Research Article
BibTex RIS Cite

Voltammetric Determination of Vanillin in Commercial Food Products Using Electrochemically Fabricated Graphene Oxide Modified Electrode

Year 2021, Volume: 21 Issue: 1, 84 - 96, 24.02.2021
https://doi.org/10.35414/akufemubid.819216

Abstract

Determination of vanillin, which is used increasingly common in the food, beverage, and drug industry, is important for human health. Therefore; it is essential to determine the amount of vanillin using a fast, simple and reliable method. In this study; an electrode modified with graphene oxide prepared in one-step, in a one-pot, with an environmentally friendly method, was prepared and used for the electrochemical determination of vanillin (VAN), as flavoring. The electrochemically fabricated graphene oxide electrode (EGO/GE) was prepared by electrochemically producing the graphene oxide structure on the graphite electrode surface. The characterization of the prepared EGO/GE was performed using techniques such as field emission scanning electron microscopy and atomic force microscopy and it was concluded that the proposed EGO/GE material was successfully prepared. While the investigation of the electrochemical behavior of the VAN was performed by the cyclic voltammetry, the differential pulse voltammetry method was used for the voltammetric determination. It was determined that EGO/GE, is used in the electrochemical determination of VAN, exhibits high electrocatalytic performance, a wide linear range (0.1-1000 µM), and a low detection limit (0.05 µM) compared to unmodified GE. The selectivity of the prepared sensor was studied in the presence of ions and organic substances. The sensor (EGO/GE) was used for VAN detection in ice-cream, coffee, and cookie samples and high recovery values were obtained. As a result of the stability and reproducibility studies carried out for the sensor, it has been observed that it is quite stable and suitable for reproduction.

Supporting Institution

-

Project Number

-

Thanks

Ozge Gorduk especially thanks Prof. Dr. Yucel Sahin for his support in this study.

References

  • Arvas, M. B., Gorduk, O., Gencten, M., and Sahin, Y. 2019. Preparation of a novel electrochemical sensor for phosphate detection based on a molybdenum blue modified poly (vinyl chloride) coated pencil graphite electrode. Analytical Methods, 11(30), 3874-3881.
  • Arvas, M. B., Gorduk, O., Gencten, M., and Sahin, Y. 2020. Differential Pulse Voltammetric (DPV) Determination of Phosphomolybdenum Complexes by a Poly (Vinyl Chloride) Coated Molybdenum Blue Modified Pencil Graphite Electrode (PVC-MB-PGE). Analytical Letters, 1-20.
  • Bard, A. J., and Faulkner, L. R. 2001. Fundamentals and applications. Electrochemical Methods, 2(482), 580-632.
  • Chethana, B., Basavanna, S., and Naik, Y. A. 2012. Determination of vanillin in real samples using lysine modified carbon paste electrode. Journal of Chemical and Pharmaceutical Research, 4(1), 538-545.
  • Dignum, M. J., Kerler, J., and Verpoorte, R. 2001. Vanilla production: technological, chemical, and biosynthetic aspects. Food Reviews International, 17(2), 119-120.
  • Dokur, E., Gorduk, O., and Sahin, Y. 2020. Differential pulse voltammetric determination of folic acid using a poly (cystine) modified pencil graphite electrode. Analytical Letters, 1-19.
  • Durán, G. M., Llorent-Martínez, E. J., Contento, A. M., and Ríos, Á. 2018. Determination of vanillin by using gold nanoparticle-modified screen-printed carbon electrode modified with graphene quantum dots and Nafion. Microchimica Acta, 185(3), 204-211.
  • Ersozoglu, M. G., Gursu, H., Gencten, M., Sarac, A. S., and Sahin, Y. 2020. A green approach to fabricate binder‐free S‐doped graphene oxide electrodes for vanadium redox battery. International Journal of Energy Research.
  • Fu, L., Xie, K., Wu, D., Wang, A., Zhang, H., and Ji, Z. 2020. Electrochemical determination of vanillin in food samples by using pyrolyzed graphitic carbon nitride. Materials Chemistry and Physics, 242, 122462.
  • Gorduk, O. 2020. Differential pulse voltammetric determination of serotonin using an acid-activated multiwalled carbon nanotube–over-oxidized poly (3, 4-ethylenedioxythiophene) modified pencil graphite electrode. Analytical Letters, 53(7), 1034-1052.
  • Gorduk, O., Gorduk, S., and Sahin, Y. 2020. Fabrication of Tetra-Substituted Copper (II) Phthalocyanine-Graphene Modified Pencil Graphite Electrode for Amperometric Detection of Hydrogen Peroxide. ECS Journal of Solid State Science and Technology.
  • Gürsu, H., Gençten, M., and Şahin, Y. 2017. One-step electrochemical preparation of graphene-coated pencil graphite electrodes by cyclic voltammetry and their application in vanadium redox batteries. Electrochimica Acta, 243, 239-249.
  • Gürsu, H., Gençten, M., and Şahin, Y. 2018. Cyclic voltammetric preparation of graphene-coated electrodes for positive electrode materials of vanadium redox flow battery. Ionics, 24(11), 3641-3654.
  • Huang, L., Hou, K., Jia, X., Pan, H., and Du, M. 2014. Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection. Materials Science and Engineering: C, 38, 39-45.
  • Karakaya, S. 2020. Low Cost, Sensitive and Selective Chronoamperometric Determination of Vanillin at a Disposable Poly (Eriochrome Black T)/Pencil Graphite Electrode. Academic Food Journal/Akademik GIDA, 18(1).
  • Kılınç, M., Tomar, O., and Çağlar, A. 2017. Biyobozunur Gıda Ambalaj Malzemeleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17(3), 988-996.
  • Koçak, Ç. C. 2019. Vanillin Determination in Food Products with Pd Nanoparticles Modified Poly (Methylene Blue) Film Electrode. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 15(2), 211-215.
  • Koçak, Ç. C., and Karabiberoğlu, Ş. 2018. Electrochemical vanillin determination on gold nanoparticles modified multiwalled carbon nanotube electrode. Journal of Science and Engineering, 20(59).
  • Koyun, O., Gorduk, S., Arvas, M., and Sahin, Y. 2018. Electrochemically treated pencil graphite electrodes prepared in one step for the electrochemical determination of paracetamol. Russian Journal of Electrochemistry, 54(11), 796-808.
  • Koyun, O., Gorduk, S., Arvas, M. B., and Sahin, Y. 2017. Direct, one-step synthesis of molybdenum blue using an electrochemical method, and characterization studies. Synthetic Metals, 233, 111-118.
  • Koyun, O., Gorduk, S., Gencten, M., and Sahin, Y. 2019. A novel copper (ıı) phthalocyanine-modified multiwalled carbon nanotube-based electrode for sensitive electrochemical detection of bisphenol A. New Journal of Chemistry, 43(1), 85-92.
  • Koyun, O., Gursu, H., Gorduk, S., and Sahin, Y. 2017. Highly sensitive electrochemical determination of dopamine with an overoxidized polypyrrole nanofiber pencil graphite electrode. International Journal of Electrochemical Science, 12(7), 6428-6444.
  • Koyun, O., and Sahin, Y. 2018a. Voltammetric determination of nitrite with gold nanoparticles/poly (methylene blue)-modified pencil graphite electrode: application in food and water samples. Ionics, 24(10), 3187-3197.
  • Koyun, O., and Sahin, Y. 2018b. Poly (L-cysteine) modified pencil graphite electrode for determination of sunset yellow in food and beverage samples by differential pulse voltammetry. International Journal of Electrochemical Science, 13, 159-174.
  • Li, G.-L., Li, S., Tang, L.-R., and Zhang, Y. 2009. Determination of Vanillin in Milk Powder by Gas Chromatography [J]. Journal of Mianyang Normal University, 2.
  • Liu, Y., Liang, Y., Lian, H., Zhang, C., and Peng, J. 2015. Sensitive Voltammetric determination of vanillin with an electrolytic manganese dioxide− graphene composite modified electrode. International Journal of Electrochemical Science, 10(5), 4129.
  • Luo, S., and Liu, Y. 2012. Poly (acid chrome blue K) modified glassy carbon electrode for the determination of vanillin. International Journal of Electrochemical Science, 7(7), 6396.
  • Meyyanathan, S., Aduri, A. R., Alkeshbhai, S. S., and Elango, K. 2013. Analysis of Vanillin In Food Products By High Performance Thin Layer Chromatography. Journal of Advanced Scientific Research, 4(1).
  • Özcan, L. 2019. Cu(II), Ni(II), Co(II) ve Fe(II) Metaloftalosiyanintetrasülfonat Modifiye Kalem Ucu Elektrotlar ile Elektrokimyasal Dopamin Tayini. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 19(2), 291 - 300.
  • Ramachandra Rao, S., and Ravishankar, G. A. 2000. Vanilla flavour: production by conventional and biotechnological routes. Journal of the Science of Food and Agriculture, 80(3), 289-304.
  • Ranadive, A. 1994. Vanilla--cultivation, curing, chemistry, technology and commercial products. Developments in food science. Rosy, R. 2015. Goyal, Estimation of amoxicillin in presence of high concentration of uric acid and other urinary metabolites using an unmodified pyrolytic graphite sensor. Journal of Electrochemical Society, 162, G8-G13.
  • Saint Denis, M., Coughtrie, M., Guilland, J., Verges, B., Lemesle, M., and Giroud, M. 1996. Migraine induced by vanillin. Presse medicale (Paris, France: 1983), 25(40), 2043.
  • Sanchez, F. G., Ruiz, C. C., Gomez, J. M., Lopez, M. H., and Bayona, A. H. 1990. Simultaneous determination of vanillin and syringaldehyde in rum by derivative spectrophotometry. Analyst, 115(8), 1121-1123.
  • Shang, L., Zhao, F., and Zeng, B. 2014. Sensitive voltammetric determination of vanillin with an AuPd nanoparticles−graphene composite modified electrode. Food Chemistry, 151, 53-57.
  • Silva, T. R., Brondani, D., Zapp, E., and Cruz Vieira, I. 2015. Electrochemical sensor based on gold nanoparticles stabilized in poly (allylamine hydrochloride) for determination of vanillin. Electroanalysis, 27(2), 465-472.
  • Sinha, A. K., Sharma, U. K., and Sharma, N. 2008. A comprehensive review on vanilla flavor: extraction, isolation and quantification of vanillin and others constituents. International Journal of Food Sciences and Nutrition, 59(4), 299-326.
  • Sivakumar, M., Sakthivel, M., and Chen, S.-M. 2017. Simple synthesis of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples. Journal of Colloid and Interface Science, 490, 719-726.
  • Sujalmi, S., Suharso, S., Supriyanto, R., and Buchari, B. 2005. Determination of vanillin in vanilla (Vanilla planifolia Andrews) from Lampung Indonesia by high performance liquid chromatography. Indonesian Journal of Chemistry, 5(1), 7-10.
  • Tahtaisleyen, S., Gorduk, O., and Sahin, Y. 2020a. Electrochemical Determination of Sunset Yellow Using an Electrochemically Prepared Graphene Oxide Modified–Pencil Graphite Electrode (EGO-PGE). Analytical Letters, 1-23.
  • Tahtaisleyen, S., Gorduk, O., and Sahin, Y. 2020b. Electrochemical determination of tartrazine using a graphene/poly (L-phenylalanine) modified pencil graphite electrode. Analytical Letters, 53(11), 1683-1703.

Elektrokimyasal Olarak Üretilmiş Grafen Oksit Modifiye Elektrot Kullanılarak Ticari Gıda Ürünlerinde Vanilinin Voltametrik Tayini

Year 2021, Volume: 21 Issue: 1, 84 - 96, 24.02.2021
https://doi.org/10.35414/akufemubid.819216

Abstract

Gıda, içecek ve ilaç sanayisinde kullanımı giderek yaygınlaşan vanilinin belirlenebilmesi insan sağlığı açısından önem arz etmektedir. Bu nedenle; hızlı, basit ve güvenilir bir yöntemle vanilin miktarının belirlenmesi esastır. Bu çalışmada; tek basamakta, tek kapta, çevre dostu bir yöntem ile hazırlanan grafen oksit ile modifiye edilmiş elektrot hazırlanmış ve bir aroma verici olan vanilinin (VAN) elektrokimyasal olarak tespiti için kullanılmıştır. Elektrokimyasal olarak üretilen grafen oksit elektrot (EGO/GE), grafen oksit yapısının grafit elektrot yüzeyinde elektrokimyasal olarak üretilmesi ile hazırlanmıştır. Hazırlanan EGO/GE'nun karakterizasyonu, alan emisyon taramalı elektron mikroskobisi ve atomik kuvvet mikroskobisi gibi teknikler kullanılarak gerçekleştirilmiş ve önerilen EGO/GE materyalin başarılı bir şekilde hazırlandığı sonucuna varılmıştır. VAN'in elektrokimyasal davranışının incelenmesi dönüşümlü voltametri ile gerçekleştirilirken, voltametrik tayini için diferansiyel puls voltametri yöntemi kullanılmıştır. VAN’in elektrokimyasal belirlenmesinde kullanılan, EGO/GE'un, modifiye edilmemiş GE’a kıyasla yüksek elektrokatalitik performans, geniş doğrusal aralık (0,1-1000 µM) ve düşük algılama limiti (0,05 µM) sergilediği belirlenmiştir. Hazırlanan sensörün seçiciliği, iyonlar ve organik maddeler varlığında incelenmiştir. Sensör (EGO/GE), dondurma, kahve ve kurabiye örneklerinde VAN tespiti için kullanılmış ve yüksek geri kazanım değerleri elde edilmiştir. Sensör için gerçekleştirilen stabilite ve tekrar üretilebilirlik çalışmaları sonucunda, oldukça kararlı ve tekrar üretime uygun olduğu gözlemlenmiştir.

Project Number

-

References

  • Arvas, M. B., Gorduk, O., Gencten, M., and Sahin, Y. 2019. Preparation of a novel electrochemical sensor for phosphate detection based on a molybdenum blue modified poly (vinyl chloride) coated pencil graphite electrode. Analytical Methods, 11(30), 3874-3881.
  • Arvas, M. B., Gorduk, O., Gencten, M., and Sahin, Y. 2020. Differential Pulse Voltammetric (DPV) Determination of Phosphomolybdenum Complexes by a Poly (Vinyl Chloride) Coated Molybdenum Blue Modified Pencil Graphite Electrode (PVC-MB-PGE). Analytical Letters, 1-20.
  • Bard, A. J., and Faulkner, L. R. 2001. Fundamentals and applications. Electrochemical Methods, 2(482), 580-632.
  • Chethana, B., Basavanna, S., and Naik, Y. A. 2012. Determination of vanillin in real samples using lysine modified carbon paste electrode. Journal of Chemical and Pharmaceutical Research, 4(1), 538-545.
  • Dignum, M. J., Kerler, J., and Verpoorte, R. 2001. Vanilla production: technological, chemical, and biosynthetic aspects. Food Reviews International, 17(2), 119-120.
  • Dokur, E., Gorduk, O., and Sahin, Y. 2020. Differential pulse voltammetric determination of folic acid using a poly (cystine) modified pencil graphite electrode. Analytical Letters, 1-19.
  • Durán, G. M., Llorent-Martínez, E. J., Contento, A. M., and Ríos, Á. 2018. Determination of vanillin by using gold nanoparticle-modified screen-printed carbon electrode modified with graphene quantum dots and Nafion. Microchimica Acta, 185(3), 204-211.
  • Ersozoglu, M. G., Gursu, H., Gencten, M., Sarac, A. S., and Sahin, Y. 2020. A green approach to fabricate binder‐free S‐doped graphene oxide electrodes for vanadium redox battery. International Journal of Energy Research.
  • Fu, L., Xie, K., Wu, D., Wang, A., Zhang, H., and Ji, Z. 2020. Electrochemical determination of vanillin in food samples by using pyrolyzed graphitic carbon nitride. Materials Chemistry and Physics, 242, 122462.
  • Gorduk, O. 2020. Differential pulse voltammetric determination of serotonin using an acid-activated multiwalled carbon nanotube–over-oxidized poly (3, 4-ethylenedioxythiophene) modified pencil graphite electrode. Analytical Letters, 53(7), 1034-1052.
  • Gorduk, O., Gorduk, S., and Sahin, Y. 2020. Fabrication of Tetra-Substituted Copper (II) Phthalocyanine-Graphene Modified Pencil Graphite Electrode for Amperometric Detection of Hydrogen Peroxide. ECS Journal of Solid State Science and Technology.
  • Gürsu, H., Gençten, M., and Şahin, Y. 2017. One-step electrochemical preparation of graphene-coated pencil graphite electrodes by cyclic voltammetry and their application in vanadium redox batteries. Electrochimica Acta, 243, 239-249.
  • Gürsu, H., Gençten, M., and Şahin, Y. 2018. Cyclic voltammetric preparation of graphene-coated electrodes for positive electrode materials of vanadium redox flow battery. Ionics, 24(11), 3641-3654.
  • Huang, L., Hou, K., Jia, X., Pan, H., and Du, M. 2014. Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection. Materials Science and Engineering: C, 38, 39-45.
  • Karakaya, S. 2020. Low Cost, Sensitive and Selective Chronoamperometric Determination of Vanillin at a Disposable Poly (Eriochrome Black T)/Pencil Graphite Electrode. Academic Food Journal/Akademik GIDA, 18(1).
  • Kılınç, M., Tomar, O., and Çağlar, A. 2017. Biyobozunur Gıda Ambalaj Malzemeleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17(3), 988-996.
  • Koçak, Ç. C. 2019. Vanillin Determination in Food Products with Pd Nanoparticles Modified Poly (Methylene Blue) Film Electrode. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 15(2), 211-215.
  • Koçak, Ç. C., and Karabiberoğlu, Ş. 2018. Electrochemical vanillin determination on gold nanoparticles modified multiwalled carbon nanotube electrode. Journal of Science and Engineering, 20(59).
  • Koyun, O., Gorduk, S., Arvas, M., and Sahin, Y. 2018. Electrochemically treated pencil graphite electrodes prepared in one step for the electrochemical determination of paracetamol. Russian Journal of Electrochemistry, 54(11), 796-808.
  • Koyun, O., Gorduk, S., Arvas, M. B., and Sahin, Y. 2017. Direct, one-step synthesis of molybdenum blue using an electrochemical method, and characterization studies. Synthetic Metals, 233, 111-118.
  • Koyun, O., Gorduk, S., Gencten, M., and Sahin, Y. 2019. A novel copper (ıı) phthalocyanine-modified multiwalled carbon nanotube-based electrode for sensitive electrochemical detection of bisphenol A. New Journal of Chemistry, 43(1), 85-92.
  • Koyun, O., Gursu, H., Gorduk, S., and Sahin, Y. 2017. Highly sensitive electrochemical determination of dopamine with an overoxidized polypyrrole nanofiber pencil graphite electrode. International Journal of Electrochemical Science, 12(7), 6428-6444.
  • Koyun, O., and Sahin, Y. 2018a. Voltammetric determination of nitrite with gold nanoparticles/poly (methylene blue)-modified pencil graphite electrode: application in food and water samples. Ionics, 24(10), 3187-3197.
  • Koyun, O., and Sahin, Y. 2018b. Poly (L-cysteine) modified pencil graphite electrode for determination of sunset yellow in food and beverage samples by differential pulse voltammetry. International Journal of Electrochemical Science, 13, 159-174.
  • Li, G.-L., Li, S., Tang, L.-R., and Zhang, Y. 2009. Determination of Vanillin in Milk Powder by Gas Chromatography [J]. Journal of Mianyang Normal University, 2.
  • Liu, Y., Liang, Y., Lian, H., Zhang, C., and Peng, J. 2015. Sensitive Voltammetric determination of vanillin with an electrolytic manganese dioxide− graphene composite modified electrode. International Journal of Electrochemical Science, 10(5), 4129.
  • Luo, S., and Liu, Y. 2012. Poly (acid chrome blue K) modified glassy carbon electrode for the determination of vanillin. International Journal of Electrochemical Science, 7(7), 6396.
  • Meyyanathan, S., Aduri, A. R., Alkeshbhai, S. S., and Elango, K. 2013. Analysis of Vanillin In Food Products By High Performance Thin Layer Chromatography. Journal of Advanced Scientific Research, 4(1).
  • Özcan, L. 2019. Cu(II), Ni(II), Co(II) ve Fe(II) Metaloftalosiyanintetrasülfonat Modifiye Kalem Ucu Elektrotlar ile Elektrokimyasal Dopamin Tayini. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 19(2), 291 - 300.
  • Ramachandra Rao, S., and Ravishankar, G. A. 2000. Vanilla flavour: production by conventional and biotechnological routes. Journal of the Science of Food and Agriculture, 80(3), 289-304.
  • Ranadive, A. 1994. Vanilla--cultivation, curing, chemistry, technology and commercial products. Developments in food science. Rosy, R. 2015. Goyal, Estimation of amoxicillin in presence of high concentration of uric acid and other urinary metabolites using an unmodified pyrolytic graphite sensor. Journal of Electrochemical Society, 162, G8-G13.
  • Saint Denis, M., Coughtrie, M., Guilland, J., Verges, B., Lemesle, M., and Giroud, M. 1996. Migraine induced by vanillin. Presse medicale (Paris, France: 1983), 25(40), 2043.
  • Sanchez, F. G., Ruiz, C. C., Gomez, J. M., Lopez, M. H., and Bayona, A. H. 1990. Simultaneous determination of vanillin and syringaldehyde in rum by derivative spectrophotometry. Analyst, 115(8), 1121-1123.
  • Shang, L., Zhao, F., and Zeng, B. 2014. Sensitive voltammetric determination of vanillin with an AuPd nanoparticles−graphene composite modified electrode. Food Chemistry, 151, 53-57.
  • Silva, T. R., Brondani, D., Zapp, E., and Cruz Vieira, I. 2015. Electrochemical sensor based on gold nanoparticles stabilized in poly (allylamine hydrochloride) for determination of vanillin. Electroanalysis, 27(2), 465-472.
  • Sinha, A. K., Sharma, U. K., and Sharma, N. 2008. A comprehensive review on vanilla flavor: extraction, isolation and quantification of vanillin and others constituents. International Journal of Food Sciences and Nutrition, 59(4), 299-326.
  • Sivakumar, M., Sakthivel, M., and Chen, S.-M. 2017. Simple synthesis of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples. Journal of Colloid and Interface Science, 490, 719-726.
  • Sujalmi, S., Suharso, S., Supriyanto, R., and Buchari, B. 2005. Determination of vanillin in vanilla (Vanilla planifolia Andrews) from Lampung Indonesia by high performance liquid chromatography. Indonesian Journal of Chemistry, 5(1), 7-10.
  • Tahtaisleyen, S., Gorduk, O., and Sahin, Y. 2020a. Electrochemical Determination of Sunset Yellow Using an Electrochemically Prepared Graphene Oxide Modified–Pencil Graphite Electrode (EGO-PGE). Analytical Letters, 1-23.
  • Tahtaisleyen, S., Gorduk, O., and Sahin, Y. 2020b. Electrochemical determination of tartrazine using a graphene/poly (L-phenylalanine) modified pencil graphite electrode. Analytical Letters, 53(11), 1683-1703.
There are 40 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ozge Gorduk 0000-0003-1370-7534

Project Number -
Publication Date February 24, 2021
Submission Date November 1, 2020
Published in Issue Year 2021 Volume: 21 Issue: 1

Cite

APA Gorduk, O. (2021). Voltammetric Determination of Vanillin in Commercial Food Products Using Electrochemically Fabricated Graphene Oxide Modified Electrode. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(1), 84-96. https://doi.org/10.35414/akufemubid.819216
AMA Gorduk O. Voltammetric Determination of Vanillin in Commercial Food Products Using Electrochemically Fabricated Graphene Oxide Modified Electrode. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. February 2021;21(1):84-96. doi:10.35414/akufemubid.819216
Chicago Gorduk, Ozge. “Voltammetric Determination of Vanillin in Commercial Food Products Using Electrochemically Fabricated Graphene Oxide Modified Electrode”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, no. 1 (February 2021): 84-96. https://doi.org/10.35414/akufemubid.819216.
EndNote Gorduk O (February 1, 2021) Voltammetric Determination of Vanillin in Commercial Food Products Using Electrochemically Fabricated Graphene Oxide Modified Electrode. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 1 84–96.
IEEE O. Gorduk, “Voltammetric Determination of Vanillin in Commercial Food Products Using Electrochemically Fabricated Graphene Oxide Modified Electrode”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 1, pp. 84–96, 2021, doi: 10.35414/akufemubid.819216.
ISNAD Gorduk, Ozge. “Voltammetric Determination of Vanillin in Commercial Food Products Using Electrochemically Fabricated Graphene Oxide Modified Electrode”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/1 (February 2021), 84-96. https://doi.org/10.35414/akufemubid.819216.
JAMA Gorduk O. Voltammetric Determination of Vanillin in Commercial Food Products Using Electrochemically Fabricated Graphene Oxide Modified Electrode. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:84–96.
MLA Gorduk, Ozge. “Voltammetric Determination of Vanillin in Commercial Food Products Using Electrochemically Fabricated Graphene Oxide Modified Electrode”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 1, 2021, pp. 84-96, doi:10.35414/akufemubid.819216.
Vancouver Gorduk O. Voltammetric Determination of Vanillin in Commercial Food Products Using Electrochemically Fabricated Graphene Oxide Modified Electrode. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(1):84-96.