Research Article
BibTex RIS Cite

BLDC Motor Design and Application for Light Electric Vehicle

Year 2021, Volume: 21 Issue: 2, 326 - 336, 30.04.2021
https://doi.org/10.35414/akufemubid.889877

Abstract

The popularity of electrical vehicles is increasing rapidly in recent years due to energy generation/consumption ratio, transportation costs, decrease in fossil fuel reserves with increasing population as well as the environmental damage caused by fossil fuels. Therefore, Brushless Direct Current (BLDC) Motor design was actualized in the present study for use in electrical vehicles expected to replace the transportation vehicles of today. Firstly, analytical design of the targeted motor was completed after which the Finite Elements Method was used for modelling. Ansys Maxwell Program is one of the package programs used in FEM. This study was carried out with Ansys Maxwell Electromagnetic Suite version 17.2 . The prototype motor was manufactured after reaching the desired results with Finite Elements Method and experimental studies commenced with the experiment setup prepared in the laboratory environment. Experimental results were compared with electromagnetic results. Finally, the prototype motor was mounted on the ElektroGOP vehicle and it was observed to work without problem at the expected performance during the test drives.

Supporting Institution

Tokat Gaziosmanpaşa Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

2015/105

Thanks

This study was supported by the Scientific Research Projects of Gaziosmanpasa University with project number 2015/105.

References

  • Akın, F., 2019. Electric vehicles developed for external-rotor brushless dc motor design and analysis. M.Sc. Thesis, Tokat Gaziosmanpasa University Graduate School of Natural And Applied Sciences, Tokat, 84.
  • Aydoğdu, Ö., 2011. An effective real coded GA based fuzzy controller for speed control of a BLDC motor without speed sensor. Turkish Journal of Electrical Engineering and Computer Sciences, 19 (3), 413-430.
  • Boldea, İ. and Nasar, S.A., 2002. The induction machines desing handbook -Second edition. Taylor and Francis Group, United States of America, 490-640.
  • Fukami, T., Motoki, K., Kirihata, R., Shima, K., Koyama, M., Mori, T. and Nakano, M., 2017. An electromagnet-assisted ferrite magnet motor, IEEE Transactions on Magnetics, 53 (11), 1-4.
  • Çelikel, R., and Aydoğmuş, Ö., 2019. A torque ripple minimization method for brushless dc motor in high speed applications. Journal of Engineering Research, 7 (3), 200-214.
  • Gökce, C., 2005. Modeling and simulation of a series parallel hybrid electrical vehicle. Istanbul Technical Unıversity, Institute of Science and Technology, İstanbul, 64.
  • Grunditz, E. and Jansson, E., 2009. Modelling and simulation of a hybrid electric vehicle for shell ecomarathon and an electric gokart, M.Sc. Thesis, Chalmers University of Technology Electric Power Engineering, Göteborg, 10-12.
  • Hanselman, D.C, 1994. Brushless permanent-magnet motor design. I, Mc Graw- Hill, ABD, 61-101.
  • Hori, Y., 2004. Future vehicle driven by electricity and control-research on four-wheel- motored, IEEE Transactions on Industrial Electronics, 51 (5), 1-14.
  • Kim, S., Choi, J. and Lee, J., 2003. Magnet shape optimization for high performance single-phase line start synchronous motor. Journal of Applied Physics, 93 (10), 8695-8697
  • Krause, P., Wasynczuk, O. and Sudhoff, S.D.,2002. Analysis of electrıc machinery and drive systems. 2nd ed., IEEE Press, USA, 67-106.
  • Li, Y., Bobba, D., and Sarlioglu, B., 2018. Design and optimization of a novel dual-rotor hybrid pm machine for traction application. IEEE Transactions on Industrial Electronics, 65 (2), 1762-1771.
  • Ogawa, T., Takahashi, T., Takemoto, M., Ogasawara, S., and Daikoku, A., 2017. The examination of pole geometry of consequent pole type ferrite PM axial gap motor with field winding. In Electric Machines and Drives Conference (IEMDC), 2017 IEEE International, pp. 1-7.
  • Raminosoa, T., El-Refaie, A. M., Torrey, D. A., Grace, K., Pan, D., Grubic, S., and Huh, K. K. 2017. Test results for a high temperature non- permanent-magnet traction motor. IEEE Transactions on Industry Applications, 53 (4), 3496-3504.
  • Skvarenina, T. L., 2002. The power electronic handbook. I, CRC Press LLC, New York, 78-100.
  • Tur, O., Tuncay, R.N. and Ucarol, H., 2005. Basics of electric vehicle technology and a design study on a series hybrid electric vehicle powertrain. ELECO 2005 4th International Conference on Electrical and Electronics Engineering, Bursa.
  • Tur, O., Uçarol, H., Özsu, E., Demirci, M., Solak, Y., Elcik, E., Dalkılıç, Ö. and Özatay, E., 2007. Sizing, design and prototyping of an electric drive system for a split drive hybrid electric vehicle, International Electric Machines and Drives Conference (IEMDC) 2007, Antalya.
  • Tutelea, L. and I. Boldea, I., 2007. Optimal design of residential brushless d.c. permanent magnet motors with FEM validation, Aegean Conference on Electric Machines, Power Electronics and Electromotion (ACEMP'07), 435-439.
  • Ustun, O., Yilmaz, M., Gokce, C., Karakaya, U. and Tuncay, R., 2009. Energy Management Method for Solar Race Car Design and Application, IEEE International Electric Machines and Drives Conference, 804-811.
  • Uçarol, H., 2003, Hybrid electric vehicle, M.Sc. Thesis, Istanbul Technical Unıversity, Institute of Science and Technology, İstanbul, 89.
  • Xue, X. D., Cheng, K.W.E. and Cheung, N.C., 2008. Selection Of Electric Motor Drives For Electric Vehicles, Australasian Universities Power Engineering Conference, Hong Kong, 170-175.
  • Yılmaz, M., Tuncay, R.N. and Ustub, O, 2004. A wavelet study of sensorless control of brushless DC motor through rapid prototyping approach, Proceedings of the IEEE International Conference on Mechatronics, ICM '04, İstanbul, Turkey.
  • Ying, L. and Ertugrul, N., 1999. The Dynamic Simulation of the Three-Phase Brushless Permanent Magnet AC Motor Drives with LabVIEW, Australasian Universities Power Engineering Conference AUPEC'99, Darwin, 11-16.
  • Zarko, D., Ban, D. and Lipo, T.A., 2007. Analytical Solution for Cogging Torque in Surface Permanent-Magnet Motors Using Conformal Mapping, IEEE Transactions on Magnetics, 44 (1), 52-64

Hafif Elektrikli Araç için FDAM Tasarım ve Uygulaması

Year 2021, Volume: 21 Issue: 2, 326 - 336, 30.04.2021
https://doi.org/10.35414/akufemubid.889877

Abstract

Son yıllarda artan nüfusla birlikte enerji üretim/tüketim oranı, ulaşım giderleri, fosil yakıt rezervlerinin azalması ve fosil yakıtların çevreye verdikleri zararlar gibi başlıca etkenler sebebiyle elektrikli araçların popülaritesi hızlı bir şekilde artmaktadır. Dolasıyla elektrikli araç ve ekipmanları üzerine yapılan çalışmalar da artmaktadır. Bu çalışmada günümüz ulaşım araçlarının yerini alan elektrikli araçlarda kullanılması hedeflenen Fırçasız Doğru Akım Motor (FDAM) tasarımı gerçekleştirilmiştir. Öncelikle hedeflenen motorun analitik tasarımı yapılarak Sonlu Elemanlar Yöntemi (SEY) ile modellemesi yapılmıştır. Ansys Maxwell Programı SEY'de kullanılan paket programlardan biridir. Bu çalışma Ansys Maxwell Elektromanyetik Suite 17.2 versiyonu ile gerçekleştirilmiştir. SEY ile hedeflenen sonuçlara ulaşıldıktan sonra motorun protorip üretimi gerçekleştirilmiş ve prototip motorun, laboratuvar ortamında hazırlanan deney düzeneği ile deneysel çalışmaları yapılmıştır. Deneysel sonuçlar elektromanyetik sonuçlarla karşılaştırılmıştır. Son olarak prototip motor ElektroGOP aracına monte edilmiş ve sürüş denemelerinde motorun hedeflenen performansta ve sorunsuz şekilde çalıştığı görülmüştür.

Project Number

2015/105

References

  • Akın, F., 2019. Electric vehicles developed for external-rotor brushless dc motor design and analysis. M.Sc. Thesis, Tokat Gaziosmanpasa University Graduate School of Natural And Applied Sciences, Tokat, 84.
  • Aydoğdu, Ö., 2011. An effective real coded GA based fuzzy controller for speed control of a BLDC motor without speed sensor. Turkish Journal of Electrical Engineering and Computer Sciences, 19 (3), 413-430.
  • Boldea, İ. and Nasar, S.A., 2002. The induction machines desing handbook -Second edition. Taylor and Francis Group, United States of America, 490-640.
  • Fukami, T., Motoki, K., Kirihata, R., Shima, K., Koyama, M., Mori, T. and Nakano, M., 2017. An electromagnet-assisted ferrite magnet motor, IEEE Transactions on Magnetics, 53 (11), 1-4.
  • Çelikel, R., and Aydoğmuş, Ö., 2019. A torque ripple minimization method for brushless dc motor in high speed applications. Journal of Engineering Research, 7 (3), 200-214.
  • Gökce, C., 2005. Modeling and simulation of a series parallel hybrid electrical vehicle. Istanbul Technical Unıversity, Institute of Science and Technology, İstanbul, 64.
  • Grunditz, E. and Jansson, E., 2009. Modelling and simulation of a hybrid electric vehicle for shell ecomarathon and an electric gokart, M.Sc. Thesis, Chalmers University of Technology Electric Power Engineering, Göteborg, 10-12.
  • Hanselman, D.C, 1994. Brushless permanent-magnet motor design. I, Mc Graw- Hill, ABD, 61-101.
  • Hori, Y., 2004. Future vehicle driven by electricity and control-research on four-wheel- motored, IEEE Transactions on Industrial Electronics, 51 (5), 1-14.
  • Kim, S., Choi, J. and Lee, J., 2003. Magnet shape optimization for high performance single-phase line start synchronous motor. Journal of Applied Physics, 93 (10), 8695-8697
  • Krause, P., Wasynczuk, O. and Sudhoff, S.D.,2002. Analysis of electrıc machinery and drive systems. 2nd ed., IEEE Press, USA, 67-106.
  • Li, Y., Bobba, D., and Sarlioglu, B., 2018. Design and optimization of a novel dual-rotor hybrid pm machine for traction application. IEEE Transactions on Industrial Electronics, 65 (2), 1762-1771.
  • Ogawa, T., Takahashi, T., Takemoto, M., Ogasawara, S., and Daikoku, A., 2017. The examination of pole geometry of consequent pole type ferrite PM axial gap motor with field winding. In Electric Machines and Drives Conference (IEMDC), 2017 IEEE International, pp. 1-7.
  • Raminosoa, T., El-Refaie, A. M., Torrey, D. A., Grace, K., Pan, D., Grubic, S., and Huh, K. K. 2017. Test results for a high temperature non- permanent-magnet traction motor. IEEE Transactions on Industry Applications, 53 (4), 3496-3504.
  • Skvarenina, T. L., 2002. The power electronic handbook. I, CRC Press LLC, New York, 78-100.
  • Tur, O., Tuncay, R.N. and Ucarol, H., 2005. Basics of electric vehicle technology and a design study on a series hybrid electric vehicle powertrain. ELECO 2005 4th International Conference on Electrical and Electronics Engineering, Bursa.
  • Tur, O., Uçarol, H., Özsu, E., Demirci, M., Solak, Y., Elcik, E., Dalkılıç, Ö. and Özatay, E., 2007. Sizing, design and prototyping of an electric drive system for a split drive hybrid electric vehicle, International Electric Machines and Drives Conference (IEMDC) 2007, Antalya.
  • Tutelea, L. and I. Boldea, I., 2007. Optimal design of residential brushless d.c. permanent magnet motors with FEM validation, Aegean Conference on Electric Machines, Power Electronics and Electromotion (ACEMP'07), 435-439.
  • Ustun, O., Yilmaz, M., Gokce, C., Karakaya, U. and Tuncay, R., 2009. Energy Management Method for Solar Race Car Design and Application, IEEE International Electric Machines and Drives Conference, 804-811.
  • Uçarol, H., 2003, Hybrid electric vehicle, M.Sc. Thesis, Istanbul Technical Unıversity, Institute of Science and Technology, İstanbul, 89.
  • Xue, X. D., Cheng, K.W.E. and Cheung, N.C., 2008. Selection Of Electric Motor Drives For Electric Vehicles, Australasian Universities Power Engineering Conference, Hong Kong, 170-175.
  • Yılmaz, M., Tuncay, R.N. and Ustub, O, 2004. A wavelet study of sensorless control of brushless DC motor through rapid prototyping approach, Proceedings of the IEEE International Conference on Mechatronics, ICM '04, İstanbul, Turkey.
  • Ying, L. and Ertugrul, N., 1999. The Dynamic Simulation of the Three-Phase Brushless Permanent Magnet AC Motor Drives with LabVIEW, Australasian Universities Power Engineering Conference AUPEC'99, Darwin, 11-16.
  • Zarko, D., Ban, D. and Lipo, T.A., 2007. Analytical Solution for Cogging Torque in Surface Permanent-Magnet Motors Using Conformal Mapping, IEEE Transactions on Magnetics, 44 (1), 52-64
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mehmet Akar 0000-0003-0164-1451

Mustafa Eker 0000-0003-1085-0968

Fazilet Akın This is me 0000-0002-8882-2695

Project Number 2015/105
Publication Date April 30, 2021
Submission Date March 3, 2021
Published in Issue Year 2021 Volume: 21 Issue: 2

Cite

APA Akar, M., Eker, M., & Akın, F. (2021). BLDC Motor Design and Application for Light Electric Vehicle. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(2), 326-336. https://doi.org/10.35414/akufemubid.889877
AMA Akar M, Eker M, Akın F. BLDC Motor Design and Application for Light Electric Vehicle. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. April 2021;21(2):326-336. doi:10.35414/akufemubid.889877
Chicago Akar, Mehmet, Mustafa Eker, and Fazilet Akın. “BLDC Motor Design and Application for Light Electric Vehicle”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, no. 2 (April 2021): 326-36. https://doi.org/10.35414/akufemubid.889877.
EndNote Akar M, Eker M, Akın F (April 1, 2021) BLDC Motor Design and Application for Light Electric Vehicle. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 2 326–336.
IEEE M. Akar, M. Eker, and F. Akın, “BLDC Motor Design and Application for Light Electric Vehicle”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 2, pp. 326–336, 2021, doi: 10.35414/akufemubid.889877.
ISNAD Akar, Mehmet et al. “BLDC Motor Design and Application for Light Electric Vehicle”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/2 (April 2021), 326-336. https://doi.org/10.35414/akufemubid.889877.
JAMA Akar M, Eker M, Akın F. BLDC Motor Design and Application for Light Electric Vehicle. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:326–336.
MLA Akar, Mehmet et al. “BLDC Motor Design and Application for Light Electric Vehicle”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 2, 2021, pp. 326-3, doi:10.35414/akufemubid.889877.
Vancouver Akar M, Eker M, Akın F. BLDC Motor Design and Application for Light Electric Vehicle. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(2):326-3.