Research Article
BibTex RIS Cite

Cloning, Overexpression and Characterization of the FeSI Protein from Azotobacter vinelandii CA6

Year 2022, Volume: 22 Issue: 3, 470 - 476, 30.06.2022
https://doi.org/10.35414/akufemubid.1124731

Abstract

The [2Fe-2S] protein from Azotobacter vinelandii CA6, also known as Shethna protein I or FeSI protein, was cloned and overexpressed in E. coli and purified. SDS-PAGE analysis showed a band at ~11 kDa, the monomeric size of the protein, at each stage of the purification. Gel filtration profile of FeSI indicates it forms a dimer in its native state. The UV-visible spectrum showed absorbances at signature wavelengths, 344, 418 and 464 nm, due to the iron-sulfur cluster. The sequence of A. vinelandii CA6 FeSI protein are similar to the sequences of [2Fe-2S] ferredoxins from nitrogen-fixing Clostridium pasteurianum and Aquifex aeolicus, which is not a nitrogen fixer, including conserved cysteine residues. These suggest that FeSI may or may not be involved in nitrogen fixation as there is no evidence although the FeSI gene is present in the major nif gene cluster in Azotobacter vinelandii CA6. This study will be beneficial for understanding the function of FeSI in nitrogen fixation and the relations with other [2Fe-2S] proteins.

Supporting Institution

TUBITAK

Project Number

118C225

References

  • Appel, J., and Schulz, R. 1996. Sequence analysis of an operon of a NAD(P)-reducing nickel hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 gives additional evidence for direct coupling of the enzyme to NAD(P)H-dehydrogenase (complex I). Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1298(2), 141-147. https://doi.org/10.1016/S0167-4838(96)00176-8
  • Chatelet, C, Gaillard, J., Pétillot, Y., Louwagie, M., and Meyer, J. 1999. A [2Fe-2S] protein from the hyperthermophilic bacterium Aquifex aeolicus. Biochemical and Biophysical Research Communications, 261(3), 885–889. https://doi.org/10.1006/bbrc.1999.1138
  • Chatelet, Claire, and Meyer, J. 1999. The [2Fe-2S] protein I (Shetna protein I) from Azotobacter vinelandii is homologous to the [2Fe-2S] ferredoxin from Clostridium pasteurianum. Journal of Biological Inorganic Chemistry, 4(3), 311–317. https://doi.org/10.1007/s007750050317
  • De Luca, G., Asso, M., Bélaïch, J. P., and Dermoun, Z. 1998. Purification and characterization of the HndA subunit of NADP-reducing hydrogenase from Desulfovibrio fructosovorans overproduced in Escherichia coli. Biochemistry, 37(8), 2660-2665. https://doi.org/10.1021/bi972474p
  • Dean, D. R., Bolin, J. T., and Zheng, L. 1993. Nitrogenase metalloclusters: Structures, organization, and synthesis. Journal of Bacteriology, 175(21), 6737-6744.
  • Gibson, D. G. 2011. Enzymatic assembly of overlapping DNA fragments. In Methods in Enzymology, 498, 349-361. https://doi.org/10.1016/B978-0-12-385120-8.00015-2
  • Golinelli, M. P., Gagnon, J., and Meyer, J. 1997. Specific interaction of the [2Fe-2S] ferredoxin from clostridium pasteurianum with the nitrogenase MoFe protein. Biochemistry, 36(39), 11797-11803. https://doi.org/10.1021/bi970528p
  • Kabasakal, B. V., Cotton, C. A. R., and Murray, J. W. 2021. Crystal structure of the [2Fe-2S] protein i (Shethna protein I) from Azotobacter vinelandii. Acta Crystallographica Section F: Structural Biology Communications, 77, 407-411. https://doi.org/10.1107/S2053230X21009936
  • Meyer, J., Fujinaga, J., Gaillard, J., and Lutz, M. 1994. Mutated Forms of the [2Fe-2S] Ferredoxin from Clostridium pasteurianum with Noncysteinyl Ligands to the Iron—Sulfur Cluster. Biochemistry, 33(46), 13642-13650. https://doi.org/10.1021/bi00250a014
  • Moshiri, F., Kim, J. W., Fu, C., and Maier, R. J. 1994. The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation, but confers significant protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo. Molecular Microbiology, 14(1), 101–114.
  • Peters, J. W., Fisher, K., and Dean, D. R. 1995. Nitrogenase structure and function: a biochemical-genetic perspective. Annual Review of Microbiology, 49, 335–366. https://doi.org/10.1146/annurev.micro.49.1.335
  • Rapson, T. D., Gregg, C. M., Allen, R. S., Ju, H. K., Doherty, C. M., Mulet, X., … Wood, C. C. 2020. Insights into Nitrogenase Bioelectrocatalysis for Green Ammonia Production. ChemSusChem. 13 (18), 4856-4865. https://doi.org/10.1002/cssc.202001433
  • Robson, R. L. 1979. Characterization of an oxygen-stable nitrogenase complex isolated from Azotobacter chroococcum. Biochemical Journal, 181(3), 569-575. https://doi.org/10.1042/bj1810569
  • Saarinen, M., Gleason, F. K., and Eklund, H. 1995. Crystal structure of thioredoxin-2 from Anabaena. Structure, 3(10), 1097-1108. https://doi.org/10.1016/S0969-2126(01)00245-3
  • Schlesier, J., Rohde, M., Gerhardt, S., and Einsle, O. 2016. A Conformational Switch Triggers Nitrogenase Protection from Oxygen Damage by Shethna Protein II (FeSII). Journal of the American Chemical Society,138(1), 239-247. https://doi.org/10.1021/jacs.5b10341
  • Setubal, J. C., Dos Santos, P., Goldman, B. S., Ertesvåg, H., Espin, G., Rubio, L. M., … Wood, D. 2009. Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. Journal of Bacteriology, 191(14), 4534-4545. https://doi.org/10.1128/JB.00504-09
  • Shethna, Y. I., DerVartanian, D. V., and Beinert, H. 1968. Non heme (iron-sulfur) proteins of Azotobacter vinelandii. Biochemical and Biophysical Research Communications,31(6), 862-868. https://doi.org/10.1016/0006-291X(68)90531-7
  • Shethna, Y. I., Wilson, P. W., Hansen, R. E., and Beinert, H. 1964. Identification by Isotopic Substitution of the EPR signal at g = 1.94 in a non-heme iron protein from Azotobacter. Proceedings of the National Academy of Sciences, 52(5), 1263-1271. https://doi.org/10.1073/pnas.52.5.1263
  • Yano, T., Yagi, T., Sled’, V. D., and Ohnishi, T. 1994. Expression of the 25-Kilodalton Iron-Sulfur Subunit of the Energy-Transducing NADH-Ubiquinone Oxidoreductase of Paracoccus denitrificans. Biochemistry,33(2), 494-499. https://doi.org/10.1021/bi00168a014
  • Yeh, A. P., Chatelet, C., Soltis, S. M., Kuhn, P., Meyer, J., and Rees, D. C. 2000. Structure of a thioredoxin-like [2Fe-2S] ferredoxin from Aquifex aeolicus. Journal of Molecular Biology, 300(3), 587–595. https://doi.org/10.1006/jmbi.2000.3871
  • Zehr, J. P., and Capone, D. G. 2021. Fundamentals of N2 Fixation. In Marine Nitrogen Fixation. Springer, Cham. https://doi.org/10.1007/978-3-030-67746-6_2, 9-29.

Azotobacter vinelandii CA6 FeSI Proteininin Klonlanması, İfadesi ve Karakterizasyonu

Year 2022, Volume: 22 Issue: 3, 470 - 476, 30.06.2022
https://doi.org/10.35414/akufemubid.1124731

Abstract

Bu çalışmada, Azotobacter vinelandii CA6'dan Shethna protein I veya FeSI proteini olarak da bilinen [2Fe-2S] proteini izole edilmiş, E. coli'de aşırı ifade edilmiş ve saflaştırılmıştır. SDS-PAGE analizi, saflaştırmanın her aşamasında proteinin monomer boyutu olan ~11 kDa'da bir bant göstermiştir. FeSI jel filtrasyon profili, doğal halde dimer olduğunu işaret etmektedir. UV-görünür spektrumunda, demir-kükürt kümesine özgü 344, 418 ve 464 nm dalga boylarında absorbanslar ölçülmüştür. A. vinelandii CA6 FeSI proteininin dizisi, korunmuş sistein rezidüleri dahil olmak üzere, nitrojen sabitleyici Clostridium pasteurianum ve bir nitrojen sabitleyici olmayan Aquifex aeolicus'tan elde edilen [2Fe-2S] ferredoksinlerin dizilerine benzemektedir. Bu bulgular, FeSI geninin Azotobacter vinelandii CA6'daki majör nif gen kümesinde bulunmasına rağmen hiçbir kanıt olmadığı için FeSI'in nitrojen fiksasyonuna dahil olabileceğini veya olmayabileceğini düşündürmektedir. Bu çalışma, FeSI'in nitrojen fiksasyonundaki işlevini ve diğer [2Fe-2S] proteinleri ile olan ilişkilerini anlamak için faydalı olacaktır.

Project Number

118C225

References

  • Appel, J., and Schulz, R. 1996. Sequence analysis of an operon of a NAD(P)-reducing nickel hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 gives additional evidence for direct coupling of the enzyme to NAD(P)H-dehydrogenase (complex I). Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1298(2), 141-147. https://doi.org/10.1016/S0167-4838(96)00176-8
  • Chatelet, C, Gaillard, J., Pétillot, Y., Louwagie, M., and Meyer, J. 1999. A [2Fe-2S] protein from the hyperthermophilic bacterium Aquifex aeolicus. Biochemical and Biophysical Research Communications, 261(3), 885–889. https://doi.org/10.1006/bbrc.1999.1138
  • Chatelet, Claire, and Meyer, J. 1999. The [2Fe-2S] protein I (Shetna protein I) from Azotobacter vinelandii is homologous to the [2Fe-2S] ferredoxin from Clostridium pasteurianum. Journal of Biological Inorganic Chemistry, 4(3), 311–317. https://doi.org/10.1007/s007750050317
  • De Luca, G., Asso, M., Bélaïch, J. P., and Dermoun, Z. 1998. Purification and characterization of the HndA subunit of NADP-reducing hydrogenase from Desulfovibrio fructosovorans overproduced in Escherichia coli. Biochemistry, 37(8), 2660-2665. https://doi.org/10.1021/bi972474p
  • Dean, D. R., Bolin, J. T., and Zheng, L. 1993. Nitrogenase metalloclusters: Structures, organization, and synthesis. Journal of Bacteriology, 175(21), 6737-6744.
  • Gibson, D. G. 2011. Enzymatic assembly of overlapping DNA fragments. In Methods in Enzymology, 498, 349-361. https://doi.org/10.1016/B978-0-12-385120-8.00015-2
  • Golinelli, M. P., Gagnon, J., and Meyer, J. 1997. Specific interaction of the [2Fe-2S] ferredoxin from clostridium pasteurianum with the nitrogenase MoFe protein. Biochemistry, 36(39), 11797-11803. https://doi.org/10.1021/bi970528p
  • Kabasakal, B. V., Cotton, C. A. R., and Murray, J. W. 2021. Crystal structure of the [2Fe-2S] protein i (Shethna protein I) from Azotobacter vinelandii. Acta Crystallographica Section F: Structural Biology Communications, 77, 407-411. https://doi.org/10.1107/S2053230X21009936
  • Meyer, J., Fujinaga, J., Gaillard, J., and Lutz, M. 1994. Mutated Forms of the [2Fe-2S] Ferredoxin from Clostridium pasteurianum with Noncysteinyl Ligands to the Iron—Sulfur Cluster. Biochemistry, 33(46), 13642-13650. https://doi.org/10.1021/bi00250a014
  • Moshiri, F., Kim, J. W., Fu, C., and Maier, R. J. 1994. The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation, but confers significant protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo. Molecular Microbiology, 14(1), 101–114.
  • Peters, J. W., Fisher, K., and Dean, D. R. 1995. Nitrogenase structure and function: a biochemical-genetic perspective. Annual Review of Microbiology, 49, 335–366. https://doi.org/10.1146/annurev.micro.49.1.335
  • Rapson, T. D., Gregg, C. M., Allen, R. S., Ju, H. K., Doherty, C. M., Mulet, X., … Wood, C. C. 2020. Insights into Nitrogenase Bioelectrocatalysis for Green Ammonia Production. ChemSusChem. 13 (18), 4856-4865. https://doi.org/10.1002/cssc.202001433
  • Robson, R. L. 1979. Characterization of an oxygen-stable nitrogenase complex isolated from Azotobacter chroococcum. Biochemical Journal, 181(3), 569-575. https://doi.org/10.1042/bj1810569
  • Saarinen, M., Gleason, F. K., and Eklund, H. 1995. Crystal structure of thioredoxin-2 from Anabaena. Structure, 3(10), 1097-1108. https://doi.org/10.1016/S0969-2126(01)00245-3
  • Schlesier, J., Rohde, M., Gerhardt, S., and Einsle, O. 2016. A Conformational Switch Triggers Nitrogenase Protection from Oxygen Damage by Shethna Protein II (FeSII). Journal of the American Chemical Society,138(1), 239-247. https://doi.org/10.1021/jacs.5b10341
  • Setubal, J. C., Dos Santos, P., Goldman, B. S., Ertesvåg, H., Espin, G., Rubio, L. M., … Wood, D. 2009. Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. Journal of Bacteriology, 191(14), 4534-4545. https://doi.org/10.1128/JB.00504-09
  • Shethna, Y. I., DerVartanian, D. V., and Beinert, H. 1968. Non heme (iron-sulfur) proteins of Azotobacter vinelandii. Biochemical and Biophysical Research Communications,31(6), 862-868. https://doi.org/10.1016/0006-291X(68)90531-7
  • Shethna, Y. I., Wilson, P. W., Hansen, R. E., and Beinert, H. 1964. Identification by Isotopic Substitution of the EPR signal at g = 1.94 in a non-heme iron protein from Azotobacter. Proceedings of the National Academy of Sciences, 52(5), 1263-1271. https://doi.org/10.1073/pnas.52.5.1263
  • Yano, T., Yagi, T., Sled’, V. D., and Ohnishi, T. 1994. Expression of the 25-Kilodalton Iron-Sulfur Subunit of the Energy-Transducing NADH-Ubiquinone Oxidoreductase of Paracoccus denitrificans. Biochemistry,33(2), 494-499. https://doi.org/10.1021/bi00168a014
  • Yeh, A. P., Chatelet, C., Soltis, S. M., Kuhn, P., Meyer, J., and Rees, D. C. 2000. Structure of a thioredoxin-like [2Fe-2S] ferredoxin from Aquifex aeolicus. Journal of Molecular Biology, 300(3), 587–595. https://doi.org/10.1006/jmbi.2000.3871
  • Zehr, J. P., and Capone, D. G. 2021. Fundamentals of N2 Fixation. In Marine Nitrogen Fixation. Springer, Cham. https://doi.org/10.1007/978-3-030-67746-6_2, 9-29.
There are 21 citations in total.

Details

Primary Language English
Subjects Structural Biology, Industrial Biotechnology
Journal Section Articles
Authors

Burak Kabasakal 0000-0003-3001-9282

Project Number 118C225
Publication Date June 30, 2022
Submission Date June 1, 2022
Published in Issue Year 2022 Volume: 22 Issue: 3

Cite

APA Kabasakal, B. (2022). Cloning, Overexpression and Characterization of the FeSI Protein from Azotobacter vinelandii CA6. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(3), 470-476. https://doi.org/10.35414/akufemubid.1124731
AMA Kabasakal B. Cloning, Overexpression and Characterization of the FeSI Protein from Azotobacter vinelandii CA6. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. June 2022;22(3):470-476. doi:10.35414/akufemubid.1124731
Chicago Kabasakal, Burak. “Cloning, Overexpression and Characterization of the FeSI Protein from Azotobacter Vinelandii CA6”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 3 (June 2022): 470-76. https://doi.org/10.35414/akufemubid.1124731.
EndNote Kabasakal B (June 1, 2022) Cloning, Overexpression and Characterization of the FeSI Protein from Azotobacter vinelandii CA6. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 3 470–476.
IEEE B. Kabasakal, “Cloning, Overexpression and Characterization of the FeSI Protein from Azotobacter vinelandii CA6”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 3, pp. 470–476, 2022, doi: 10.35414/akufemubid.1124731.
ISNAD Kabasakal, Burak. “Cloning, Overexpression and Characterization of the FeSI Protein from Azotobacter Vinelandii CA6”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/3 (June 2022), 470-476. https://doi.org/10.35414/akufemubid.1124731.
JAMA Kabasakal B. Cloning, Overexpression and Characterization of the FeSI Protein from Azotobacter vinelandii CA6. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:470–476.
MLA Kabasakal, Burak. “Cloning, Overexpression and Characterization of the FeSI Protein from Azotobacter Vinelandii CA6”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 3, 2022, pp. 470-6, doi:10.35414/akufemubid.1124731.
Vancouver Kabasakal B. Cloning, Overexpression and Characterization of the FeSI Protein from Azotobacter vinelandii CA6. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(3):470-6.