Research Article
BibTex RIS Cite

STM32f103C8 Mikroişlemcisi Kullanılarak Elektrikli Araçlar için Pasif Dengeleme Metodu Tabanlı Batarya Yönetim Sistemi Tasarımı ve Uygulaması

Year 2020, Volume: 20 Issue: 3, 426 - 433, 30.06.2020
https://doi.org/10.35414/akufemubid.691456

Abstract

Önerilen çalışmada elektrikli araçlarda kullanılmak üzere dört hücreli batarya paketi için pasif hücre dengeleme metodu tabanlı batarya yönetim sistemi tasarlanmış ve uygulaması gerçekleştirilmiştir. Batarya yönetim sisteminin yazılımsal ve donanımsal altyapısı Master-Slave mantığına göre oluşturulmuştur. Bu nedenle üç hücre verileri okuyup master hücreye göndermektedir. Master hücre, kendi hücresinin ve slave hücrelerden gelen verileri okur. Gelen verilere göre de batarya hücrelerinin gerilim dengeleme işlemlerinin kontrolünü ve yönetimini gerçekleştirir. Hücreler kendi içerisinde CAN protokolü ile haberleşmektedir. Her bir hücreden akım, gerilim ve sıcaklık verileri okunarak hücrelerin şarj işlemi kontrollü bir şekilde gerçekleştirilebilmektedir. Batarya yönetim sisteminde direnç tabanlı pasif kontrol yöntemi kullanılmıştır. Pasif balanslama (dengeleme) yönteminde direnç yerine P kanallı metal oksit yarı iletken anahtarlama elemanı kullanılarak gerilim dengeleme işlemi gerçekleştirilmiştir. Ayrıca özgün bir dijital analog dönüştürme devresi tasarlanarak pasif hücre dengeleme tabanlı batarya yönetim sisteminde uygulanmıştır. Batarya yönetim sisteminin uygulaması ve şarj işlemi başarılı bir şekilde gerçekleştirilmiştir. Tasarlanan batarya yönetim sisteminin başarılı bir şekilde çalıştığı elde edilen deneysel sonuçlar aracılığı ile kanıtlanmıştır.

References

  • Cao, J., Schofield, N., Emadi, A. (2008) Battery balancing methods: A comprehensive review, IEEE Vehicle Power and Propulsion Conference, 1-6
  • Muratoğlu, Y. (2017) Elektrikli Araçlarda Kullanılan Lityum İyon Pillerin Şarj Durumlarının Kokusuz Kalman Filtresi İle Kestirilmesi, Yüksek Lisans Tezi, Mersin Üniversitesi
  • Kurzweil, P. (2010). Gaston Planté and his invention of the lead–acid battery—The genesis of the first practical rechargeable battery. Journal of Power Sources. 195(14), 4424-4434.
  • Rydh, C.J. ve Svärd, B. (2003). Impact on global metal flows arising from the use of portable rechargeable batteries. Science of the Total Environment. 302(1), 167-184.
  • Lin, S.L., Huang, K.L., Wang, I.C., Chou, I.C., Kuo, Y.M., Hung, C.H. ve Lin, C. (2016). Characterization of spent nickel–metal hydride batteries and a preliminary economic evaluation of the recovery processes. Journal of the Air & Waste Management Association. 66(3), 296-306.
  • Farmann, A. ve Sauer, D. U. (2016). A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles. Journal of Power Sources. 329, 123-137.
  • Saw, L.H., Ye, Y. ve Tay, A.A.O. (2014). Electro-thermal analysis and integration issues of lithium ion battery for electric vehicles. Applied Energy. 131, 97-107.
  • Lagraoui, M., Doubabi, S. ve Rachid, A. (2014). SOC estimation of Lithium-ion battery using Kalman filter and Luenberger observer: A comparative study. In 2014 International Renewable and Sustainable Energy Conference (IRSEC). 636-641.
  • Kutkut, N. H. and Divan, D.M. (1996) Dynamic Equalization Techniques for Series Battery Stacks, IEEE Telecommunications Energy Conference, INTELEC '96, 514-521
  • Thomas, A., Zhu, W. (2009) Fast Equalization for Large Lithium Ion Batteries, IEEE Aerospace and Electronic Systems Magazine, Vol. 24:27-31
  • Xu, J., Mei, X., Wang, J. (2018) A High Power Low-Cost Balancing System for Battery Strings, 10th International Conference on Applied Energy (ICAE2018), Hong Kong, China
  • Ismail, K., Nugroho, A., Kaleg, S. (2017) Passive balancing battery management system using MOSFET internal resistance as balancing resistor. International Conference on Sustainable Energy Engineering and Application (ICSEEA), Jakarta, Indonesia
  • Nana, W. (2015) Design and application of Battery Electric Vehicle (BEV) power information acquisition system based on CAN bus, 5th International Conference on Education, Management, Information and Medicine
  • Tian-jun, Z., Zhi-cheng, W., Yang, W., Ruo-yu, Z. (2016) The Parameter Analysis System of CAN Bus for Electric Vehicle Based on LabVIEW, 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer
  • Ismaila, K., Muharama, A., Pratama, M., (2015) Design of CAN bus for research applications purpose hybrid electric vehicle using ARM microcontroller, Energy Procedia 68:288 – 296

Design and Implementation of Battery Management System Based on Passive Balancing Method for Electric Vehicles Using STM32f103C8 Microcontroller

Year 2020, Volume: 20 Issue: 3, 426 - 433, 30.06.2020
https://doi.org/10.35414/akufemubid.691456

Abstract

In the proposed study, a battery management system based on passive cell balancing method was designed and implemented for the four cell battery pack to be used in electric vehicles. The software and hardware infrastructure of the battery management system was created according to the Master-Slave logic. For this reason, three cells read the data and send it to the master cell. The master cell reads data from its own cell and slave cells. According to the incoming data, it performs the control and management of the voltage balancing processes of the battery cells. Cells communicate with CAN protocol in themselves. The charging process of the cells can be carried out in a controlled manner by reading current, voltage and temperature data from each cell. Resistance based passive control method is used in the battery management system. In the passive balancing method, voltage balancing is performed by using P channel metal oxide semiconductor switching element instead of resistance. In addition, a unique digital analog conversion circuit was designed and implemented in the passive cell balancing based battery management system. Application and charging of the battery management system has been successfully completed. The designed battery management system has been proven to work successfully through the experimental results obtained.

References

  • Cao, J., Schofield, N., Emadi, A. (2008) Battery balancing methods: A comprehensive review, IEEE Vehicle Power and Propulsion Conference, 1-6
  • Muratoğlu, Y. (2017) Elektrikli Araçlarda Kullanılan Lityum İyon Pillerin Şarj Durumlarının Kokusuz Kalman Filtresi İle Kestirilmesi, Yüksek Lisans Tezi, Mersin Üniversitesi
  • Kurzweil, P. (2010). Gaston Planté and his invention of the lead–acid battery—The genesis of the first practical rechargeable battery. Journal of Power Sources. 195(14), 4424-4434.
  • Rydh, C.J. ve Svärd, B. (2003). Impact on global metal flows arising from the use of portable rechargeable batteries. Science of the Total Environment. 302(1), 167-184.
  • Lin, S.L., Huang, K.L., Wang, I.C., Chou, I.C., Kuo, Y.M., Hung, C.H. ve Lin, C. (2016). Characterization of spent nickel–metal hydride batteries and a preliminary economic evaluation of the recovery processes. Journal of the Air & Waste Management Association. 66(3), 296-306.
  • Farmann, A. ve Sauer, D. U. (2016). A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles. Journal of Power Sources. 329, 123-137.
  • Saw, L.H., Ye, Y. ve Tay, A.A.O. (2014). Electro-thermal analysis and integration issues of lithium ion battery for electric vehicles. Applied Energy. 131, 97-107.
  • Lagraoui, M., Doubabi, S. ve Rachid, A. (2014). SOC estimation of Lithium-ion battery using Kalman filter and Luenberger observer: A comparative study. In 2014 International Renewable and Sustainable Energy Conference (IRSEC). 636-641.
  • Kutkut, N. H. and Divan, D.M. (1996) Dynamic Equalization Techniques for Series Battery Stacks, IEEE Telecommunications Energy Conference, INTELEC '96, 514-521
  • Thomas, A., Zhu, W. (2009) Fast Equalization for Large Lithium Ion Batteries, IEEE Aerospace and Electronic Systems Magazine, Vol. 24:27-31
  • Xu, J., Mei, X., Wang, J. (2018) A High Power Low-Cost Balancing System for Battery Strings, 10th International Conference on Applied Energy (ICAE2018), Hong Kong, China
  • Ismail, K., Nugroho, A., Kaleg, S. (2017) Passive balancing battery management system using MOSFET internal resistance as balancing resistor. International Conference on Sustainable Energy Engineering and Application (ICSEEA), Jakarta, Indonesia
  • Nana, W. (2015) Design and application of Battery Electric Vehicle (BEV) power information acquisition system based on CAN bus, 5th International Conference on Education, Management, Information and Medicine
  • Tian-jun, Z., Zhi-cheng, W., Yang, W., Ruo-yu, Z. (2016) The Parameter Analysis System of CAN Bus for Electric Vehicle Based on LabVIEW, 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer
  • Ismaila, K., Muharama, A., Pratama, M., (2015) Design of CAN bus for research applications purpose hybrid electric vehicle using ARM microcontroller, Energy Procedia 68:288 – 296
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Sinan Kıvrak

Tolga Özer 0000-0001-7607-6894

Yüksel Oğuz

Publication Date June 30, 2020
Submission Date February 19, 2020
Published in Issue Year 2020 Volume: 20 Issue: 3

Cite

APA Kıvrak, S., Özer, T., & Oğuz, Y. (2020). STM32f103C8 Mikroişlemcisi Kullanılarak Elektrikli Araçlar için Pasif Dengeleme Metodu Tabanlı Batarya Yönetim Sistemi Tasarımı ve Uygulaması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(3), 426-433. https://doi.org/10.35414/akufemubid.691456
AMA Kıvrak S, Özer T, Oğuz Y. STM32f103C8 Mikroişlemcisi Kullanılarak Elektrikli Araçlar için Pasif Dengeleme Metodu Tabanlı Batarya Yönetim Sistemi Tasarımı ve Uygulaması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. June 2020;20(3):426-433. doi:10.35414/akufemubid.691456
Chicago Kıvrak, Sinan, Tolga Özer, and Yüksel Oğuz. “STM32f103C8 Mikroişlemcisi Kullanılarak Elektrikli Araçlar için Pasif Dengeleme Metodu Tabanlı Batarya Yönetim Sistemi Tasarımı Ve Uygulaması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20, no. 3 (June 2020): 426-33. https://doi.org/10.35414/akufemubid.691456.
EndNote Kıvrak S, Özer T, Oğuz Y (June 1, 2020) STM32f103C8 Mikroişlemcisi Kullanılarak Elektrikli Araçlar için Pasif Dengeleme Metodu Tabanlı Batarya Yönetim Sistemi Tasarımı ve Uygulaması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20 3 426–433.
IEEE S. Kıvrak, T. Özer, and Y. Oğuz, “STM32f103C8 Mikroişlemcisi Kullanılarak Elektrikli Araçlar için Pasif Dengeleme Metodu Tabanlı Batarya Yönetim Sistemi Tasarımı ve Uygulaması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 3, pp. 426–433, 2020, doi: 10.35414/akufemubid.691456.
ISNAD Kıvrak, Sinan et al. “STM32f103C8 Mikroişlemcisi Kullanılarak Elektrikli Araçlar için Pasif Dengeleme Metodu Tabanlı Batarya Yönetim Sistemi Tasarımı Ve Uygulaması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20/3 (June 2020), 426-433. https://doi.org/10.35414/akufemubid.691456.
JAMA Kıvrak S, Özer T, Oğuz Y. STM32f103C8 Mikroişlemcisi Kullanılarak Elektrikli Araçlar için Pasif Dengeleme Metodu Tabanlı Batarya Yönetim Sistemi Tasarımı ve Uygulaması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20:426–433.
MLA Kıvrak, Sinan et al. “STM32f103C8 Mikroişlemcisi Kullanılarak Elektrikli Araçlar için Pasif Dengeleme Metodu Tabanlı Batarya Yönetim Sistemi Tasarımı Ve Uygulaması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 3, 2020, pp. 426-33, doi:10.35414/akufemubid.691456.
Vancouver Kıvrak S, Özer T, Oğuz Y. STM32f103C8 Mikroişlemcisi Kullanılarak Elektrikli Araçlar için Pasif Dengeleme Metodu Tabanlı Batarya Yönetim Sistemi Tasarımı ve Uygulaması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20(3):426-33.