Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite

Investigation of Sloping Cuts in Abrasive Water Jet

Year 2019, Volume: 19 Issue: 2, 480 - 489, 17.09.2019

Abstract

Abrasive Water Jet (AWJ)
cutting method is a non-traditional material cutting method which has been
increasing its use in various branches of industries in recent years. The AWJ
method is usually used in the cutting of materials in the metal and mining
industries. In this study, polymer matrix composite materials ( glass fiber
reinforced vinyl ester composite) which is another type of material are cut by
AWJ method. AWJ nozzle is one of the main components of AWJ machine and the
effects of nozzle angle on the cutting performance were investigated by keeping
it at various slope angles. According to seven different slope angles, work
material was cut. The average surface roughness values of the cutting surfaces
were measured by optical profilometer. On the cutting surface, initial and zone
average surface roughness was defined. At 87.5° and 82.5° slope angles of
nozzle, it was found improvement effect for both surface roughness values. In
addition, the effects of slope angles were examined by SEM images and the
improvement effects of sloping cuts were shown.

References

  • Anwar, S., Abdullah, F. M., Alkahtani, M. S., Ahmad, S., Alatefi, M., 2018. Bibliometric analysis of abrasive water jet machining research. Journal of King Saud University - Engineering Sciences, xxx, xxx.
  • Armağan, M., Arici, A. A., 2017. Cutting performance of glass-vinyl ester composite by abrasive water jet. Materials and Manufacturing Processes, 32 (15), 1715-1722.
  • Arola, D., Ramulu, M., 1997. Material removal in abrasive waterjet machining of metals surface ıntegrity and texture. Wear, 210 (1), 50-58.
  • Azmir, M. A., Ahsan, A. K., 2008. Investigation on glass/epoxy composite surfaces machined by abrasive water jet machining. Journal of Materials Processing Technology, 198(1), 122-128.
  • Azmir, M. A., Ahsan, A. K., 2009. A study of abrasive water jet machining process on glass/epoxy composite laminate. Journal of Materials Processing Technology, 209(20), 6168-6173.
  • Chen, F. L., Siores, E., 2001. The effect of cutting jet variation on striation formation in abrasive water jet cutting. International Journal of Machine Tools and Manufacture, 41(10), 1479-1486.
  • Chen, F. L., Siores, E., Patel, K., 2002. Improving the cut surface qualities using different controlled nozzle oscillation techniques. International Journal of Machine Tools and Manufacture, 42 (6), 717-722,
  • Chen, L., Siores, E., Wong, W. C. K., 1998. Optimising abrasive waterjet cutting of ceramic materials. Journal of Materials Processing Technology, 74 (1), 251-254.
  • El-Hofy, M., Helmy, M. O., Escobar-Palafox, G., Kerrigan, K., Scaife, R., El-Hofy, H., 2018. Abrasive water jet machining of multidirectional CFRP laminates. Procedia CIRP, 68 (x), 535-540.
  • Hashish, M., 1984. A modeling study of metal cutting with abrasive waterjets. Journal of Engineering Materials and Technology, 106 (1), 88-100.
  • Hashish, M., 1988. Visualization of the abrasive-waterjet cutting process. Experimental Mechanics, 28 (2), 159-169.
  • Hashish, M., 1989. A model for abrasive-waterjet (AWJ) machining. Journal of Engineering Materials and Technology, 111 (2), 154-162.
  • Hashish, M., 1989. An ınvestigation of milling with abrasive-waterjets. Journal of Engineering for Industry, 111 (2), 158-166.
  • Hashish, M., 1991. Characteristics of surfaces machined with abrasive-waterjets. Journal of Engineering Materials and Technology, 113 (3), 354-362.
  • Johnston, C.E., 1989. Metals Handbook. 16, Davis, J.R., Lampman, S.R., Zorc, T. B., Crankovic, G.M., Ronke, A. W., ASM International, Ohio, A.B.D., 520-527.
  • Kumaran, S. T., Ko, T. J., Uthayakumar, M., Islam, M. M., 2017. Prediction of surface roughness in abrasive water jet machining of CFRP composites using regression analysis. Journal of Alloys and Compounds, 724 (x), 1037-1045.
  • Lemma, E., Chen, L., Siores, E., Wang, J., 2002. Optimising the AWJ cutting process of ductile materials using nozzle oscillation technique. International Journal of Machine Tools and Manufacture, 42 (7), 781-789.
  • Lemma, E., Chen, L., Siores, E., Wang, J., 2002. Study of cutting fiber-reinforced composites by using abrasive water-jet with cutting head oscillation. Composite Structures, 57 (1), 297-303.
  • Lemma, E., Deam, R., Chen, L., 2005. Maximum depth of cut and mechanics of erosion in AWJ oscillation cutting of ductile materials. Journal of Materials Processing Technology, 160 (2), 188-197.
  • Montesano, J., Bougherara, H., Fawaz, Z., 2017. Influence of drilling and abrasive water jet induced damage on the performance of carbon fabric/epoxy plates with holes. Composite Structures, 163 (x), 257-266.
  • Phapale, K., Singh, R., Patil, S., Singh, R. K. P., 2016. Delamination characterization and comparative assessment of delamination control techniques in abrasive water jet drilling of CFRP. Procedia Manufacturing, 5 (x), 521-535.
  • Prasad, K. S., Chaitanya, G., 2018. Selection of optimal process parameters by Taguchi method for drilling GFRP composites using abrasive water jet machining technique. Materials Today: Proceedings, 5 (9), 19714-19722.
  • Ravi Kumar, K., Sreebalaji, V. S., Pridhar, T., 2018. Characterization and optimization of abrasive water jet machining parameters of aluminium/tungsten carbide composites. Measurement, 117 (x), 57-66.
  • Shanmugam, D. K., Masood, S. H., 2009. An investigation on kerf characteristics in abrasive waterjet cutting of layered composites. Journal of Materials Processing Technology, 209(8), 3887-3893.
  • Shanmugam, D. K., Wang, J., Liu, H., 2008. Minimisation of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique. International Journal of Machine Tools and Manufacture, 48 (14), 1527-1534.
  • Sheikh-Ahmad, J.Y., 2009. Machining of Polymer Composites. Springer Science+Business Media, New York, A.B.D., 237-255.
  • Siores, E., Wong, W. C. K., Chen, L., Wager, J. G., 1996. Enhancing abrasive waterjet cutting of ceramics by head oscillation techniques. CIRP Annals, 45 (1), 327-330.
  • Supriya, S. B., Srinivas, S., 2018. Machinability studies on stainless steel by abrasive water jet –Review. Materials Today: Proceedings, 5 (1), 2871-2876.
  • Wang, J., 1999. A machinability study of polymer matrix composites using abrasive waterjet cutting technology. Journal of Materials Processing Technology, 94 (1), 30-35.
  • Wang, J., Kuriyagawa, T., Huang, C. Z., 2003. An experimental study to enhance the cutting performance in abrasive waterjet machining. Machining Science and Technology, 7 (2), 191-207.
  • Wang, J., Zhong, Y., 2009. Enhancing the depth of cut in abrasive waterjet cutting of alumina ceramics by using multipass cutting with nozzle oscillation. Machining Science and Technology, 13 (1), 76-91.
  • https://www.omax.com/learn/how-does waterjet-work, (28. 03. 2017)

Aşındırıcılı Su Jetinde Eğimli Kesimin İncelenmesi

Year 2019, Volume: 19 Issue: 2, 480 - 489, 17.09.2019

Abstract

Çeşitli sanayi
kollarında son yıllarda kullanımı giderek artan Aşındırıcılı Su Jeti (ASJ) ile
işleme yöntemi, geleneksel olmayan (alışılmamış) bir malzeme işleme yöntemidir.
ASJ ile işleme yöntemi genellikle maden ve metal endüstrisinde malzemelerin
kesilmesinde kullanılmaktadır. Bu çalışmada diğer bir malzeme türü olan polimer
matrisli kompozit malzemeler (cam fiber takviyeli vinil ester kompozit) ASJ
yöntemi ile kesilmiştir. ASJ tezgâhının ana unsurlarından biri olan ASJ
nozulunun, çeşitli eğim açılarında tutulmasıyla kesme performansına etkileri
araştırılmıştır. Yedi farklı eğim açısına göre kesilen malzemenin kesme
yüzeylerinin ortalama yüzey pürüzlülükleri değerleri optik profilometre
aracılığıyla ölçülmüştür. Kesme yüzeyi üzerinde başlangıç ve bölge ortalama
yüzey pürüzlülüğü tanımlanmış, nozulun 87,5° ve 82,5° eğim açısında her iki
yüzey pürüzlülüğünü iyileştirici etkisi bulunmuştur. Ayrıca eğim açılarının
etkileri SEM görüntüleri ile incelenmiş, eğimli kesimin iyileştirici etkileri
gösterilmiştir. 

References

  • Anwar, S., Abdullah, F. M., Alkahtani, M. S., Ahmad, S., Alatefi, M., 2018. Bibliometric analysis of abrasive water jet machining research. Journal of King Saud University - Engineering Sciences, xxx, xxx.
  • Armağan, M., Arici, A. A., 2017. Cutting performance of glass-vinyl ester composite by abrasive water jet. Materials and Manufacturing Processes, 32 (15), 1715-1722.
  • Arola, D., Ramulu, M., 1997. Material removal in abrasive waterjet machining of metals surface ıntegrity and texture. Wear, 210 (1), 50-58.
  • Azmir, M. A., Ahsan, A. K., 2008. Investigation on glass/epoxy composite surfaces machined by abrasive water jet machining. Journal of Materials Processing Technology, 198(1), 122-128.
  • Azmir, M. A., Ahsan, A. K., 2009. A study of abrasive water jet machining process on glass/epoxy composite laminate. Journal of Materials Processing Technology, 209(20), 6168-6173.
  • Chen, F. L., Siores, E., 2001. The effect of cutting jet variation on striation formation in abrasive water jet cutting. International Journal of Machine Tools and Manufacture, 41(10), 1479-1486.
  • Chen, F. L., Siores, E., Patel, K., 2002. Improving the cut surface qualities using different controlled nozzle oscillation techniques. International Journal of Machine Tools and Manufacture, 42 (6), 717-722,
  • Chen, L., Siores, E., Wong, W. C. K., 1998. Optimising abrasive waterjet cutting of ceramic materials. Journal of Materials Processing Technology, 74 (1), 251-254.
  • El-Hofy, M., Helmy, M. O., Escobar-Palafox, G., Kerrigan, K., Scaife, R., El-Hofy, H., 2018. Abrasive water jet machining of multidirectional CFRP laminates. Procedia CIRP, 68 (x), 535-540.
  • Hashish, M., 1984. A modeling study of metal cutting with abrasive waterjets. Journal of Engineering Materials and Technology, 106 (1), 88-100.
  • Hashish, M., 1988. Visualization of the abrasive-waterjet cutting process. Experimental Mechanics, 28 (2), 159-169.
  • Hashish, M., 1989. A model for abrasive-waterjet (AWJ) machining. Journal of Engineering Materials and Technology, 111 (2), 154-162.
  • Hashish, M., 1989. An ınvestigation of milling with abrasive-waterjets. Journal of Engineering for Industry, 111 (2), 158-166.
  • Hashish, M., 1991. Characteristics of surfaces machined with abrasive-waterjets. Journal of Engineering Materials and Technology, 113 (3), 354-362.
  • Johnston, C.E., 1989. Metals Handbook. 16, Davis, J.R., Lampman, S.R., Zorc, T. B., Crankovic, G.M., Ronke, A. W., ASM International, Ohio, A.B.D., 520-527.
  • Kumaran, S. T., Ko, T. J., Uthayakumar, M., Islam, M. M., 2017. Prediction of surface roughness in abrasive water jet machining of CFRP composites using regression analysis. Journal of Alloys and Compounds, 724 (x), 1037-1045.
  • Lemma, E., Chen, L., Siores, E., Wang, J., 2002. Optimising the AWJ cutting process of ductile materials using nozzle oscillation technique. International Journal of Machine Tools and Manufacture, 42 (7), 781-789.
  • Lemma, E., Chen, L., Siores, E., Wang, J., 2002. Study of cutting fiber-reinforced composites by using abrasive water-jet with cutting head oscillation. Composite Structures, 57 (1), 297-303.
  • Lemma, E., Deam, R., Chen, L., 2005. Maximum depth of cut and mechanics of erosion in AWJ oscillation cutting of ductile materials. Journal of Materials Processing Technology, 160 (2), 188-197.
  • Montesano, J., Bougherara, H., Fawaz, Z., 2017. Influence of drilling and abrasive water jet induced damage on the performance of carbon fabric/epoxy plates with holes. Composite Structures, 163 (x), 257-266.
  • Phapale, K., Singh, R., Patil, S., Singh, R. K. P., 2016. Delamination characterization and comparative assessment of delamination control techniques in abrasive water jet drilling of CFRP. Procedia Manufacturing, 5 (x), 521-535.
  • Prasad, K. S., Chaitanya, G., 2018. Selection of optimal process parameters by Taguchi method for drilling GFRP composites using abrasive water jet machining technique. Materials Today: Proceedings, 5 (9), 19714-19722.
  • Ravi Kumar, K., Sreebalaji, V. S., Pridhar, T., 2018. Characterization and optimization of abrasive water jet machining parameters of aluminium/tungsten carbide composites. Measurement, 117 (x), 57-66.
  • Shanmugam, D. K., Masood, S. H., 2009. An investigation on kerf characteristics in abrasive waterjet cutting of layered composites. Journal of Materials Processing Technology, 209(8), 3887-3893.
  • Shanmugam, D. K., Wang, J., Liu, H., 2008. Minimisation of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique. International Journal of Machine Tools and Manufacture, 48 (14), 1527-1534.
  • Sheikh-Ahmad, J.Y., 2009. Machining of Polymer Composites. Springer Science+Business Media, New York, A.B.D., 237-255.
  • Siores, E., Wong, W. C. K., Chen, L., Wager, J. G., 1996. Enhancing abrasive waterjet cutting of ceramics by head oscillation techniques. CIRP Annals, 45 (1), 327-330.
  • Supriya, S. B., Srinivas, S., 2018. Machinability studies on stainless steel by abrasive water jet –Review. Materials Today: Proceedings, 5 (1), 2871-2876.
  • Wang, J., 1999. A machinability study of polymer matrix composites using abrasive waterjet cutting technology. Journal of Materials Processing Technology, 94 (1), 30-35.
  • Wang, J., Kuriyagawa, T., Huang, C. Z., 2003. An experimental study to enhance the cutting performance in abrasive waterjet machining. Machining Science and Technology, 7 (2), 191-207.
  • Wang, J., Zhong, Y., 2009. Enhancing the depth of cut in abrasive waterjet cutting of alumina ceramics by using multipass cutting with nozzle oscillation. Machining Science and Technology, 13 (1), 76-91.
  • https://www.omax.com/learn/how-does waterjet-work, (28. 03. 2017)
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mustafa Armağan 0000-0003-0429-0351

A. Armağan Arıcı 0000-0003-2183-2175

Publication Date September 17, 2019
Submission Date April 11, 2019
Published in Issue Year 2019 Volume: 19 Issue: 2

Cite

APA Armağan, M., & Arıcı, A. A. (2019). Aşındırıcılı Su Jetinde Eğimli Kesimin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 19(2), 480-489.
AMA Armağan M, Arıcı AA. Aşındırıcılı Su Jetinde Eğimli Kesimin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. September 2019;19(2):480-489.
Chicago Armağan, Mustafa, and A. Armağan Arıcı. “Aşındırıcılı Su Jetinde Eğimli Kesimin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19, no. 2 (September 2019): 480-89.
EndNote Armağan M, Arıcı AA (September 1, 2019) Aşındırıcılı Su Jetinde Eğimli Kesimin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19 2 480–489.
IEEE M. Armağan and A. A. Arıcı, “Aşındırıcılı Su Jetinde Eğimli Kesimin İncelenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 19, no. 2, pp. 480–489, 2019.
ISNAD Armağan, Mustafa - Arıcı, A. Armağan. “Aşındırıcılı Su Jetinde Eğimli Kesimin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19/2 (September 2019), 480-489.
JAMA Armağan M, Arıcı AA. Aşındırıcılı Su Jetinde Eğimli Kesimin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19:480–489.
MLA Armağan, Mustafa and A. Armağan Arıcı. “Aşındırıcılı Su Jetinde Eğimli Kesimin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 19, no. 2, 2019, pp. 480-9.
Vancouver Armağan M, Arıcı AA. Aşındırıcılı Su Jetinde Eğimli Kesimin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19(2):480-9.