Research Article
BibTex RIS Cite

HDAC inhibitörü 2-(N-(2-hidroksifenil)-2-propilpentanamid)' in Kuantum Kimyasal Hesaplamalar ile Moleküler Yapı, Spektroskopik (IR, NMR, UV-VIS) İncelemeleri ve Lineer Olmayan Optik (NLO) Analizi

Year 2022, Volume: 22 Issue: 1, 1 - 15, 28.02.2022
https://doi.org/10.35414/akufemubid.1036164

Abstract

Antitümor aktiviteye sahip bir histon deasetilaz inhibitörü (HDCA) olan 2-(N-(2-hidroksifenil)-2-propilpentanamid) [OH-VPA], yeni bir aril valproik asit (VPA) türevidir. Bu çalışmada, OH-VPA’ nın yapısal, spektroskopik ve elektronik özellikleri teorik hesaplamalarla incelenmiştir. OH-VPA' nın optimize moleküler geometrisi ve harmonik titreşim frekansları, Yoğunluk Fonksiyonel Teorisi (DFT) B3LYP yöntemi kullanılarak 6-311++G(d,p) baz seti ile hesaplanmıştır. Molekülün reaktivitesini anlamak için UV-Vis elektronik absorpsiyon parametreleri, HOMO-LUMO enerji aralığı, moleküler elektrostatik potansiyel (MEP) yüzey analizleri ve kimyasal reaktivite tanımlayıcıları TD-DFT yaklaşımı ile gerçekleştirilmiştir. Ayrıca, OH-VPA’ nın 13C NMR ve 1H NMR' nin kimyasal kayma değerleri, geometri optimizasyonunda kullanılan aynı yöntem ve aynı temel set uygulanarak ayar içeren atomik orbital (GIAO) yöntemi kullanılarak hesaplanmıştır. Ortalama polarizebilite (α), polarizebilite anizotropisi (Δα) ve ortalama birinci mertebe hiperpolarizebilite (β) sonlu alan yöntemi kullanılarak hesaplanmıştır. Yüksek β değerleri (2,144x10-30 esu), incelenen bileşiğin NLO malzemelerinin geliştirilmesinde iyi bir aday olabileceğini göstermektedir. Molekülün teorik olarak hesaplanan yapısal parametreleri, titreşim dalga sayıları ve NMR kimyasal kaymaları literatürden elde edilen deneysel sonuçlarla iyi bir uyum içindedir.

Supporting Institution

Zonguldak Bülent Ecevit Üniversitesi Bilimsel Araştırma Projeleri

Project Number

2019-43399189-01

Thanks

Bu çalışma Zonguldak Bülent Ecevit Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir (Proje no: 2019-43399189-01).

References

  • Chidangil, S. and Mishra, P.C., 1997. Structure-Activity Relationship for Some 2′,3′-Dideoxynucleoside Anti-HIV Drugs Using Molecular Electrostatic Potential Mapping.Journal of Molecular Modeling,3(4), 172–181.
  • Dennington, R., Keith,T.A. and Millam, J.M., GaussView, Version 6, Semichem Inc., Shawnee Mission, KS, 2016. Eyal, S., Yagen,B., Shimshoni, J. and Bialer ,M., 2005. Histone Deacetylases Inhibition and Tumor Cells Cytotoxicity by CNS-Active VPA Constitutional Isomers and Derivatives. Biochemical Pharmacology,69(10), 1501–1508.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. and Fox, D. J. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
  • García, A.A., González, X.D., Arregui,L. and Beltrán,H.I., 2017. Novel Valproic Aminophenol Amides with Enhanced Glial Cell Viability Effect. RSC Advances,7(20), 12391–12399.
  • Geskin, V.M., Lambert,C. and Brédas, J.L., 2003. Origin of High Second- and Third-Order Nonlinear Optical Response in Ammonio/Borato Diphenylpolyene Zwitterions: The Remarkable Role of Polarized Aromatic Groups.Journal of the American Chemical Society,125(50), 15651–15658.
  • Jamróz, M. H., 2010. Vibrational Energy Distribution Analysis VEDA 4, Warsaw.
  • Jeyavijayan, S. ,2015. Molecular Structure, Spectroscopic (FTIR, FT-Raman, 13C and 1H NMR, UV), Polarizability and First-Order Hyperpolarizability, HOMO–LUMO Analysis of 2,4-Difluoroacetophenone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,136, 553–566.
  • Krauze, A.V., Myrehaug, S.D., Chang, M.G.,Holdford, D.J,Smith, S.,Shih ,J., Tofilon,P.J., Fine, H.A. and Camphausen, K., 2015. A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients With Glioblastoma. International Journal of Radiation Oncology*Biology*Physics, 92(5), 986–992.
  • Koopmans, T., 1934. Über Die Zuordnung von Wellenfunktionen Und Eigenwerten Zu Den Einzelnen Elektronen Eines Atoms. Physica1(1–6), 104–113.
  • Lewis, D.F.V., Ioannides, C. and Parke, D.V., 1994. Interaction of a Series of Nitriles with the Alcohol-Inducible Isoform of P450: Computer Analysis of Structure—Activity Relationships.Xenobiotica,24(5), 401–408.
  • López,S.Y.,Hernández, M.C.R.,de Oca, A.C.M, Morales L.G.F.,Wejebe, J.E.M., Basurto, E.A.R., Rojano, E.A. and Basurto,J.C,2020.N-(2′-Hydroxyphenyl)-2-Propylpentanamide (HO-AAVPA) Inhibits HDAC1 and Increases the Translocation of HMGB1 Levels in Human Cervical Cancer Cells.International Journal of Molecular Sciences,21(16), 5873.
  • Martel, B.P.,Lugo, J.A.B., Blanco, A.C., González, A.D., Sánchez, J.R.G., González, O.A.P., Martínez, I.I.P., Vázquez, M.J.F., Wejebe, J.E.M., Basurto, A.M.C., Luna, D.M., Ferrara, J.T. and Basurto, J.C., 2016. N-(2-Hydroxyphenyl)-2-Propylpentanamide, a Valproic Acid Aryl Derivative Designed in Silico with Improved Anti-Proliferative Activity in HeLa, Rhabdomyosarcoma and Breast Cancer Cells. Journal of Enzyme Inhibition and Medicinal Chemistry,31, 140–149.
  • Meyers, F., Marder, S. R., Pierce ,B. M. and Bredas, J. L., 1994. Electric Field Modulated Nonlinear Optical Properties of Donor-Acceptor Polyenes: Sum-Over-States Investigation of the Relationship between Molecular Polarizabilities (.Alpha.,beta.,and .gamma.) and Bond Length Alternation. Journal of the American Chemical Society,116(23),10703–10714.
  • Mishra, P.C., Kumar, A., Murray ,J.S. and Sen ,K.D., 1996. Theoretical and Computational Chemistry Book Series. In Molecular Electrostatic Potentials: Concepts and Applications, Amsterdam: Elsevier, 257.
  • Mulliken, R. S., 1955. Electronic Population Analysis on LCAO–MO Molecular Wave Functions.The Journal of Chemical Physics,23(10), 1833–1840.
  • O'Boyle, N. M., Tenderholt ,A. L. and Langner, K. M., 2008.Journal of Computational Chemistry, 29, 839-845.
  • Parr, R.G., Szentpály, L.V. and Liu, S., 1999. Electrophilicity Index. Journal of the American Chemical Society121(9), 1922–1924.
  • Silverstein, R.M., Webster, X.F. and Kiemle, J.D., 2005. Spectrometric Identification of Organic Compounds 7th Edition, John Wiley & Sons, INC.
  • Stuart, B.H., 2004. Infrared Spectroscopy : Fundamentals and Applications, John Wiley & Sons, Ltd, 45-70.
  • Sun, Y.X., Hao, Q., Wei, W.X. and Yu, Z.X., 2009. Experimental and Density Functional Studies on 4-(3,4-Dihydroxybenzylideneamino)Antipyrine, and 4-(2,3,4-Trihydroxybenzylideneamino)Antipyrine.Journal of Molecular Structure: THEOCHEM,904(1–3), 74–82.
  • Suresh, S., Gunasekaran, S. and Srinivasan, S., 2014. Spectroscopic (FT-IR, FT-Raman, NMR and UV–Visible) and Quantum Chemical Studies of Molecular Geometry, Frontier Molecular Orbital, NLO, NBO and Thermodynamic Properties of Salicylic Acid.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,132, 130–141.
  • Thotala, D., Karwas, R.M.,Engelbach, J.A., Garbow, J.R., Hallahan, A.N., DeWees, T.A., Laszlo, A. and Hallahan, D.E., 2015. Valproic Acid Enhances the Efficacy of Radiation Therapy by Protecting Normal Hippocampal Neurons and Sensitizing Malignant Glioblastoma Cells.Oncotarget, 6(33), 35004–35022.
  • Wang, C., Luan, Z., Yang, Y., Wang, Z., Cui, Y. and Gu, G., 2011. Valproic Acid Induces Apoptosis in Differentiating Hippocampal Neurons by the Release of Tumor Necrosis Factor-α from Activated Astrocytes. Neuroscience Letters,497(2), 122–27.
  • Wejebe, J.E.M.,Trujillo, A.S., Bello ,M., Figueroa, H.L.M. andAlvarez, N.L.G., Albores ,A., Cach, F.T., Hernández, M.C.R., Castro, A.R. andBasurto,J.C., 2020. Exploring the Biotransformation of N ‐(2‐hydroxyphenyl)‐2‐propylpentanamide (an Aryl Valproic Acid Derivative) by CYP2C11, Using in Silico Predictions and in Vitro Studies. Journal of Pharmacy and Pharmacology,72(7),938–955.
  • Zhan, C.G., Nichols J.A. and Dixon, D.A., 2003. Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies.The Journal of Physical Chemistry A,107(20), 4184–4195.
  • İnternet kaynakları 1-https://www.who.int/news-room/fact-sheets/detail/cancer (January 30, 2021).

Molecular Structure, Spectroscopic (IR, NMR, UV-VIS) Investigations and Non Linear Optical (NLO) Analysis of HDAC inhibitor 2-(N-(2- hydroxyphenyl)-2-propylpentanamide) with Quantum Chemical Calculations

Year 2022, Volume: 22 Issue: 1, 1 - 15, 28.02.2022
https://doi.org/10.35414/akufemubid.1036164

Abstract

2-(N-(2-hydroxyphenyl)-2-propylpentanamide) [OH-VPA], a histone deacetylase inhibitor (HDCA) with antitumor activity, is a new aryl valproic acid (VPA) derivative. In this work, structural, spectroscopic and electronic properties of OH-VPA were investigated by theoretical calculations. Optimized molecular geometry and harmonic vibrational frequencies of OH-VPA were calculated using the Density Functional Theory (DFT) B3LYP method with 6- 311++G(d,p) basis set. UV-Vis. electronic absorption parameters, HOMO-LUMO gap and molecular electrostatic potential (MEP) surface analyses and chemical reactivity descriptors of OH-VPA were performed to understand the reactivity of the molecule by the TD-DFT approach. Moreover, the values of the chemical shifts of the 13C NMR and 1H NMR were computed using the gauge independent atomic orbital (GIAO) method applying the same method and the same basis set as used in geometry optimization. The mean polarizability (α), the anisotropy of the polarizability (Δα) and the mean first-order hyperpolarizability (β) were calculated by using the finite field method. The high β values (2.144x10-30 esu) indicate that the studied compound may be a good candidate in the development of NLO materials. The structural parameters, vibrational wavenumbers, NMR chemical shifts of the molecule which are calculated theoretically are a good agreement with the experimental results obtained from the literature.

Project Number

2019-43399189-01

References

  • Chidangil, S. and Mishra, P.C., 1997. Structure-Activity Relationship for Some 2′,3′-Dideoxynucleoside Anti-HIV Drugs Using Molecular Electrostatic Potential Mapping.Journal of Molecular Modeling,3(4), 172–181.
  • Dennington, R., Keith,T.A. and Millam, J.M., GaussView, Version 6, Semichem Inc., Shawnee Mission, KS, 2016. Eyal, S., Yagen,B., Shimshoni, J. and Bialer ,M., 2005. Histone Deacetylases Inhibition and Tumor Cells Cytotoxicity by CNS-Active VPA Constitutional Isomers and Derivatives. Biochemical Pharmacology,69(10), 1501–1508.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. and Fox, D. J. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
  • García, A.A., González, X.D., Arregui,L. and Beltrán,H.I., 2017. Novel Valproic Aminophenol Amides with Enhanced Glial Cell Viability Effect. RSC Advances,7(20), 12391–12399.
  • Geskin, V.M., Lambert,C. and Brédas, J.L., 2003. Origin of High Second- and Third-Order Nonlinear Optical Response in Ammonio/Borato Diphenylpolyene Zwitterions: The Remarkable Role of Polarized Aromatic Groups.Journal of the American Chemical Society,125(50), 15651–15658.
  • Jamróz, M. H., 2010. Vibrational Energy Distribution Analysis VEDA 4, Warsaw.
  • Jeyavijayan, S. ,2015. Molecular Structure, Spectroscopic (FTIR, FT-Raman, 13C and 1H NMR, UV), Polarizability and First-Order Hyperpolarizability, HOMO–LUMO Analysis of 2,4-Difluoroacetophenone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,136, 553–566.
  • Krauze, A.V., Myrehaug, S.D., Chang, M.G.,Holdford, D.J,Smith, S.,Shih ,J., Tofilon,P.J., Fine, H.A. and Camphausen, K., 2015. A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients With Glioblastoma. International Journal of Radiation Oncology*Biology*Physics, 92(5), 986–992.
  • Koopmans, T., 1934. Über Die Zuordnung von Wellenfunktionen Und Eigenwerten Zu Den Einzelnen Elektronen Eines Atoms. Physica1(1–6), 104–113.
  • Lewis, D.F.V., Ioannides, C. and Parke, D.V., 1994. Interaction of a Series of Nitriles with the Alcohol-Inducible Isoform of P450: Computer Analysis of Structure—Activity Relationships.Xenobiotica,24(5), 401–408.
  • López,S.Y.,Hernández, M.C.R.,de Oca, A.C.M, Morales L.G.F.,Wejebe, J.E.M., Basurto, E.A.R., Rojano, E.A. and Basurto,J.C,2020.N-(2′-Hydroxyphenyl)-2-Propylpentanamide (HO-AAVPA) Inhibits HDAC1 and Increases the Translocation of HMGB1 Levels in Human Cervical Cancer Cells.International Journal of Molecular Sciences,21(16), 5873.
  • Martel, B.P.,Lugo, J.A.B., Blanco, A.C., González, A.D., Sánchez, J.R.G., González, O.A.P., Martínez, I.I.P., Vázquez, M.J.F., Wejebe, J.E.M., Basurto, A.M.C., Luna, D.M., Ferrara, J.T. and Basurto, J.C., 2016. N-(2-Hydroxyphenyl)-2-Propylpentanamide, a Valproic Acid Aryl Derivative Designed in Silico with Improved Anti-Proliferative Activity in HeLa, Rhabdomyosarcoma and Breast Cancer Cells. Journal of Enzyme Inhibition and Medicinal Chemistry,31, 140–149.
  • Meyers, F., Marder, S. R., Pierce ,B. M. and Bredas, J. L., 1994. Electric Field Modulated Nonlinear Optical Properties of Donor-Acceptor Polyenes: Sum-Over-States Investigation of the Relationship between Molecular Polarizabilities (.Alpha.,beta.,and .gamma.) and Bond Length Alternation. Journal of the American Chemical Society,116(23),10703–10714.
  • Mishra, P.C., Kumar, A., Murray ,J.S. and Sen ,K.D., 1996. Theoretical and Computational Chemistry Book Series. In Molecular Electrostatic Potentials: Concepts and Applications, Amsterdam: Elsevier, 257.
  • Mulliken, R. S., 1955. Electronic Population Analysis on LCAO–MO Molecular Wave Functions.The Journal of Chemical Physics,23(10), 1833–1840.
  • O'Boyle, N. M., Tenderholt ,A. L. and Langner, K. M., 2008.Journal of Computational Chemistry, 29, 839-845.
  • Parr, R.G., Szentpály, L.V. and Liu, S., 1999. Electrophilicity Index. Journal of the American Chemical Society121(9), 1922–1924.
  • Silverstein, R.M., Webster, X.F. and Kiemle, J.D., 2005. Spectrometric Identification of Organic Compounds 7th Edition, John Wiley & Sons, INC.
  • Stuart, B.H., 2004. Infrared Spectroscopy : Fundamentals and Applications, John Wiley & Sons, Ltd, 45-70.
  • Sun, Y.X., Hao, Q., Wei, W.X. and Yu, Z.X., 2009. Experimental and Density Functional Studies on 4-(3,4-Dihydroxybenzylideneamino)Antipyrine, and 4-(2,3,4-Trihydroxybenzylideneamino)Antipyrine.Journal of Molecular Structure: THEOCHEM,904(1–3), 74–82.
  • Suresh, S., Gunasekaran, S. and Srinivasan, S., 2014. Spectroscopic (FT-IR, FT-Raman, NMR and UV–Visible) and Quantum Chemical Studies of Molecular Geometry, Frontier Molecular Orbital, NLO, NBO and Thermodynamic Properties of Salicylic Acid.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,132, 130–141.
  • Thotala, D., Karwas, R.M.,Engelbach, J.A., Garbow, J.R., Hallahan, A.N., DeWees, T.A., Laszlo, A. and Hallahan, D.E., 2015. Valproic Acid Enhances the Efficacy of Radiation Therapy by Protecting Normal Hippocampal Neurons and Sensitizing Malignant Glioblastoma Cells.Oncotarget, 6(33), 35004–35022.
  • Wang, C., Luan, Z., Yang, Y., Wang, Z., Cui, Y. and Gu, G., 2011. Valproic Acid Induces Apoptosis in Differentiating Hippocampal Neurons by the Release of Tumor Necrosis Factor-α from Activated Astrocytes. Neuroscience Letters,497(2), 122–27.
  • Wejebe, J.E.M.,Trujillo, A.S., Bello ,M., Figueroa, H.L.M. andAlvarez, N.L.G., Albores ,A., Cach, F.T., Hernández, M.C.R., Castro, A.R. andBasurto,J.C., 2020. Exploring the Biotransformation of N ‐(2‐hydroxyphenyl)‐2‐propylpentanamide (an Aryl Valproic Acid Derivative) by CYP2C11, Using in Silico Predictions and in Vitro Studies. Journal of Pharmacy and Pharmacology,72(7),938–955.
  • Zhan, C.G., Nichols J.A. and Dixon, D.A., 2003. Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies.The Journal of Physical Chemistry A,107(20), 4184–4195.
  • İnternet kaynakları 1-https://www.who.int/news-room/fact-sheets/detail/cancer (January 30, 2021).
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Atomic, Molecular and Optical Physics
Journal Section Articles
Authors

Tugba Göcen 0000-0003-0078-8531

Project Number 2019-43399189-01
Publication Date February 28, 2022
Submission Date December 14, 2021
Published in Issue Year 2022 Volume: 22 Issue: 1

Cite

APA Göcen, T. (2022). HDAC inhibitörü 2-(N-(2-hidroksifenil)-2-propilpentanamid)’ in Kuantum Kimyasal Hesaplamalar ile Moleküler Yapı, Spektroskopik (IR, NMR, UV-VIS) İncelemeleri ve Lineer Olmayan Optik (NLO) Analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(1), 1-15. https://doi.org/10.35414/akufemubid.1036164
AMA Göcen T. HDAC inhibitörü 2-(N-(2-hidroksifenil)-2-propilpentanamid)’ in Kuantum Kimyasal Hesaplamalar ile Moleküler Yapı, Spektroskopik (IR, NMR, UV-VIS) İncelemeleri ve Lineer Olmayan Optik (NLO) Analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. February 2022;22(1):1-15. doi:10.35414/akufemubid.1036164
Chicago Göcen, Tugba. “HDAC inhibitörü 2-(N-(2-Hidroksifenil)-2-propilpentanamid)’ in Kuantum Kimyasal Hesaplamalar Ile Moleküler Yapı, Spektroskopik (IR, NMR, UV-VIS) İncelemeleri Ve Lineer Olmayan Optik (NLO) Analizi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 1 (February 2022): 1-15. https://doi.org/10.35414/akufemubid.1036164.
EndNote Göcen T (February 1, 2022) HDAC inhibitörü 2-(N-(2-hidroksifenil)-2-propilpentanamid)’ in Kuantum Kimyasal Hesaplamalar ile Moleküler Yapı, Spektroskopik (IR, NMR, UV-VIS) İncelemeleri ve Lineer Olmayan Optik (NLO) Analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 1 1–15.
IEEE T. Göcen, “HDAC inhibitörü 2-(N-(2-hidroksifenil)-2-propilpentanamid)’ in Kuantum Kimyasal Hesaplamalar ile Moleküler Yapı, Spektroskopik (IR, NMR, UV-VIS) İncelemeleri ve Lineer Olmayan Optik (NLO) Analizi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 1, pp. 1–15, 2022, doi: 10.35414/akufemubid.1036164.
ISNAD Göcen, Tugba. “HDAC inhibitörü 2-(N-(2-Hidroksifenil)-2-propilpentanamid)’ in Kuantum Kimyasal Hesaplamalar Ile Moleküler Yapı, Spektroskopik (IR, NMR, UV-VIS) İncelemeleri Ve Lineer Olmayan Optik (NLO) Analizi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/1 (February 2022), 1-15. https://doi.org/10.35414/akufemubid.1036164.
JAMA Göcen T. HDAC inhibitörü 2-(N-(2-hidroksifenil)-2-propilpentanamid)’ in Kuantum Kimyasal Hesaplamalar ile Moleküler Yapı, Spektroskopik (IR, NMR, UV-VIS) İncelemeleri ve Lineer Olmayan Optik (NLO) Analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:1–15.
MLA Göcen, Tugba. “HDAC inhibitörü 2-(N-(2-Hidroksifenil)-2-propilpentanamid)’ in Kuantum Kimyasal Hesaplamalar Ile Moleküler Yapı, Spektroskopik (IR, NMR, UV-VIS) İncelemeleri Ve Lineer Olmayan Optik (NLO) Analizi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 1, 2022, pp. 1-15, doi:10.35414/akufemubid.1036164.
Vancouver Göcen T. HDAC inhibitörü 2-(N-(2-hidroksifenil)-2-propilpentanamid)’ in Kuantum Kimyasal Hesaplamalar ile Moleküler Yapı, Spektroskopik (IR, NMR, UV-VIS) İncelemeleri ve Lineer Olmayan Optik (NLO) Analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(1):1-15.