. and Dönmez, G., 2005. Combined effects of molasses sucrose and reactive dye on the growth and dye bioaccumulation properties of Candida tropicalis. Process Biochemistry, 40, 1437-44.
  • Shah, V., Garg, N. and Madamwar, D., 1999. An integrated process of textile dye removal and hydrogen evolution using cyanobacterium, Phormidium valderianum. World of Journal Microbiology and Biotechnology, 17, 499-504.
  • Velasco, S., Arsköld, E., Paese, M., Grage, H., Irastorza, A., Radström, P. and van Niel, E.W.J., 2006. Environmental factors influencing growth of and exopolysaccharide formation by Pedicoccus parvulus 2.6. International Journal of Food Microbiology, 111, 252-258.
  • Zhang, D., Wang, J. and Pan, X., 2006. Cadmium sorption by EPSs produced by anaerobic sludge under sulfate-reducing conditions. Journal of Hazardous Materials, B138, 589-593.
  • Chen, B. 2002., Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics. Process Biochemistry, 38, 437-46.
  • Allegre, C., Moulin, P., Maisseu, M. and Charbit, F., 2006. Treatment and reuse of reactive dyeing effluents. Journal of Membrane Science, 269, 15-34.
  • Cérantola, S., Bounéry, J., Segonds, C., Marty, N. and Montrozie, H., 2000. Exopolysaccharide production by mucoid and non-mucoid strains of Burkholderia cepacia. FEMS Microbiology Letters, 185, 243-46.
  • Crini, G. 2006., Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97, 1061-85.
  • Khehra, M.S., Saini, H.S., Sharma, D.K., Chadha, B.S. and Chimni, S.S., 2006. Biodegradation of azo dye C.I. Acid Red 88 by an anoxiceaerobic sequential bioreactor. Dyes and Pigments, 70, 1-7.
  • Iyer, A., Mody, K. and Jha, B., 2004. Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Marine Pollution Bulletin, 49, 974-77.
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. 1956., Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350-56.
  • Flemming, H-C., Wingender, J., Szewzyk,U., Steinberg, P., Scott A. Rice, S.A. and Kjelleberg, S., 2016. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology, 14, 563-75.
  • Guibaud, G., Comte, S., Bordas, F., Dupuy, S. and Baudu, M., 2005. Comparison of the complexation potential extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere, 59, 629-638.
  • Nicolaus, B., Lama, L., Panico, A., Moriello, V.S., and Romano, I., 2002. Production and characterization of exopolysaccharides extcreted by thermophilic bacteria from shallow, marine hydrothermal vents of flegrean areas (Italy). System. Appl. Microbiol., 25, 319-325.
  • Kılıç, N.K., Nielsen, J.L., Yüce, M. and Dönmez, G., 2007. Characterization of a simple bacterial consortium for effective treatment of wastewaters with reactive dyes and Cr(VI). Chemosphere, 67, 826-31.
  • Kılıç, N. and Dönmez, G., 2008 Environmental conditions affecting exopolysaccharide production by Pseudomonas aeruginosa, Micrococcus sp., Ochrobactrum sp. Journal of Hazardus Materials, 154, 1019-24.
  • Leppard, G.G., Droppo, I.G., West, M.M. and Liss, S.N., 2003. Compartmentalization of metals within the diverse collodial matrices comprising activated sludge microbial flocs. J. Environ. Qual., 32, 2100-08.
  • Lodato, A., Alfieri, F., Olivieri, G., Di Donato, A., Marzocchella, A. and Salatino, P., 2007. Azo-dye conversion by means of Pseudomonas sp. OX1. Enzyme and Microbial Technology, 41, 646-652.
  • Sadettin, S. and Dönmez, G., 2006. Bioaccumulation of reactive dyes by thermophilic cyanobacteria. Process Biochemistry, 41, 836-841.
  • Nandal, K., Sehrawat, A.R., Yadav, A.S., Vashishat, R.K. and Boora, K.S., 2005. High temperature-induced changes in exopolysaccharides, lipopolysaccharides and protein profile of heat-resistant mutants of Rhizobium sp. (Cajanus). Microbial Bioresearch, 160, 367-373.
  • Nigam, P., Banat, I.M., Singh, D. and Marchant, R., 1995. Microbial process for the decolorization of textile effluents containing azo, diazo and reactive dyes. Process Biochemistry, 31, 435-442.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

NUR Koçberber Kılıç

Gönül Dönmez

Publication Date May 28, 2019
Submission Date January 31, 2018
Published in Issue Year 2019 Volume: 19 Issue: 1

Cite

APA Koçberber Kılıç, N., & Dönmez, G. (2019). Farklı Ortam Koşullarının Micrococcus sp. Ekzopolisakkarit Üretimine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 19(1), 40-46. https://doi.org/10.35414/akufemubid.387249
AMA Koçberber Kılıç N, Dönmez G. Farklı Ortam Koşullarının Micrococcus sp. Ekzopolisakkarit Üretimine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. May 2019;19(1):40-46. doi:10.35414/akufemubid.387249
Chicago Koçberber Kılıç, NUR, and Gönül Dönmez. “Farklı Ortam Koşullarının Micrococcus Sp. Ekzopolisakkarit Üretimine Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19, no. 1 (May 2019): 40-46. https://doi.org/10.35414/akufemubid.387249.
EndNote Koçberber Kılıç N, Dönmez G (May 1, 2019) Farklı Ortam Koşullarının Micrococcus sp. Ekzopolisakkarit Üretimine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19 1 40–46.
IEEE N. Koçberber Kılıç and G. Dönmez, “Farklı Ortam Koşullarının Micrococcus sp. Ekzopolisakkarit Üretimine Etkisi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 19, no. 1, pp. 40–46, 2019, doi: 10.35414/akufemubid.387249.
ISNAD Koçberber Kılıç, NUR - Dönmez, Gönül. “Farklı Ortam Koşullarının Micrococcus Sp. Ekzopolisakkarit Üretimine Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19/1 (May 2019), 40-46. https://doi.org/10.35414/akufemubid.387249.
JAMA Koçberber Kılıç N, Dönmez G. Farklı Ortam Koşullarının Micrococcus sp. Ekzopolisakkarit Üretimine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19:40–46.
MLA Koçberber Kılıç, NUR and Gönül Dönmez. “Farklı Ortam Koşullarının Micrococcus Sp. Ekzopolisakkarit Üretimine Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 19, no. 1, 2019, pp. 40-46, doi:10.35414/akufemubid.387249.
Vancouver Koçberber Kılıç N, Dönmez G. Farklı Ortam Koşullarının Micrococcus sp. Ekzopolisakkarit Üretimine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19(1):40-6.