Research Article
BibTex RIS Cite

Sb2S3 İnce Filmlerinin Yapısal ve Optik Özellikleri

Year 2019, Volume: 19 Issue: 2, 286 - 291, 17.09.2019

Abstract

Bu çalışmaya konu olan
antimon sülfür ince filmler ultrasonik sprey piroliz tekniği kullanılarak
hazırlanmıştır. Farklı alttaş sıcaklığına bağlı olarak hazırlanan antimon
sülfür ince filmlerin optik ve yapısal özellikleri sırasıyla UV-vis
spektrofotometri ve XRD analizi kullanılarak incelenmiştir. Bu şekilde alttaş
sıcaklığını değiştirerek optik ve yapısal özelikleri kontrol etmek mümkün
olmuştur. Filmlerin optik özellikleri, UV-vis spektrometresi kullanılarak
enerji bant aralığı ölçümleri ile analiz edildi. 275, 300 ve 325 °C’ de yapılan
ve tavlanmamış filmler için enerji bant değerleri sırasıyla 2.36, 2.47 ve 1.84
eV olarak bulunurken, 500 °C’de sülfür ortamında tavlanan filmler için enerji
bant değerleri sırasıyla 1.73, 1.76 ve 1.77eV olarak bulundu. Bütün yönelimler
için mikro yapı (e), düzlemler arası mesafe (d), kristal büyüklüğü (D) ve
dislokasyon yoğunluk (δ) XRD analizi kullanılarak belirlendi.

References

  • Abbo, Titinchi, S.J.J., Prasad, R., Chand, S., 2005. Synthesis, characterization and study of polymeric iron(III) complexes with bidentate p-hydroxy Schiff bases as heterogeneous catalysts. Journal of Molecular Catalysis a-Chemical, 225, 225-232.
  • Ablova, M.S., Andreev, A.A., Dedegkaev, T.T., Melekh, B.T., Pevtsov, A.B., Shendel, N.S., Shumilova, L.N., 1976. Switching effect in Sb2S3. Sov Phys Semicond, 10, 629-631.
  • Aousgi, F., Dimassi, W., Bessais, B., Kanzari, M., 2015. Effect of substrate temperature on the structural, morphological, and optical properties of Sb2S3 thin films. Applied Surface Science, 350, 19-24.
  • Avilez Garcia, R.G., Meza Avendano, C.A., Pal, M., Paraguay Delgado, F., Mathews, N.R., 2016. Antimony sulfide (Sb2S3) thin films by pulse electrodeposition: Effect of thermal treatment on structural, optical and electrical properties. Materials Science in Semiconductor Processing, 44, 91-100.
  • Bao, H., Cui, X., Li, C.M., Song, Q., Lu, Z., Guo, J., 2007. Synthesis and Electrical Transport Properties of Single-Crystal Antimony Sulfide Nanowires. The Journal of Physical Chemistry C, 111, 17131-17135.
  • Bhosale, C.H., Uplane, M.D., Patil, P.S., Lockhande, C.D., 1994. Preparation and properties of sprayed antimony trisulphide films. Thin Solid Films, 248, 137-139.
  • Boughalmi, R., Boukhachem, A., Kahlaoui, M., Maghraoui, H., Amlouk, M., 2014. Physical investigations on Sb2S3 sprayed thin film for optoelectronic applications. Materials Science in Semiconductor Processing, 26, 593-602.
  • Chen, B., Uher, C., Iordanidis, L., Kanatzidis, M.G., 1997. Transport Properties of Bi2S3 and the Ternary Bismuth Sulfides KBi6.33S10 and K2Bi8S13. Chemistry of Materials, 9, 1655-1658.
  • Curran, J.S., Philippe, R., Joseph, J., Gagnaire, A., 1982. Thin-film antimony trisulphide photoelectrodes. Chemical Physics Letters, 89, 511-515.
  • Dubal, D.P., Gund, G.S., Lokhande, C.D., Holze, R., 2013. CuO cauliflowers for supercapacitor application: Novel potentiodynamic deposition. Materials Research Bulletin, 48, 923-928.
  • Escorcia-García, J., Becerra, D., Nair, M.T.S., Nair, P.K., 2014. Heterojunction CdS/ Sb2S3 solar cells using antimony sulfide thin films prepared by thermal evaporation. Thin Solid Films, 569, 28-34.
  • Ghosh, C., Varma, B.P., 1979. Optical properties of amorphous and crystalline Sb2S3 thin films. Thin Solid Films, 60, 61-65.
  • Grozdanov, I., 1994. A simple and low-cost technique for electroless deposition of chalcogenide thin films. Semiconductor Science and Technology, 9, 1234.
  • Harizi, A., Sinaoui, A., Akkari, F.C., Kanzari, M., 2016.Physical properties of Sn4Sb6S13 thin films prepared by a glancing angle deposition method. Materials Science in Semiconductor Processing, 41, 450-456.
  • Jain, P., Arun, P., 2013. Influence of grain size on the band-gap of annealed SnS thin films. Thin Solid Films, 548, 241-246.
  • Kim, I.H., 2000. (Bi,Sb)2(Te,Se)3-based thin film thermoelectric generators. Materials Letters, 43, 221-224.
  • Versavel, M.Y., Haber, J.A., 2007. Structural and optical properties of amorphous and crystalline antimony sulfide thin-films. Thin Solid Films, 515, 7171-7176.
  • Lokhande, C.D., Sankapal, B.R., Mane, R.S., Pathan, H.M., Muller, M., Giersig, M., Ganesan, V., 2002 XRD, SEM, AFM, HRTEM, EDAX and RBS studies of chemically deposited Sb2S3 and Sb2Se3 thin films. Applied Surface Science, 193, 1-10.
  • Malakooti, R., Cademartiri, L., Migliori, A., Ozin, G.A., 2008. Ultra thin Sb2S3 nanowires and nanoplatelets. Journal of Materials Chemistry, 18, 66-69.
  • Mahanty, S., Merino, J., Leon, M., 1997. Preparation and optical studies on flash evaporated Sb2S3 thin films. Journal of Vacuum Science & Technology A: Vacuum, 15, 3060-3064.
  • Mane, R.S., Lokhande, C.D., 2003. Thickness-dependent properties of chemically deposited Sb2S3 thin films. Materials Chemistry and Physics, 82, 347-354.
  • Murtaza, G., Akhtar, M., Malik, M.A., Brien, P.O., Revaprasadu, N., 2015. Aerosol assisted chemical vapor deposition of Sb2S3 thin films: Environmentally benign solar energy material. Materials Science in Semiconductor Processing, 40, 643-649.
  • Nair, M., Pena, Y., Campos, J., Garcia, V., Nair, P., 1998. Chemically Deposited Sb2S3) and Sb2S3)  ‐ CuS Thin Films Journal of The Electrochemical Society, 145,2113-2120.
  • Nayak, B.B., Acharya, H.N., Mitra, G.B., Mathur, B.K., 1983. Structural characterization of Bi2−xSbxS3 films prepared by the dip-dry method. Thin Solid Films, 105, 17-24.
  • Ota, J., Srivastava, S.K., 2007. Tartaric Acid Assisted Growth of Sb2S3 Nanorods by a Simple Wet Chemical Method. Crystal Growth & Design, 7, 343-347.
  • Pawar, S.H., Bhosale, P.N., Uplane, M.D., Tamhankar, S., 1983. Growth of Bi2S3 film using a solution-gas interface technique. Thin Solid Films, 110, 165-170.
  • Perales, F., Lifante, G., Agulló-Rueda, F., Heras, C.d.l., 2007. Optical and structural properties in the amorphous to polycrystalline transition in Sb2S3 thin films. Journal of Physics D: Applied Physics, 40, 2440.
  • Rajpure, K.Y., Bhosale, C.H., 2000. Effect of composition on the structural, optical and electrical properties of sprayed Sb2S3 thin films prepared from non-aqueous medium. Journal of Physics and Chemistry of Solids, 61, 561-568.
  • Rajpure, K.Y., Bhosale, C.H., 2000. Sb2S3 semiconductor-septum rechargeable storage cell. Materials Chemistry and Physics, 64, 70-74.
  • Salem, A.M., Selim, M.S., 2001. Structure and optical properties of chemically deposited Sb2S3 thin films. Journal of Physics D:Applied Physics, 34, 12.
  • Savadogo, O., Mandal, K.C., 1992. Studies on new chemically deposited photoconducting antimony trisulphide thin films. Solar Energy Materials and Solar Cells, 26, 117-136.
  • Soleimanian, V., Saeedi, M., Mokhtari, A., 2015. The influence of heat treatment on the crystallite size, dislocation density, stacking faults probability andoptical band gap of nanostructured cadmium sulfide film. Materials Science in Semiconductor Processing, 30,118-127.
  • Suarez, R., Nair, P.K., Kamat, P.V., 1998. Photoelectrochemical Behavior of Bi2S3 Nanoclusters and Nanostructured Thin Films. Langmuir, 14, 3236-3241.
  • Tigau, N., Gheorghieş, C., Rusu, G.I., Condurache-Bota, S., 2005. The influence of the post-deposition treatment on some physical properties of Sb2S3 thin films. Journal of Non-Crystalline Solids, 351, 987-992.
  • Zhang, R., Chen, X., Mo, M., Wang, Z., Zhang, M., Liu, X., Qian, Y., 2004. Morphology-controlled growth of crystalline antimony sulfide via a refluxing polyol process. Journal of Crystal Growth, 262, 449-455. Yang, J., Huang, C., Jiang, L., Liu, F., Lai, Y., Li, J., Liu, Y., 2014. Effects of hydrogen peroxide on electrodeposition of Cu(In,Ga)Se2 thin films and band gap controlling. Electrochimica Acta, 142, 208-214.

The Structural and Optical Properties of Sb2S3 Thin Films

Year 2019, Volume: 19 Issue: 2, 286 - 291, 17.09.2019

Abstract

The Antimony thiorea thin
films which are the subject of this study were prepared by ultrasonic spray
pyrolysis technique. The Antimony thiorea thin films were investigated
depending on the substrate temperature. The optical and structural
characteristics of these films were determined using UV–vis spectrophotometry
and XRD analysis, respectively. By changing the substrate temperature, it was
possible to control the optical and structural characteristic of the films. The
optical properties films were analysed by energy band gap measurements using
UV–vis spectrophotometry. While the band gaps of as grown films found to be
2.36, 2.47 ve 1.84eV, the band gaps of the films at annealing 500°C found to be
1.73, 1.76 ve 1.77eV.  XRD analysis was
used to determine the microstrain (e), lattice spacing phase (d), crystallite
size (D) and dislocation density (δ) for all orientations.

References

  • Abbo, Titinchi, S.J.J., Prasad, R., Chand, S., 2005. Synthesis, characterization and study of polymeric iron(III) complexes with bidentate p-hydroxy Schiff bases as heterogeneous catalysts. Journal of Molecular Catalysis a-Chemical, 225, 225-232.
  • Ablova, M.S., Andreev, A.A., Dedegkaev, T.T., Melekh, B.T., Pevtsov, A.B., Shendel, N.S., Shumilova, L.N., 1976. Switching effect in Sb2S3. Sov Phys Semicond, 10, 629-631.
  • Aousgi, F., Dimassi, W., Bessais, B., Kanzari, M., 2015. Effect of substrate temperature on the structural, morphological, and optical properties of Sb2S3 thin films. Applied Surface Science, 350, 19-24.
  • Avilez Garcia, R.G., Meza Avendano, C.A., Pal, M., Paraguay Delgado, F., Mathews, N.R., 2016. Antimony sulfide (Sb2S3) thin films by pulse electrodeposition: Effect of thermal treatment on structural, optical and electrical properties. Materials Science in Semiconductor Processing, 44, 91-100.
  • Bao, H., Cui, X., Li, C.M., Song, Q., Lu, Z., Guo, J., 2007. Synthesis and Electrical Transport Properties of Single-Crystal Antimony Sulfide Nanowires. The Journal of Physical Chemistry C, 111, 17131-17135.
  • Bhosale, C.H., Uplane, M.D., Patil, P.S., Lockhande, C.D., 1994. Preparation and properties of sprayed antimony trisulphide films. Thin Solid Films, 248, 137-139.
  • Boughalmi, R., Boukhachem, A., Kahlaoui, M., Maghraoui, H., Amlouk, M., 2014. Physical investigations on Sb2S3 sprayed thin film for optoelectronic applications. Materials Science in Semiconductor Processing, 26, 593-602.
  • Chen, B., Uher, C., Iordanidis, L., Kanatzidis, M.G., 1997. Transport Properties of Bi2S3 and the Ternary Bismuth Sulfides KBi6.33S10 and K2Bi8S13. Chemistry of Materials, 9, 1655-1658.
  • Curran, J.S., Philippe, R., Joseph, J., Gagnaire, A., 1982. Thin-film antimony trisulphide photoelectrodes. Chemical Physics Letters, 89, 511-515.
  • Dubal, D.P., Gund, G.S., Lokhande, C.D., Holze, R., 2013. CuO cauliflowers for supercapacitor application: Novel potentiodynamic deposition. Materials Research Bulletin, 48, 923-928.
  • Escorcia-García, J., Becerra, D., Nair, M.T.S., Nair, P.K., 2014. Heterojunction CdS/ Sb2S3 solar cells using antimony sulfide thin films prepared by thermal evaporation. Thin Solid Films, 569, 28-34.
  • Ghosh, C., Varma, B.P., 1979. Optical properties of amorphous and crystalline Sb2S3 thin films. Thin Solid Films, 60, 61-65.
  • Grozdanov, I., 1994. A simple and low-cost technique for electroless deposition of chalcogenide thin films. Semiconductor Science and Technology, 9, 1234.
  • Harizi, A., Sinaoui, A., Akkari, F.C., Kanzari, M., 2016.Physical properties of Sn4Sb6S13 thin films prepared by a glancing angle deposition method. Materials Science in Semiconductor Processing, 41, 450-456.
  • Jain, P., Arun, P., 2013. Influence of grain size on the band-gap of annealed SnS thin films. Thin Solid Films, 548, 241-246.
  • Kim, I.H., 2000. (Bi,Sb)2(Te,Se)3-based thin film thermoelectric generators. Materials Letters, 43, 221-224.
  • Versavel, M.Y., Haber, J.A., 2007. Structural and optical properties of amorphous and crystalline antimony sulfide thin-films. Thin Solid Films, 515, 7171-7176.
  • Lokhande, C.D., Sankapal, B.R., Mane, R.S., Pathan, H.M., Muller, M., Giersig, M., Ganesan, V., 2002 XRD, SEM, AFM, HRTEM, EDAX and RBS studies of chemically deposited Sb2S3 and Sb2Se3 thin films. Applied Surface Science, 193, 1-10.
  • Malakooti, R., Cademartiri, L., Migliori, A., Ozin, G.A., 2008. Ultra thin Sb2S3 nanowires and nanoplatelets. Journal of Materials Chemistry, 18, 66-69.
  • Mahanty, S., Merino, J., Leon, M., 1997. Preparation and optical studies on flash evaporated Sb2S3 thin films. Journal of Vacuum Science & Technology A: Vacuum, 15, 3060-3064.
  • Mane, R.S., Lokhande, C.D., 2003. Thickness-dependent properties of chemically deposited Sb2S3 thin films. Materials Chemistry and Physics, 82, 347-354.
  • Murtaza, G., Akhtar, M., Malik, M.A., Brien, P.O., Revaprasadu, N., 2015. Aerosol assisted chemical vapor deposition of Sb2S3 thin films: Environmentally benign solar energy material. Materials Science in Semiconductor Processing, 40, 643-649.
  • Nair, M., Pena, Y., Campos, J., Garcia, V., Nair, P., 1998. Chemically Deposited Sb2S3) and Sb2S3)  ‐ CuS Thin Films Journal of The Electrochemical Society, 145,2113-2120.
  • Nayak, B.B., Acharya, H.N., Mitra, G.B., Mathur, B.K., 1983. Structural characterization of Bi2−xSbxS3 films prepared by the dip-dry method. Thin Solid Films, 105, 17-24.
  • Ota, J., Srivastava, S.K., 2007. Tartaric Acid Assisted Growth of Sb2S3 Nanorods by a Simple Wet Chemical Method. Crystal Growth & Design, 7, 343-347.
  • Pawar, S.H., Bhosale, P.N., Uplane, M.D., Tamhankar, S., 1983. Growth of Bi2S3 film using a solution-gas interface technique. Thin Solid Films, 110, 165-170.
  • Perales, F., Lifante, G., Agulló-Rueda, F., Heras, C.d.l., 2007. Optical and structural properties in the amorphous to polycrystalline transition in Sb2S3 thin films. Journal of Physics D: Applied Physics, 40, 2440.
  • Rajpure, K.Y., Bhosale, C.H., 2000. Effect of composition on the structural, optical and electrical properties of sprayed Sb2S3 thin films prepared from non-aqueous medium. Journal of Physics and Chemistry of Solids, 61, 561-568.
  • Rajpure, K.Y., Bhosale, C.H., 2000. Sb2S3 semiconductor-septum rechargeable storage cell. Materials Chemistry and Physics, 64, 70-74.
  • Salem, A.M., Selim, M.S., 2001. Structure and optical properties of chemically deposited Sb2S3 thin films. Journal of Physics D:Applied Physics, 34, 12.
  • Savadogo, O., Mandal, K.C., 1992. Studies on new chemically deposited photoconducting antimony trisulphide thin films. Solar Energy Materials and Solar Cells, 26, 117-136.
  • Soleimanian, V., Saeedi, M., Mokhtari, A., 2015. The influence of heat treatment on the crystallite size, dislocation density, stacking faults probability andoptical band gap of nanostructured cadmium sulfide film. Materials Science in Semiconductor Processing, 30,118-127.
  • Suarez, R., Nair, P.K., Kamat, P.V., 1998. Photoelectrochemical Behavior of Bi2S3 Nanoclusters and Nanostructured Thin Films. Langmuir, 14, 3236-3241.
  • Tigau, N., Gheorghieş, C., Rusu, G.I., Condurache-Bota, S., 2005. The influence of the post-deposition treatment on some physical properties of Sb2S3 thin films. Journal of Non-Crystalline Solids, 351, 987-992.
  • Zhang, R., Chen, X., Mo, M., Wang, Z., Zhang, M., Liu, X., Qian, Y., 2004. Morphology-controlled growth of crystalline antimony sulfide via a refluxing polyol process. Journal of Crystal Growth, 262, 449-455. Yang, J., Huang, C., Jiang, L., Liu, F., Lai, Y., Li, J., Liu, Y., 2014. Effects of hydrogen peroxide on electrodeposition of Cu(In,Ga)Se2 thin films and band gap controlling. Electrochimica Acta, 142, 208-214.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Şilan Baturay 0000-0002-8122-6671

Derya Batıbay This is me 0000-0002-1012-6702

Yusuf Selim Ocak 0000-0001-8754-1720

Publication Date September 17, 2019
Submission Date May 31, 2018
Published in Issue Year 2019 Volume: 19 Issue: 2

Cite

APA Baturay, Ş., Batıbay, D., & Ocak, Y. S. (2019). Sb2S3 İnce Filmlerinin Yapısal ve Optik Özellikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 19(2), 286-291.
AMA Baturay Ş, Batıbay D, Ocak YS. Sb2S3 İnce Filmlerinin Yapısal ve Optik Özellikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. September 2019;19(2):286-291.
Chicago Baturay, Şilan, Derya Batıbay, and Yusuf Selim Ocak. “Sb2S3 İnce Filmlerinin Yapısal Ve Optik Özellikleri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19, no. 2 (September 2019): 286-91.
EndNote Baturay Ş, Batıbay D, Ocak YS (September 1, 2019) Sb2S3 İnce Filmlerinin Yapısal ve Optik Özellikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19 2 286–291.
IEEE Ş. Baturay, D. Batıbay, and Y. S. Ocak, “Sb2S3 İnce Filmlerinin Yapısal ve Optik Özellikleri”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 19, no. 2, pp. 286–291, 2019.
ISNAD Baturay, Şilan et al. “Sb2S3 İnce Filmlerinin Yapısal Ve Optik Özellikleri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19/2 (September 2019), 286-291.
JAMA Baturay Ş, Batıbay D, Ocak YS. Sb2S3 İnce Filmlerinin Yapısal ve Optik Özellikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19:286–291.
MLA Baturay, Şilan et al. “Sb2S3 İnce Filmlerinin Yapısal Ve Optik Özellikleri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 19, no. 2, 2019, pp. 286-91.
Vancouver Baturay Ş, Batıbay D, Ocak YS. Sb2S3 İnce Filmlerinin Yapısal ve Optik Özellikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19(2):286-91.