Research Article
BibTex RIS Cite

Kenmotsu Manifoldlarda Konformal Ricci Solitonlar

Year 2019, Volume: 19 Issue: 3, 635 - 642, 31.12.2019
https://doi.org/10.35414/akufemubid.623574

Abstract

Bu makalede, Kenmotsu
manifoldlarında konformal Ricci solitonlarını karakterize eden koşullar
incelenmiştir. Öncelikle
-boyutlu sınıfından diferensiyellenebilir bir  manifoldunun
hemen hemen değme yapısı ve
Kenmotsu manifoldların
yapısı
tanıtılmıştır. Daha sonra, Ricci-recurrent, -recurrent,
psedo-projektif
-recurrent,
concircular
-recurrent
Kenmotsu manifoldlarının tanımları verilmiştir ve bu tip manifoldlarda
konformal Ricci solitonlarının hangi durumlarda daralan, genişleyen veya sabit
olduğu şartlar araştırılmıştır.

References

  • Ayar, G., Yıldırım, M., 2019. η-Ricci solitons on nearly Kenmotsu Manifolds, Asian Europan journal of Mathematics, 13(1), 2040002 (8pages).
  • Ayar, G., Yıldırım, M., 2019. Ricci solitons and gradient Ricci solitons on nearly Kenmotsu manifolds, Facta Unıversitatis (NIS) Ser. Math. Inform.
  • Bagewadi C. S., Prasad, V.S. 1999. Note on Kenmotsu manifolds, Bull. Cal. Math. Soc. 91, 379–384,
  • Basu, N., Bhattacharyyaz A., 2015. Conformal ricci soliton in kenmotsu manifold, Global Journal of Advanced Research on Classical and Modern Geometries, 4(1), 15-21.
  • Blair, D.E., 1976. Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509 (Springer-Verlag, Berlin).
  • Catino, Mastrolia, G. P., Monticelli, D. D., Rigoli, M., 2014. Conformal Ricci Solitons And Related Integrability Conditions, Advances in Geometry , 16 (3).
  • Dutta, T., Basu N., Bhattacharyyaz A., 2016. Almost conformal Ricci solituons on 3-dimensional trans-Sasakian manifold, Hacettepe Journal of Mathematics and Statistics, 45(5), 1379 -1392.
  • Fischer, A. E., 2004. An introduction to conformal Ricci flow, Class, Quantum Grav, 21, S171 - S218,
  • Hamilton, R.S., 1988. The Ricci flow on surfaces, Contemporary Mathematics, 237-261.
  • Kenmotsu, K., 1972. A class of almost contact Riemannian manifolds, Tohoku Math. J., 24, 93-103,
  • Nagaraja, H.G., Premalatha, C.R., 2012. Ricci Solitons In Kenmotsu Manifolds, Journal of Mathematical Analysis, 3(2), 18-24.
  • Nagaraja, H.G., Venu, K., 2016. Ricci Solitons in Kenmotsu Manifold, Journal of Informatics and Mathematical Sciences, 8(1), 29–36.
  • Sıddıqı, M. D., 2018. Conformal η - Ricci Solitons In Lorentzian Trans Sasakian Manifolds, International Journal of Maps in Mathematics 1(1), 15-34.
  • Sinha B.B. and Sharma, R., 1983. On para-A-Einstein manifolds, Publications De L’Institute Mathematique,Nouvelle Serie., tome 34(48), 211-215.
  • Tripathi, M.M., 2008. Ricci solitons in contact metric manifolds, arXiv:0801,4222v1, [math DG].
  • Yıldırım M., 2019. Kenmotsu manifoldlar üzerinde η- Ricci solitonlar, Gece Akademi, Basımda.
Year 2019, Volume: 19 Issue: 3, 635 - 642, 31.12.2019
https://doi.org/10.35414/akufemubid.623574

Abstract

References

  • Ayar, G., Yıldırım, M., 2019. η-Ricci solitons on nearly Kenmotsu Manifolds, Asian Europan journal of Mathematics, 13(1), 2040002 (8pages).
  • Ayar, G., Yıldırım, M., 2019. Ricci solitons and gradient Ricci solitons on nearly Kenmotsu manifolds, Facta Unıversitatis (NIS) Ser. Math. Inform.
  • Bagewadi C. S., Prasad, V.S. 1999. Note on Kenmotsu manifolds, Bull. Cal. Math. Soc. 91, 379–384,
  • Basu, N., Bhattacharyyaz A., 2015. Conformal ricci soliton in kenmotsu manifold, Global Journal of Advanced Research on Classical and Modern Geometries, 4(1), 15-21.
  • Blair, D.E., 1976. Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509 (Springer-Verlag, Berlin).
  • Catino, Mastrolia, G. P., Monticelli, D. D., Rigoli, M., 2014. Conformal Ricci Solitons And Related Integrability Conditions, Advances in Geometry , 16 (3).
  • Dutta, T., Basu N., Bhattacharyyaz A., 2016. Almost conformal Ricci solituons on 3-dimensional trans-Sasakian manifold, Hacettepe Journal of Mathematics and Statistics, 45(5), 1379 -1392.
  • Fischer, A. E., 2004. An introduction to conformal Ricci flow, Class, Quantum Grav, 21, S171 - S218,
  • Hamilton, R.S., 1988. The Ricci flow on surfaces, Contemporary Mathematics, 237-261.
  • Kenmotsu, K., 1972. A class of almost contact Riemannian manifolds, Tohoku Math. J., 24, 93-103,
  • Nagaraja, H.G., Premalatha, C.R., 2012. Ricci Solitons In Kenmotsu Manifolds, Journal of Mathematical Analysis, 3(2), 18-24.
  • Nagaraja, H.G., Venu, K., 2016. Ricci Solitons in Kenmotsu Manifold, Journal of Informatics and Mathematical Sciences, 8(1), 29–36.
  • Sıddıqı, M. D., 2018. Conformal η - Ricci Solitons In Lorentzian Trans Sasakian Manifolds, International Journal of Maps in Mathematics 1(1), 15-34.
  • Sinha B.B. and Sharma, R., 1983. On para-A-Einstein manifolds, Publications De L’Institute Mathematique,Nouvelle Serie., tome 34(48), 211-215.
  • Tripathi, M.M., 2008. Ricci solitons in contact metric manifolds, arXiv:0801,4222v1, [math DG].
  • Yıldırım M., 2019. Kenmotsu manifoldlar üzerinde η- Ricci solitonlar, Gece Akademi, Basımda.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Gülhan Ayar 0000-0002-1018-4590

Publication Date December 31, 2019
Submission Date September 23, 2019
Published in Issue Year 2019 Volume: 19 Issue: 3

Cite

APA Ayar, G. (2019). Kenmotsu Manifoldlarda Konformal Ricci Solitonlar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 19(3), 635-642. https://doi.org/10.35414/akufemubid.623574
AMA Ayar G. Kenmotsu Manifoldlarda Konformal Ricci Solitonlar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2019;19(3):635-642. doi:10.35414/akufemubid.623574
Chicago Ayar, Gülhan. “Kenmotsu Manifoldlarda Konformal Ricci Solitonlar”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19, no. 3 (December 2019): 635-42. https://doi.org/10.35414/akufemubid.623574.
EndNote Ayar G (December 1, 2019) Kenmotsu Manifoldlarda Konformal Ricci Solitonlar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19 3 635–642.
IEEE G. Ayar, “Kenmotsu Manifoldlarda Konformal Ricci Solitonlar”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 19, no. 3, pp. 635–642, 2019, doi: 10.35414/akufemubid.623574.
ISNAD Ayar, Gülhan. “Kenmotsu Manifoldlarda Konformal Ricci Solitonlar”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19/3 (December 2019), 635-642. https://doi.org/10.35414/akufemubid.623574.
JAMA Ayar G. Kenmotsu Manifoldlarda Konformal Ricci Solitonlar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19:635–642.
MLA Ayar, Gülhan. “Kenmotsu Manifoldlarda Konformal Ricci Solitonlar”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 19, no. 3, 2019, pp. 635-42, doi:10.35414/akufemubid.623574.
Vancouver Ayar G. Kenmotsu Manifoldlarda Konformal Ricci Solitonlar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19(3):635-42.