Research Article
BibTex RIS Cite

Banach Cebirli Koni Modüler Uzaylarda Banach Büzülme Prensibi

Year 2019, Volume: 19 Issue: 2, 335 - 342, 17.09.2019

Abstract

Bilinen anlamda büzülme
dönüşümü olmayan öyle dönüşümler vardır ki bu dönüşümler bazı yeni metrik ve
modüler uzay yapılarında bazı büzülme tipinde koşulları sağlarlar. Biz bu
makalede bu durumu göz önünde bulundurarak Banach cebirlerdeki konilerin
yardımıyla yeni bir modüler uzay kavramı sunduk. İlk kısımda temel tanım ve
notasyonlar verildi. İkinci kısımda
Banach
Büzülme Prensibinin
-cebir
değerli modüler uzaylardaki sonucuyla klasik modüler uzaylardaki sonucunun
denkliği gösterildi. Sonra yukarıda bahsedilen o modüler uzaya giriş yapıldı ve
bazı sonuçlar verildi. Son olarak çalışma bir örnekle desteklendi.

References

  • Alsulami, H.H., Agarwal, R.P., Karapınar, E., Khojasteh, F., 2016. A short note on C^*-algebra-valued contraction mappings. Journal of Inequalities and Applications, 50.
  • Huang, H., Radenovic’, S., Deng, G., 2017. A sharp generalization on cone b-metric space over Banach algebra. J. Nonlinear Sci. Appl., 10, 429-435.
  • Kadelburg Z., Radenovic’, S., 2016. Fixed point results in C^*-algebra-valued metric spaces are direct consequences of their standard metric counterparts. Fixed point theory and applications, 53.
  • Khamsi, M.A., Kozlowski, W.M., 1990. Fixed point theory in modular function spaces. Nonlinear Anal. 14, no. 11, 935-953.
  • Khamsi, M.A., Kozlowski, W.M., 2015. Fixed point theory in modular function spaces, Springer/Birkhauser, New York.
  • Kozlowski, W.M., 1998. Modular Function Spaces, Dekker, New York.
  • Liu, H., Xu, S., 2013. Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings, Fixed Point Theory and Applications, 320.
  • Ma Z., Jiang, L., Sun, H., 2014. C^*-algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl. 206, no. 1.
  • Murphy, G.J., 1990, C^*-algebra and operator theory, Academic press, INC..
  • Musielak, J., 1983. Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034, Springer, Berlin.
  • Rudin, W., 1991. Functional Analysis McGraw-Hill, New York.
  • Shateri, T.L., 2017, C^*-algebra-valued modular spaces and fixed point theorems, J. Fixed Point Theory Appl. 19, no. 2, 1551-1560.
  • Xu, S., Radenovic’, S., 2014. Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality, Fixed Point Theory and Applications, 102.
  • Gerstewitz, Chr., 1983. Nichtkonvexe dualitat in der vektaroptimierung, Wissenschaftlichte Zeitschrift T H Leuna-mersebung, 25.
  • Nakano, H., 1950. Modulared semi-ordered linear spaces, Tokyo Mathematics Book Series, 1, Maruzen Co., Tokyo.
  • Musielak, J., Orlicz, W., 1959. On modular spaces, Studia Math, 18, 49-56.

Banach Contraction Principle in Cone Modular Spaces with Banach Algebra

Year 2019, Volume: 19 Issue: 2, 335 - 342, 17.09.2019

Abstract

There
are some mappings, which  are not
contraction mappings in the usual senses, such that they hold   some contractive type conditions in the
settings of some new abstract metric and modular spaces. In this paper, taking
into account this fact, we introduce such a new type modular space by using the
setting of cones in Banach algebras. In the first section, some basic notions
and definitions are given. In the second part, it is shown that some result of Banach
Contraction Principle in modular space with C^*-
algebra is equivalent to the
result of Banach Contraction Principle of the usual modular space. Then that
new modular space mentioned above is introduced and some results are given.
Finally the work is concluded with an example.

References

  • Alsulami, H.H., Agarwal, R.P., Karapınar, E., Khojasteh, F., 2016. A short note on C^*-algebra-valued contraction mappings. Journal of Inequalities and Applications, 50.
  • Huang, H., Radenovic’, S., Deng, G., 2017. A sharp generalization on cone b-metric space over Banach algebra. J. Nonlinear Sci. Appl., 10, 429-435.
  • Kadelburg Z., Radenovic’, S., 2016. Fixed point results in C^*-algebra-valued metric spaces are direct consequences of their standard metric counterparts. Fixed point theory and applications, 53.
  • Khamsi, M.A., Kozlowski, W.M., 1990. Fixed point theory in modular function spaces. Nonlinear Anal. 14, no. 11, 935-953.
  • Khamsi, M.A., Kozlowski, W.M., 2015. Fixed point theory in modular function spaces, Springer/Birkhauser, New York.
  • Kozlowski, W.M., 1998. Modular Function Spaces, Dekker, New York.
  • Liu, H., Xu, S., 2013. Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings, Fixed Point Theory and Applications, 320.
  • Ma Z., Jiang, L., Sun, H., 2014. C^*-algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl. 206, no. 1.
  • Murphy, G.J., 1990, C^*-algebra and operator theory, Academic press, INC..
  • Musielak, J., 1983. Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034, Springer, Berlin.
  • Rudin, W., 1991. Functional Analysis McGraw-Hill, New York.
  • Shateri, T.L., 2017, C^*-algebra-valued modular spaces and fixed point theorems, J. Fixed Point Theory Appl. 19, no. 2, 1551-1560.
  • Xu, S., Radenovic’, S., 2014. Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality, Fixed Point Theory and Applications, 102.
  • Gerstewitz, Chr., 1983. Nichtkonvexe dualitat in der vektaroptimierung, Wissenschaftlichte Zeitschrift T H Leuna-mersebung, 25.
  • Nakano, H., 1950. Modulared semi-ordered linear spaces, Tokyo Mathematics Book Series, 1, Maruzen Co., Tokyo.
  • Musielak, J., Orlicz, W., 1959. On modular spaces, Studia Math, 18, 49-56.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Muttalip Özavşar

Hatice Çay

Publication Date September 17, 2019
Submission Date February 7, 2019
Published in Issue Year 2019 Volume: 19 Issue: 2

Cite

APA Özavşar, M., & Çay, H. (2019). Banach Cebirli Koni Modüler Uzaylarda Banach Büzülme Prensibi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 19(2), 335-342.
AMA Özavşar M, Çay H. Banach Cebirli Koni Modüler Uzaylarda Banach Büzülme Prensibi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. September 2019;19(2):335-342.
Chicago Özavşar, Muttalip, and Hatice Çay. “Banach Cebirli Koni Modüler Uzaylarda Banach Büzülme Prensibi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19, no. 2 (September 2019): 335-42.
EndNote Özavşar M, Çay H (September 1, 2019) Banach Cebirli Koni Modüler Uzaylarda Banach Büzülme Prensibi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19 2 335–342.
IEEE M. Özavşar and H. Çay, “Banach Cebirli Koni Modüler Uzaylarda Banach Büzülme Prensibi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 19, no. 2, pp. 335–342, 2019.
ISNAD Özavşar, Muttalip - Çay, Hatice. “Banach Cebirli Koni Modüler Uzaylarda Banach Büzülme Prensibi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19/2 (September 2019), 335-342.
JAMA Özavşar M, Çay H. Banach Cebirli Koni Modüler Uzaylarda Banach Büzülme Prensibi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19:335–342.
MLA Özavşar, Muttalip and Hatice Çay. “Banach Cebirli Koni Modüler Uzaylarda Banach Büzülme Prensibi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 19, no. 2, 2019, pp. 335-42.
Vancouver Özavşar M, Çay H. Banach Cebirli Koni Modüler Uzaylarda Banach Büzülme Prensibi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19(2):335-42.