Research Article
BibTex RIS Cite

Kollektif Etkilerin Nötron Yakalama Reaksiyon Tesir Kesiti Üzerindeki Rolü

Year 2022, Volume: 22 Issue: 4, 730 - 737, 31.08.2022
https://doi.org/10.35414/akufemubid.1097069

Abstract

Nötron yakalama reaksiyonu, çekirdeğin yapısal özelliklerinin belirlenmesini ve yakalama reaksiyon mekanizmaları hakkında detaylı bilgi sahibi olunmasını sağlayan önemli reaksiyonlardan bir tanesidir. Bu çalışmada, nötron yakalama reaksiyonu olan 89Y(n,g)90Y reaksiyonuna ait tesir kesiti değerleri farklı seviye yoğunluğu modelleri kullanılarak 10 MeV gelen parçacık enerjisine kadar TALYS bilgisayar kodu ile hesaplanmıştır. Hesaplamalarda, geri kaydırılmış Fermi gaz modeli (Back-Shifted Fermi Gas Model-BSFGM), sabit sıcaklık modeli (Constant Temperature Model-CTM), genelleştirilmiş süperakışkan model (Generalized Superfluid Model-GSM) ve kollektif yarı-klasik Fermi gaz modeli (Collective Semi Classical Fermi Gas Model-CSCFGM) tercih edilmiştir. Elde edilen sonuçlar deneysel veri tabanından alınan veriler ile karşılaştırılmıştır. Ayrıca, modellere ait kalite faktörleri tablo halinde sunulmuştur. Yapılan hesaplamalar sonucunda kollektif etkileri en temelde hesaba dahil eden CSCFGM modelin deneysel verileri tekrar sağlamada daha başarılı olduğu ve kollektif etkilerin nötron yakalama reaksiyon tesir kesitleri üzerinde baskın rol oynadığı sunulmuştur. Dolayısıyla, ileride yapılacak olan nötron yakalama reaksiyon analizlerinde CSCFGM’nin kullanılabilecek bir model olduğu ortaya konmuştur.

References

  • Aydin, A., Tel, E., Kaplan, A., 2008. Calculation of 14–15 MeV (n, d) reaction cross sections using newly evaluated empirical and semi-empirical systematics. Journal of Fusion Energy, 27(4), 308-313.
  • Benoist, P., Kowarski, L., Netter, F., 1951. Mesures d'absorption des neutrons thermiques par la modulation d'une pile. Journal of Physics Radium, 12(5), 584-589.
  • Bethe, H. A., 1937. Nuclear physics B. Nuclear dynamics, theoretical. Reviews of Modern Physics, 9(2), 69. Booth, R., Ball, W. P., MacGregor, M., H. 1958. Neutron activation cross sections at 25 keV. Physical Review, 112(1), 226.
  • Canbula, B., Bulur, R., Canbula, D., Babacan, H., 2014. A Laplace-like formula for the energy dependence of the nuclear level density parameter. Nuclear Physics A, 929, 54-70.
  • Canbula, B., 2017a. Collective effects in deuteron induced reactions of aluminum. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 391, 73-77.
  • Canbula, B., 2017b. Bazı tellür izotoplarının nötron yakalama tesir kesiti analizi. Celal Bayar University Journal of Science, 13(2), 445-455.
  • Canbula, B., 2020a. 55Mn İzotopunun fotonükleer tesir kesitleri üzerinde kollektif nükleer seviye yoğunluğunun etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1), 138-142.
  • Canbula, D., 2020b. Cross section analysis of proton-induced nuclear reactions of thorium. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 478, 229-232.
  • Canbula, D., 2021. Hafif Nadir Toprak Elementi 144Sm İzotopunun Fotonükleer Tesir Kesiti Hesabı. International Journal of Pure and Applied Sciences, 7(2), 314-320.
  • Capote, R., Herman, M., Obložinský, P., Young, P. G., Goriely, S., Belgya, T., ... Reffo, G., 2009. RIPL–reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nuclear Data Sheets, 110(12), 3107-3214.
  • Csikai, J., Petö, G., Buczko, M., Miligy, Z., Eissa, N. A., 1967. Radiative capture cross sections for 14.7 MeV neutrons. Nuclear Physics A, 95(1), 229-234.
  • Demetriou, P., Goriely, S., 2001. Microscopic nuclear level densities for practical applications. Nuclear Physics A, 695(1-4), 95-108.
  • Dilg, W., Schantl, W., Vonach, H., Uhl, M., 1973. Level density parameters for the back-shifted fermi gas model in the mass range 40< A< 250. Nuclear Physics A, 217(2), 269-298.
  • Diven, B. C., Terrell, J., Hemmendinger, A., 1960. Radiative capture cross sections for fast neutrons. Physical Review, 120(2), 556.
  • Gandhi, A., Sharma, A., Kumar, A., Pachuau, R., Lalremruata, B., Suryanarayana, S. V., ... Nayak, B. K., 2020. Measurement of (n, γ),(n, p), and (n, 2 n) reaction cross sections for sodium, potassium, copper, and iodine at neutron energy 14.92±0.02 MeV with covariance analysis. Physical Review C, 102(1), 014603.
  • Gandhi, A., Sharma, A., Pachuau, R., Singh, N., Patil, P. N., Mehta, M., ... Kumar, A., 2021. Neutron capture reaction cross section measurement for iodine nucleus with detailed uncertainty quantification. The European Physical Journal Plus, 136(8), 1-17.
  • Gibbons, J. H., Macklin, R. L., Miller, P. D., Neiler, J. H., 1961. Average radiative capture cross sections for 7-to 170-keV neutrons. Physical Review, 122(1), 182.
  • Gilbert, A., ve Cameron, A. G. W., 1965. A composite nuclear-level density formula with shell corrections. Canadian Journal of Physics, 43(8), 1446-1496.
  • Hauser, W., Feshbach, H., 1952. The inelastic scattering of neutrons. Physical review, 87(2), 366.
  • Hilaire, S., Goriely, S., 2006. Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications. Nuclear Physics A, 779, 63-81.
  • Ignatyuk, A. V., 1975. Contribution of collective motions to density of excited-states of a nucleus. Soviet Journal of Nuclear Physics-Ussr, 21(1), 10-14.
  • Ignatyuk, A. V., Smirenkin, G. N., Tishin, A. S., 1975. Phenomenological description of energy dependence of the level density parameter. Yadernaya Fizika, 21(3), 485-490.
  • Kaplan, A., Büyükuslu, H., Tel, E., Aydin, A., Bölükdemir, M. H., 2011. Investigation of the neutron emission spectra of some deformed nuclei for (n, xn) reactions up to 26 MeV energy. Indian Journal of Physics, 85(11), 1615-1629.
  • Kaplan, A., Şekerci, M., Demir, B., 2018, August. Neutron production cross–section calculations for some gamma and proton induced reactions on 89Y. In AIP Conference Proceedings (Vol. 1994, No. 1, p. 020009). AIP Publishing LLC.
  • Koning, A.J., Hilaire, S., Duijvestijn, M.C., 2019. TALYS 1.95 A nuclear reaction program. http://www.talys.eu/
  • Krusche, B., Lieb, K. P., 1986. Dipole transition strengths and level densities in A≤ 80 odd-odd nuclei obtained from thermal neutron capture. Physical Review C, 34(6), 2103.
  • Macklin, R. L., Gibbons, J. H., Inada, T., 1963. Neutron capture cross sections near 30 keV using a Moxon-Rae detector. Nuclear Physics, 43, 353-362.
  • Macklin, R. L., ve Gibbons, J. H., 1967. Capture-cross-section studies for 30—220-keV neutrons using a new technique. Physical Review, 159(4), 1007.
  • Makwana, R., Mukherjee, S., Mishra, P., Naik, H., Singh, N. L., Mehta, M., ... , Khirwadkar, S., 2017. Measurements of the cross sections of the W 186 (n, γ) W 187, W 182 (n, p) Ta 182, Gd 154 (n, 2 n) Gd 153, and Gd 160 (n, 2 n) Gd 159 reactions at neutron energies of 5 to 17 MeV. Physical Review C, 96(2), 024608.
  • Möller, P., Sierk, A. J., Ichikawa, T., Iwamoto, A., Bengtsson, R., Uhrenholt, H., Åberg, S., 2009. Heavy-element fission barriers. Physical Review C, 79(6), 064304.
  • Mulik, V. K., Naik, H., Suryanarayana, S. V., Dhole, S. D., Prajapati, P. M., Shivashankar, B. S., ... Goswami, A., 2013. Measurement of 56Fe (n, p) 56Mn reaction cross-section at E n= 5.9, 9.85, 14.8 and 15.5 MeV. Journal of Radioanalytical and Nuclear Chemistry, 296(3), 1321-1329.
  • Nerlo-Pomorska, B., Pomorski, K., Bartel, J., Dietrich, K., 2002. Nuclear level densities within the relativistic mean-field theory. Physical Review C, 66(5), 051302.
  • Nerlo-Pomorska, B., Pomorski, K., Bartel, J., 2006. Shell energy and the level-density parameter of hot nuclei. Physical Review C, 74(3), 034327.
  • Newton, T. D., 1956. Shell effects on the spacing of nuclear levels. Canadian Journal of Physics, 34(8), 804-829.
  • Otuka, N., Dupont, E., Semkova, V., Pritychenko, B., Blokhin, A. I., Aikawa, M., ... Lalremruata, B., 2014. Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC). Nuclear Data Sheets, 120, 272-276.
  • Özdoğan, H., Şekerci, M., Sarpün, İ. H., Kaplan, A., 2018. Investigation of level density parameter effects on (p, n) and (p, 2n) reaction cross–sections for the fusion structural materials 48Ti, 63Cu and 90Zr. Applied Radiation and Isotopes, 140, 29-34.
  • Özdoğan, H., Şekerci, M., Kaplan, A., 2020. An Investigation on the Effects of Some Theoretical Models in the Cross-Section Calculations of $${}^{50, 52, 53, 54} $$ Cr ($${\alpha, x} $$) Reactions. Physics of Atomic Nuclei, 83(6), 820-827.
  • Özdoğan, H., Şekerci, M., Kaplan, A., 2021. Production cross–section and reaction yield calculations for 123-126I isotopes on 123Sb (α, xn) reactions. Kuwait Journal of Science, 48(2).
  • Özdoğan, H., Üncü, Y. A., Şekerci, M., Kaplan, A., 2021. A study on the estimations of (n, t) reaction cross-sections at 14.5 MeV by using artificial neural network. Modern Physics Letters A, 36(23), 2150168.
  • Perkin, J. L., O'connor, L. P., Coleman, R. F., 1958. Radiative capture cross sections for 14.5 MeV neutrons. Proceedings of the Physical Society (1958-1967), 72(4), 505.
  • Quesada Molina, J. M., Lederer, C., Massimi, C., Altstadt, S. G., Andrzejewski, J., Audouin, L., ... , Bécares, V., 2013. Neutron capture cross section of unstable 63Ni: implications for stellar nucleosynthesis. Physical Review Letters, 110 (2), 022501-1-022501-5.
  • Rauscher, T., Thielemann, F. K., Kratz, K. L., 1997. Nuclear level density and the determination of thermonuclear rates for astrophysics. Physical Review C, 56(3), 1613.
  • Rauscher, T., Thielemann, F. K., 2000. Astrophysical reaction rates from statistical model calculations. arXiv preprint astro-ph/0004059.
  • Rigaud, F., Roturier, J., Irigaray, J. L., Petit, G. Y., Longo, G., Saporetti, F., 1970. Radiative neutron capture on Si, Rb, Sr and Y in the dipole giant resonance region. Nuclear Physics A, 154(2), 243-260.
  • Ronen, Y., Aboudy, M., Regev, D., 2001. Homogeneous 242 m Am-Fueled Reactor for Neutron Capture Therapy. Nuclear science and engineering, 138(3), 295-304.
  • Ryves, T. B., 1971. Further activation thermal neutron capture cross sections and resonance integrals. National Physical Lab., Teddington, Eng.
  • Santoro, A., Iljadica, F., Cohen, I. M., 2013. The production of 172Tm by triple neutron capture in nuclear reactors. Journal of Radioanalytical and Nuclear Chemistry, 298(3), 1973-1976.
  • Sarpün, İ. H., Özdoğan, H., Taşdöven, K., Yalim, H. A., Kaplan, A., 2019. Theoretical photoneutron cross-section calculations on Osmium isotopes by Talys and Empire codes. Modern Physics Letters A, 34(26), 1950210.
  • Stupegia, D. C., Schmidt, M., Keedy, C. R., Madson, A. A., 1968. Neutron capture between 5 keV and 3 MeV. Journal of Nuclear Energy, 22(5), 267-281.
  • Şekerci, M., Özdoğan, H., Kaplan, A., 2019. Investigation on the different production routes of 67Ga radioisotope by using different level density models. Moscow University Physics Bulletin, 74(3), 277-281.
  • Şekerci, M., Özdoğan, H., Kaplan, A., 2020. Level density model effects on the production cross-section calculations of some medical isotopes via (α, xn) reactions where x= 1–3. Modern Physics Letters A, 35(24), 2050202.
  • Tagliente, G., Milazzo, P. M., Fujii, K., Abbondanno, U., Aerts, G., Alvarez, H., ..., n_TOF Collaboration, 2010. The Zr 92 (n, γ) reaction and its implications for stellar nucleosynthesis. Physical Review C, 81(5), 055801.
  • Tel, E., Aydın, A., Kaplan, A., Şarer, B., 2008. Investigation of 14–15 MeV (n, t) Reaction Cross-sections by Using New Evaluated Empirical and Semi-empirical Systematic Formulas. Journal of Fusion Energy, 27(3), 188-194.
  • Watanabe, T., Kawano, T., Chadwick, M. B., Nelson, R. O., Hilaire, S., Bauge, E., Dossantos-Uzarralde, P., 2010. Calculation of prompt fission product average cross sections for neutron-induced fission of 235U and 239Pu. Journal of Nuclear Science and Technology, 47(5), 478-481.
  • Voignier, J., Joly, S., Grenier, G., 1992. Capture cross sections and gamma-ray spectra from the interaction of 0.5-to 3.0-MeV neutrons with nuclei in the mass range A= 45 to 238. Nuclear Science and Engineering, 112(1), 87-94.
  • Von Egidy, T., Schmidt, H. H., Behkami, A. N., 1988. Nuclear level densities and level spacing distributions: Part II. Nuclear Physics A, 481(2), 189-206.

Role of the Collective Effects on Neutron Capture Reaction Cross Section

Year 2022, Volume: 22 Issue: 4, 730 - 737, 31.08.2022
https://doi.org/10.35414/akufemubid.1097069

Abstract

The neutron capture reaction is one of the important reactions that provides the determination of the structural properties of the nucleus and detailed information about the capture reaction mechanisms. In this study, cross section values of 89Y(n,g)90Y reaction, which is a neutron capture reaction, were calculated with TALYS computer code up to 10 MeV incident particle energy using different level density models. In the calculations, back-shifted Fermi gas model (BSFGM), constant temperature model (CTM), generalized superfluid model (GSM), and collective semi-classical Fermi gas model (CSCFGM) were preferred. The obtained results were compared with the data taken from the experimental database. In addition, the quality factors of the models were presented in the table. As a result of the calculations, it has been presented that the CSCFGM, which takes the collective effects into account basically, is more successful model to reproduce the experimental data and that the collective effects play a dominant role on the neutron capture reaction cross sections. Therefore, it has been demonstrated that CSCFGM is a model, which can be used for neutron capture reaction analyses in the future.

References

  • Aydin, A., Tel, E., Kaplan, A., 2008. Calculation of 14–15 MeV (n, d) reaction cross sections using newly evaluated empirical and semi-empirical systematics. Journal of Fusion Energy, 27(4), 308-313.
  • Benoist, P., Kowarski, L., Netter, F., 1951. Mesures d'absorption des neutrons thermiques par la modulation d'une pile. Journal of Physics Radium, 12(5), 584-589.
  • Bethe, H. A., 1937. Nuclear physics B. Nuclear dynamics, theoretical. Reviews of Modern Physics, 9(2), 69. Booth, R., Ball, W. P., MacGregor, M., H. 1958. Neutron activation cross sections at 25 keV. Physical Review, 112(1), 226.
  • Canbula, B., Bulur, R., Canbula, D., Babacan, H., 2014. A Laplace-like formula for the energy dependence of the nuclear level density parameter. Nuclear Physics A, 929, 54-70.
  • Canbula, B., 2017a. Collective effects in deuteron induced reactions of aluminum. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 391, 73-77.
  • Canbula, B., 2017b. Bazı tellür izotoplarının nötron yakalama tesir kesiti analizi. Celal Bayar University Journal of Science, 13(2), 445-455.
  • Canbula, B., 2020a. 55Mn İzotopunun fotonükleer tesir kesitleri üzerinde kollektif nükleer seviye yoğunluğunun etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1), 138-142.
  • Canbula, D., 2020b. Cross section analysis of proton-induced nuclear reactions of thorium. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 478, 229-232.
  • Canbula, D., 2021. Hafif Nadir Toprak Elementi 144Sm İzotopunun Fotonükleer Tesir Kesiti Hesabı. International Journal of Pure and Applied Sciences, 7(2), 314-320.
  • Capote, R., Herman, M., Obložinský, P., Young, P. G., Goriely, S., Belgya, T., ... Reffo, G., 2009. RIPL–reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nuclear Data Sheets, 110(12), 3107-3214.
  • Csikai, J., Petö, G., Buczko, M., Miligy, Z., Eissa, N. A., 1967. Radiative capture cross sections for 14.7 MeV neutrons. Nuclear Physics A, 95(1), 229-234.
  • Demetriou, P., Goriely, S., 2001. Microscopic nuclear level densities for practical applications. Nuclear Physics A, 695(1-4), 95-108.
  • Dilg, W., Schantl, W., Vonach, H., Uhl, M., 1973. Level density parameters for the back-shifted fermi gas model in the mass range 40< A< 250. Nuclear Physics A, 217(2), 269-298.
  • Diven, B. C., Terrell, J., Hemmendinger, A., 1960. Radiative capture cross sections for fast neutrons. Physical Review, 120(2), 556.
  • Gandhi, A., Sharma, A., Kumar, A., Pachuau, R., Lalremruata, B., Suryanarayana, S. V., ... Nayak, B. K., 2020. Measurement of (n, γ),(n, p), and (n, 2 n) reaction cross sections for sodium, potassium, copper, and iodine at neutron energy 14.92±0.02 MeV with covariance analysis. Physical Review C, 102(1), 014603.
  • Gandhi, A., Sharma, A., Pachuau, R., Singh, N., Patil, P. N., Mehta, M., ... Kumar, A., 2021. Neutron capture reaction cross section measurement for iodine nucleus with detailed uncertainty quantification. The European Physical Journal Plus, 136(8), 1-17.
  • Gibbons, J. H., Macklin, R. L., Miller, P. D., Neiler, J. H., 1961. Average radiative capture cross sections for 7-to 170-keV neutrons. Physical Review, 122(1), 182.
  • Gilbert, A., ve Cameron, A. G. W., 1965. A composite nuclear-level density formula with shell corrections. Canadian Journal of Physics, 43(8), 1446-1496.
  • Hauser, W., Feshbach, H., 1952. The inelastic scattering of neutrons. Physical review, 87(2), 366.
  • Hilaire, S., Goriely, S., 2006. Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications. Nuclear Physics A, 779, 63-81.
  • Ignatyuk, A. V., 1975. Contribution of collective motions to density of excited-states of a nucleus. Soviet Journal of Nuclear Physics-Ussr, 21(1), 10-14.
  • Ignatyuk, A. V., Smirenkin, G. N., Tishin, A. S., 1975. Phenomenological description of energy dependence of the level density parameter. Yadernaya Fizika, 21(3), 485-490.
  • Kaplan, A., Büyükuslu, H., Tel, E., Aydin, A., Bölükdemir, M. H., 2011. Investigation of the neutron emission spectra of some deformed nuclei for (n, xn) reactions up to 26 MeV energy. Indian Journal of Physics, 85(11), 1615-1629.
  • Kaplan, A., Şekerci, M., Demir, B., 2018, August. Neutron production cross–section calculations for some gamma and proton induced reactions on 89Y. In AIP Conference Proceedings (Vol. 1994, No. 1, p. 020009). AIP Publishing LLC.
  • Koning, A.J., Hilaire, S., Duijvestijn, M.C., 2019. TALYS 1.95 A nuclear reaction program. http://www.talys.eu/
  • Krusche, B., Lieb, K. P., 1986. Dipole transition strengths and level densities in A≤ 80 odd-odd nuclei obtained from thermal neutron capture. Physical Review C, 34(6), 2103.
  • Macklin, R. L., Gibbons, J. H., Inada, T., 1963. Neutron capture cross sections near 30 keV using a Moxon-Rae detector. Nuclear Physics, 43, 353-362.
  • Macklin, R. L., ve Gibbons, J. H., 1967. Capture-cross-section studies for 30—220-keV neutrons using a new technique. Physical Review, 159(4), 1007.
  • Makwana, R., Mukherjee, S., Mishra, P., Naik, H., Singh, N. L., Mehta, M., ... , Khirwadkar, S., 2017. Measurements of the cross sections of the W 186 (n, γ) W 187, W 182 (n, p) Ta 182, Gd 154 (n, 2 n) Gd 153, and Gd 160 (n, 2 n) Gd 159 reactions at neutron energies of 5 to 17 MeV. Physical Review C, 96(2), 024608.
  • Möller, P., Sierk, A. J., Ichikawa, T., Iwamoto, A., Bengtsson, R., Uhrenholt, H., Åberg, S., 2009. Heavy-element fission barriers. Physical Review C, 79(6), 064304.
  • Mulik, V. K., Naik, H., Suryanarayana, S. V., Dhole, S. D., Prajapati, P. M., Shivashankar, B. S., ... Goswami, A., 2013. Measurement of 56Fe (n, p) 56Mn reaction cross-section at E n= 5.9, 9.85, 14.8 and 15.5 MeV. Journal of Radioanalytical and Nuclear Chemistry, 296(3), 1321-1329.
  • Nerlo-Pomorska, B., Pomorski, K., Bartel, J., Dietrich, K., 2002. Nuclear level densities within the relativistic mean-field theory. Physical Review C, 66(5), 051302.
  • Nerlo-Pomorska, B., Pomorski, K., Bartel, J., 2006. Shell energy and the level-density parameter of hot nuclei. Physical Review C, 74(3), 034327.
  • Newton, T. D., 1956. Shell effects on the spacing of nuclear levels. Canadian Journal of Physics, 34(8), 804-829.
  • Otuka, N., Dupont, E., Semkova, V., Pritychenko, B., Blokhin, A. I., Aikawa, M., ... Lalremruata, B., 2014. Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC). Nuclear Data Sheets, 120, 272-276.
  • Özdoğan, H., Şekerci, M., Sarpün, İ. H., Kaplan, A., 2018. Investigation of level density parameter effects on (p, n) and (p, 2n) reaction cross–sections for the fusion structural materials 48Ti, 63Cu and 90Zr. Applied Radiation and Isotopes, 140, 29-34.
  • Özdoğan, H., Şekerci, M., Kaplan, A., 2020. An Investigation on the Effects of Some Theoretical Models in the Cross-Section Calculations of $${}^{50, 52, 53, 54} $$ Cr ($${\alpha, x} $$) Reactions. Physics of Atomic Nuclei, 83(6), 820-827.
  • Özdoğan, H., Şekerci, M., Kaplan, A., 2021. Production cross–section and reaction yield calculations for 123-126I isotopes on 123Sb (α, xn) reactions. Kuwait Journal of Science, 48(2).
  • Özdoğan, H., Üncü, Y. A., Şekerci, M., Kaplan, A., 2021. A study on the estimations of (n, t) reaction cross-sections at 14.5 MeV by using artificial neural network. Modern Physics Letters A, 36(23), 2150168.
  • Perkin, J. L., O'connor, L. P., Coleman, R. F., 1958. Radiative capture cross sections for 14.5 MeV neutrons. Proceedings of the Physical Society (1958-1967), 72(4), 505.
  • Quesada Molina, J. M., Lederer, C., Massimi, C., Altstadt, S. G., Andrzejewski, J., Audouin, L., ... , Bécares, V., 2013. Neutron capture cross section of unstable 63Ni: implications for stellar nucleosynthesis. Physical Review Letters, 110 (2), 022501-1-022501-5.
  • Rauscher, T., Thielemann, F. K., Kratz, K. L., 1997. Nuclear level density and the determination of thermonuclear rates for astrophysics. Physical Review C, 56(3), 1613.
  • Rauscher, T., Thielemann, F. K., 2000. Astrophysical reaction rates from statistical model calculations. arXiv preprint astro-ph/0004059.
  • Rigaud, F., Roturier, J., Irigaray, J. L., Petit, G. Y., Longo, G., Saporetti, F., 1970. Radiative neutron capture on Si, Rb, Sr and Y in the dipole giant resonance region. Nuclear Physics A, 154(2), 243-260.
  • Ronen, Y., Aboudy, M., Regev, D., 2001. Homogeneous 242 m Am-Fueled Reactor for Neutron Capture Therapy. Nuclear science and engineering, 138(3), 295-304.
  • Ryves, T. B., 1971. Further activation thermal neutron capture cross sections and resonance integrals. National Physical Lab., Teddington, Eng.
  • Santoro, A., Iljadica, F., Cohen, I. M., 2013. The production of 172Tm by triple neutron capture in nuclear reactors. Journal of Radioanalytical and Nuclear Chemistry, 298(3), 1973-1976.
  • Sarpün, İ. H., Özdoğan, H., Taşdöven, K., Yalim, H. A., Kaplan, A., 2019. Theoretical photoneutron cross-section calculations on Osmium isotopes by Talys and Empire codes. Modern Physics Letters A, 34(26), 1950210.
  • Stupegia, D. C., Schmidt, M., Keedy, C. R., Madson, A. A., 1968. Neutron capture between 5 keV and 3 MeV. Journal of Nuclear Energy, 22(5), 267-281.
  • Şekerci, M., Özdoğan, H., Kaplan, A., 2019. Investigation on the different production routes of 67Ga radioisotope by using different level density models. Moscow University Physics Bulletin, 74(3), 277-281.
  • Şekerci, M., Özdoğan, H., Kaplan, A., 2020. Level density model effects on the production cross-section calculations of some medical isotopes via (α, xn) reactions where x= 1–3. Modern Physics Letters A, 35(24), 2050202.
  • Tagliente, G., Milazzo, P. M., Fujii, K., Abbondanno, U., Aerts, G., Alvarez, H., ..., n_TOF Collaboration, 2010. The Zr 92 (n, γ) reaction and its implications for stellar nucleosynthesis. Physical Review C, 81(5), 055801.
  • Tel, E., Aydın, A., Kaplan, A., Şarer, B., 2008. Investigation of 14–15 MeV (n, t) Reaction Cross-sections by Using New Evaluated Empirical and Semi-empirical Systematic Formulas. Journal of Fusion Energy, 27(3), 188-194.
  • Watanabe, T., Kawano, T., Chadwick, M. B., Nelson, R. O., Hilaire, S., Bauge, E., Dossantos-Uzarralde, P., 2010. Calculation of prompt fission product average cross sections for neutron-induced fission of 235U and 239Pu. Journal of Nuclear Science and Technology, 47(5), 478-481.
  • Voignier, J., Joly, S., Grenier, G., 1992. Capture cross sections and gamma-ray spectra from the interaction of 0.5-to 3.0-MeV neutrons with nuclei in the mass range A= 45 to 238. Nuclear Science and Engineering, 112(1), 87-94.
  • Von Egidy, T., Schmidt, H. H., Behkami, A. N., 1988. Nuclear level densities and level spacing distributions: Part II. Nuclear Physics A, 481(2), 189-206.
There are 56 citations in total.

Details

Primary Language Turkish
Subjects Nuclear Physics
Journal Section Articles
Authors

Deniz Canbula 0000-0003-0283-2698

Publication Date August 31, 2022
Submission Date April 1, 2022
Published in Issue Year 2022 Volume: 22 Issue: 4

Cite

APA Canbula, D. (2022). Kollektif Etkilerin Nötron Yakalama Reaksiyon Tesir Kesiti Üzerindeki Rolü. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(4), 730-737. https://doi.org/10.35414/akufemubid.1097069
AMA Canbula D. Kollektif Etkilerin Nötron Yakalama Reaksiyon Tesir Kesiti Üzerindeki Rolü. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. August 2022;22(4):730-737. doi:10.35414/akufemubid.1097069
Chicago Canbula, Deniz. “Kollektif Etkilerin Nötron Yakalama Reaksiyon Tesir Kesiti Üzerindeki Rolü”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 4 (August 2022): 730-37. https://doi.org/10.35414/akufemubid.1097069.
EndNote Canbula D (August 1, 2022) Kollektif Etkilerin Nötron Yakalama Reaksiyon Tesir Kesiti Üzerindeki Rolü. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 4 730–737.
IEEE D. Canbula, “Kollektif Etkilerin Nötron Yakalama Reaksiyon Tesir Kesiti Üzerindeki Rolü”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 4, pp. 730–737, 2022, doi: 10.35414/akufemubid.1097069.
ISNAD Canbula, Deniz. “Kollektif Etkilerin Nötron Yakalama Reaksiyon Tesir Kesiti Üzerindeki Rolü”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/4 (August 2022), 730-737. https://doi.org/10.35414/akufemubid.1097069.
JAMA Canbula D. Kollektif Etkilerin Nötron Yakalama Reaksiyon Tesir Kesiti Üzerindeki Rolü. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:730–737.
MLA Canbula, Deniz. “Kollektif Etkilerin Nötron Yakalama Reaksiyon Tesir Kesiti Üzerindeki Rolü”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 4, 2022, pp. 730-7, doi:10.35414/akufemubid.1097069.
Vancouver Canbula D. Kollektif Etkilerin Nötron Yakalama Reaksiyon Tesir Kesiti Üzerindeki Rolü. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(4):730-7.