Research Article
BibTex RIS Cite

Güneydoğu Anadolu Bölgesi’nde Rezervuar Kayacı Olan Dolomitlerin Kümelenmiş İzotop Sinyalleri

Year 2022, Volume: 22 Issue: 4, 925 - 943, 31.08.2022
https://doi.org/10.35414/akufemubid.1105170

Abstract

Yeni nesil bir jeotermometre yöntemi olan kümelemiş izotop tekniği derin gömülmüş kayaçların diyajenetik süreçlerinin iyi anlaşılması kabiliyetine sahiptir. Bu yöntem kullanılarak, Kambriyen-Eosen yaş aralığındaki altı birimden, ~1-3.2 km gömülme derinliğine sahip toplamda 28 adet dolomit üzerinde ölçüm yapılmıştır. Bu çalışmada, bölgesel olarak seçilmiş Güneydoğu Anadolu rezervuarlarının karot ve sondaj kesintilerinden elde edilen dolomit örneklerinin paleosıcaklıkları ve dolomitleşme sularının δ18O değerleri belirlenmiştir. Kümelenmiş izotop yöntemi ile 37.2-161.9oC aralığında değişen sıcaklık değerleri ve +0.9-9‰ aralığında değişen dolomitleşme sularının δ18O değerleri bulunmuştur. Bu çalışma petrografik destekli olarak, paleosıcaklık ve dolomitleşme sularının δ18O d dağılımlarının dört farklı grup altında toplandığını kanıtlarıyla ortaya çıkarmıştır. İlk grup, Hoya Formasyonu için 43±7oC olarak erken dolomitleşme sıcaklığını ve Mardin Grubu-ED için 53 oC kısmi yeniden kristallenme sıcaklıklarını yansıtmaktadır. Bu değerler depolanma yüzeyindeki yoğun buharlaşma ve/veya sığ gömülme olayıyla ilişkilidir. İkinci grubu oluşturan Cudi Grubu dolomitleri, 64.3oC-93.8oC arasında değişen sıcaklık ve 9‰’e varan δ18Osu değerleri sağlamaktadır. Bu değerler, oldukça yoğun buharlaşmış deniz sularının meydana getirdiği yeniden kristallenme olayını temsil etmektedir. Üçüncü grubu oluşturan Mardin Grubu-GD ve Koruk Formasyonu dolomitlerinin kümelenmiş izotop sinyalleri 134.5oC-8‰’e varan sıcaklıklık ve δ18Osu değerlerine dönüştürülmüşlerdir. Bu değerler derin gömülme koşulları altında tamamlanmış yeniden kristallenme olayı ile karakterize edilmektedirler. En yüksek sıcaklık ve δ18Osu değerlerine sahip son grubun değerleri ise 140oC ve +6.5‰’i aşmaktadır. Bu sonuçlar kalın ve masif dolomit oluşumlarından sorumlu olan hidrotermal suların varlığını gösterdiği şeklinde yorumlanmaktadır. Sonuç olarak, bu araştırma petrol rezervuarlarını meydana getiren dolomitleşme olayının şifrelerini çözmeye yardımcı olan kümelenmiş izotop yönteminin yüksek potansiyelini ortaya çıkarmaktadır.

Supporting Institution

TÜBİTAK

Project Number

2214A PROGRAMI PROJE NO: 1059B141700284

Thanks

Çalışmacılar bu araştırmanın yayınlanmasına olanak sağlayan Türkiye Petrolleri A.O’na teşekkür etmektedirler. Birinci yazar kümelenmiş izotop tekniğinin öğrenilmesi ve uygulanması aşamasında University of Miami-Duraylı İzotop Laboratuvarı’nda başta Peter Swart ve diğer tüm çalışmacılara sonsuz teşekkürlerini sunmaktadır. Sorumlu yazar ayrıca çalışmasının 2214A programı (1059B141700284) kapsamında desteklenmesinden dolayı TÜBİTAK’a müteşekkirdir. Yazarlar makalenin değerlendirilme aşamasındaki değerli katkılarından dolayı hakemlere ve editörlere şükranlarını sunmaktadır.

References

  • Affek, H. P., Bar-Matthews, M., Ayalon, A., Matthews, A. and Eiler, J. M., 2008. Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by ‘clumped isotope’ thermometry. Geochimica et Cosmochimica Acta, 72 (22), 5351-5360.
  • Al-Qayim, B., and Othman, D., 2012. Reservoir characterization of an intra-orogenic Carbonates platform: Pila Spi Formation, Taq Taq oil field, Kurdistan, Iraq. Geological Society of London Special Publications. 370, 139-168.
  • Barata, J., Vahrenkamp, V., Van Laer, P. J., Swart, P., and Murray, S., 2015 "A Regional Analysis of Clumped Isotope Geochemistry to Define the Timing of Creation of Micro-Porosity in a Lower Cretaceous Giant Reservoir." Paper presented at the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE.
  • Becker, S., Reuning, L., Amthor, J. E., & Kukla, P. A., 2019. Diagenetic Processes and Reservoir Heterogeneity in Salt-Encased Microbial Carbonate Reservoirs (Late Neoproterozoic,Oman). Geofluids.1-19
  • Bergmann, K., Finnegan, S., Creel, R., Eiler, J., Hughes, N., Popov, L. and Fischer, W., 2018. A paired apatite and calcite clumped isotope thermometry approach to estimating Cambro-Ordovician seawater temperatures and isotopic composition. Geochimica et Cosmochimica Acta, 224, 18–41.
  • Bonifacie, M., & Calmels, D., & Eiler, J., 2013. Clumped isotope thermometry of marbles as an idicator of the closure temperatures of calcite and dolomite with respect to solid-state reordering of C–O bonds. Mineralogical Magazine. 77, 735.
  • Bonifacie, M., Calmels, D., Eiler, J. M., Horita, J., Chaduteau, C., Vasconcelos, C., Bourrand, J. J., 2017. Calibration of the dolomite clumped isotope thermometer from 25 to 350 °C, and implications for a universal calibration for all (Ca, Mg, Fe) CO3 carbonates. Geochimica et Cosmochimica Acta, 200, 255–279.
  • Cater, J. M. L., Gillcrist, J. R., 1994. Karstic reservoirs of the mid—Cretaceous Mardin Group. SE Turkey: tectonic and eustatic controls on their genesis, distribution and preservation. Journal of Petroleum Geology. 17, 253—278.
  • Chaojin, L., Murray, S., Koeshidayatullah, A., Swart, P. K., 2022. Clumped Isotope Acid Fractionation Factors for Dolomite and Calcite Revisited: Should We Care?. Chemical Geology. 588, 120637.
  • Çağlayan, M. A., İnal, R. N., Şengün, M., Yurtsever, A., 1984, Structural setting of the Bitlis Massif. In "Geology of the Taurus Belt", O. Tekeli and M.C. Göncüoğlu (eds.), International Symposium on the Geology of Taurus Belt, The Geological Society of Turkey. 129-139.
  • Çelikdemir, E., Dülger, S., Görür, N., Wagner, C., Uygur, K., 1991. Stratigraphy, sedimentology, and hydrocarbon potential of the Mardin Group, SE Turkey. Special Publications of the European Association of Petroleum Geoscientists 1, 439–454.
  • Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., and Eiler, J. M. 2011. Defining an absolute reference frame for ‘clumped’ isotope studies of CO2. Geochimica et Cosmochimica Acta, 75 (22), 7117–7131.
  • Dennis, K.J., and Schrag, D.P., 2010. Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration: Geochimica et Cosmochimica Acta, 74, 4110–4122.
  • Eiler, J. M., 2007. “Clumped-isotope” geochemistry-The study of naturally-occurring, multiply substituted isotopologues. Earth and Planetary Science Letters, 262, 309-327.
  • Epstein, S., Buchsbaum, R., Lowenstam, H., and Urey, H. C., 1951. Carbonate water isotopic temperature scale.Geol.Soc. Am. Bull., 62, 417–426.
  • Evans, D., Sagoo, N., Renema, W., Cotton, L. J., Müller, W., Todd, J. A., et al. 2018. Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry. Proceedings of the National Academy of Sciences of the United States of America, 115, 1–6
  • Ferry, J. M., Passey, B. H., Vasconcelos, C., and Eiler, J. M., 2011. Formation of dolomite at 40-80°C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry. Geology, 39, 571–574.
  • Fontaine, J. M., Monod, O., Braud, J., and Perinçek, D., 1989. The Hezan units, a fragment of South Neo-tethyan passive continental margin in Southeast Turkey: Journal of Petroleum geology, 12, 29-50.
  • Flügel, E., 2004. Microfacies Analysis of Limestone: Analysis, Interpretation and Application. Springer Verlag, Berlin, 976.
  • Geske, A., Goldstein, R. H., Mavromatis, V., Richter, D. K., Buhl, D., Kluge, T., John, C. M., and Immenhauser, A., 2015. The magnesium isotope (delta Mg-26) signature of dolomites: Geochimica et Cosmochimica Acta, v. 149, 131–151.
  • Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W. F., Schauble, E. A., et al. 2006. 13C-18O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta, 70, 1439–1456.
  • Goldstein, R., and Reynolds, J., 1994. Systematics of Fluid Inclusions. SEPM Short Course Notes, 31, 188.
  • Gregg, J. M., and Shelton, K. L., 1990. Dolomitization and Dolomite Neomorphism in the Back Reef Facies of the Bonneterre and Davis Formations (Cambrian), Southeastern Missouri. Journal of Sedimentary Research, 60, 549-562.
  • Güven, A., Karabulut, A., Tezcan, Ş.Ü. ve Balkaş, Ö. 1982. Hazro Antiklinali Alanındaki Paleozoyik Üst Sistemine ait Oluşukların Stratigrafisi ve Hazro Formasyonu Fasiyes Analizi. Türkiye 6. Petrol Kongresi, Ankara 11-21.
  • Hardie, L. A., 1987. Dolomitization: a critical-view of some current views: Journal of Sedimentary Petrology, 57, 166–183.
  • Henkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J., Perez-Huerta, A. and Yancey, T. E., 2014. Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. Geochimica et Cosmochimica Acta, 139, 362–382.
  • Horita, J., 2014. Oxygen and carbon isotope fractionation in the system dolomite–water–CO2 to elevated temperatures. Geochim. Cosmochim. Acta, 129, 111–124.
  • Huntington, K. W., Wernicke, B. P., and Eiler, J. M., 2010. Influence of climate change and uplift on Colorado plateau paleotemperatures from carbonate clumped isotope thermometry. Tectonics, 29.
  • John, C. M., 2015. Burial Estimates Constrained By Clumped İsotope Thermometry: Example Of The Lower Cretaceous Qishn Formation (Haushi-Huqf High, Oman). In: Armitage, P. J., Butcher, A. R., et al. (eds) Reservoir Quality of Clastic and Carbonate Rocks: Analysis, Modelling and Prediction. Geological Society, London, Special Publications, 435.
  • Kirkpatrjck, R. J., 1981. Kinetics of crystallization of igneous rocks, in Lasage, A. C., and Kirkpatrick, R.J., eds., Kinetics of Geochemical Processes: Reviews in Mineralogy, Mineralogical Society of America, 8, 321-397.
  • Koeshidayatullah, A., Corlett, H., Stacey, J., Swart, P., Boyce, A., Robertson, H., Whitaker, F., & Hollis, C., 2020. Evaluating new fault‐controlled hydrothermal dolomitisation models: Insights from the Cambrian Dolomite, Western Canadian Sedimentary Basin. Sedimentology. 10.1111/sed.12729.
  • Land, L. S., 1980. The Isotopic and Trace Element Geochemistry of Dolomite: The State of the Art. In: Zenger, D.H., Dunham, J. B., and Ethington, R. L., Eds., Concepts and Models of Dolomitization, Society for Sedimentary Geology, Special Publications, 28, 87-110.
  • Lind, I. L., 1993. Stylolites in chalk from Leg 130, Ontong Java Plateau. Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program, 130, 445-451.
  • Lloyd, M. K., Ryb, U., and Eiler, J. M., 2018. Experimental calibration of clumped isotope reordering in dolomite. Geochim. Cosmochim. Acta, 242, 1–20.
  • Lohmann, K. C., 1988. Geochemical Patterns of Meteoric Diagenetic Systems and Their Application to Studies of Paleokarst, in James, N. P., and Choquette, P. W., eds., Paleokarst: New York, Springer-Verlag, 58–80.
  • Lukoczki, G., Haas, J., Gregg, J., Machel, H., Kele, S., John, C., 2020. Early dolomitization and partial burial recrystallization: a case study of Middle Triassic peritidal dolomites in the Villány Hills (SW Hungary) using petrography, carbon, oxygen, strontium and clumped isotope data. International Journal of Earth Sciences. 109, 1051-1070.
  • MacDonald, J., John, C., and Girard, J. P., 2015. Dolomitization processes in hydrocarbon reservoirs: insight from geothermometry using clumped isotopes. Procedia Earth and Planetary Science, 13, 265–268.
  • MacDonald. J. M., John. C., and Girard. J. P., 2018. Testing clumped isotopes as a reservoir characterization tool: a comparison with fluid inclusions in a dolomitized sedimentary carbonate reservoir buried to 2-4 km. In: Lawson. M., Formolo. M.J., and Eiler. J. M., (eds.) From Source to Seep: Geochemical Applications in Hydrocarbon Systems Series: Geological Society of London. Special Publications, 468, 189-202.
  • Machel, H., 2004. Concepts and models of dolomitization: A critical reappraisal. Geological Society, London, Special Publications, 235, 7-63.
  • MacKenzie, F. T., and Andersson, A. J., 2013. The marine carbon system and ocean acidification during phanerozoic time. Geochemical Perspectives, 2, 1–227.
  • Mangenot, X., Gasparrini, M., Gerdes, A., Bonifacie, M., and Rouchon, V., 2018. An emerging thermochronometer for carbonate-bearing rocks: ∆47 /(U-Pb). Geology, 46, 1067–1070.
  • Millan, M. I., Machel, H. G., and Bernasconi, S. M., 2016. Constraining temperatures of formation and composition of dolomitizing fluids in the upper Dnisku Formation (Alberta, Canada) with clumped isotopes. Journal of Sedimentary Research, 86, 107–112.
  • Morse, J. W., and Mckenzie, F. T., 1990. Geochemistry of Sedimentary Carbonates. Developments in Sedimentology, Elsevier Science, Amsterdam. 48, 760.
  • Murray, S. T., Arienzo, M. M., and Swart, P. K., 2016. Determining the Δ47 acid fractionation in dolomites. Geochim. Cosmochim. Acta, 174, 42–53.
  • Murray, S. T., and Swart, P. K., 2017. Evaluating formation fluid models and calibrations using clumped isotope paleothermometry on Bahamian dolomites. Geochim. Cosmochim. Acta, 206, 73–93.
  • Müller, I. A., Rodriguez-Blanco, J. D., Storck, J. C., Nascimento, G. S., Bontognali, T. R. R., Vasconcelos, C., et al. 2019. Calibration of the oxygen and clumped isotope thermometers for (proto-)dolomite based on synthetic and natural carbonates. Chemical Geology, 525, 1–17.
  • Perinçek, D., 1979. Interrelation of the Arabian and Anatolian plates, Guide Book for excursion "B", First Geological Congress of the Middle East, Ankara, 34.
  • Perinçek, D., Duran, O., Bozdoğan, N., Çoruh, T., 1992. Stratigraphy and Paleogeographical Evolution of the Autochthonous Sedimentary Rocks in Southeast Turkey. Ozan Sungurlu Symposium, Proceedings. 274-305.
  • Radke, B. M, and Mathis, R. L., 1980. On the Formation and Occurrence of Saddle Dolomite. Journal of Sedimentary Research, 50, 1149-1168.
  • Rahimi, A., Adabi, M. H., Aghanabati, A., Majidifard, M. R., and Jamali, A. M., 2016. Dolomitization Mechanism Based on Petrography and Geochemistry in the Shotori Formation (Middle Triassic), Central Iran. Open Journal of Geology, 6, 1149-1168.
  • Rigo de Righi, M., and Cortesini, A., 1964. Gravity tectonics in foothills structure belt of SE Turkey. AAPG Bull., 48, 1596-1611.
  • Salem, R., 1984. Geologic and hydrocarbon evaluation of the Cudi group sequence (Triassic-Jurassic) in southeast Turkey: Part 1 and 2: TPAO Arama Grup Başkanlığı Raporu, 1968, 76.
  • Schauble, E. A., Ghosh, P., and Eiler, J. M., 2006. Preferential formation of 13C-18O bonds in carbonate minerals, estimated using firstprinciples lattice dynamics. Geochimica et Cosmochimica Acta, 70, 2510–2529.
  • Sena, C. M., John, C. M., Jourdan, A. L., Vandeginste, V., and Manning, C., 2014. Dolomitization of lower cretaceous peritidal carbonates by modified seawater: constraints from clumped isotopic paleothermometry, elemental chemistry, and strontium isotopes. Journal of Sedimentary Research, 84, 552–566.
  • Sibley, D. F., and Gregg, J. M., 1987. Classification of dolomite rock textures. Journal of Sedimentary Geology, 57, 967-975.
  • Spencer, C., Kim, S. T., 2015. Carbonate clumped isotope paleothermometry: A review of recent advances in CO2 gas evolution, purification, measurement and standardization techniques. Geosciences Journal, 19, 357–374.
  • Spötl, C., and Pitman, J. K., 1998. Saddle (baroque) dolomite in carbonates and sandstones: a reappraisal of the burial-diagenetic concept. In: MORAD, S. (ed.) Carbonate Cementation in Sandstones. International Association of Sedimentologists, Special Publications, 26, 437.460.
  • Staudigel, P. T., Murray, S., Dunham, D. Frank. T., Fielding. C. R., and Swart. P. K. 2018. Cryogenic brines as diagenetic fluids: Reconstructing the alteration history of the Victoria Land Basin using clumped isotopes. Geochimica et Cosmochimica Acta. 224, 154–170.
  • Stolper, D. A., and Eiler, J. M., 2015. The kinetics of solid state isotope-exchange reactions for clumped isotopes: a study of inorganic calcites and apatites from natural and experimental samples. American Journal of Science, 315, 363–411.
  • Swart, P. K., 2015. The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology, 62, 1233–1304.
  • Swart, P. K., James, N. P., Mallinson, D., Malone, M.J., Matsuda, H. and Simo, T. 2002. Data report: carbonate mineralogy of sites Drilled during Leg 182. In: Proceedings of the Ocean Drilling Program Scientific Results (Eds Feary, D.A., Hine, A.C. and Malone, M.J.), 182.
  • Swart, P. K., and Melim, L., 2000. The origin of dolomites in Tertiary sediments from the margin of Great Bahama Bank: Journal of Sedimentary Research, 70, 738–748.
  • Swart, P. K., Reijmer, J. J., and Otto, R., 2009. A reevaluationof facies on Great Bahama Bank II: variations in the δ13C, δ18O and mineralogy of surface sediments. In:Perspectivesin Carbonate Geology: A Tribute to the Career of Robert Nathan Ginsburg, IAS Special Publication(Eds P.K. Swart,G.P. Eberli and J.A. McKenzie), Wiley-Blackwell,Oxford. 41, 47–60.
  • Swart, P. K., Cantrell, D. L., Arienzo, M. M., and Murray, S. T., 2016. Evidence for high temperature and δ18O-enriched fluids in the Arab-D of the Ghawar Field, Saudi Arabia. Sedimentology, 63, 1739–1752.
  • Swart, P. K., Murray, S. T., Staudigel, P. T., and Hodell, D. A., 2019. Oxygen isotopic exchange between CO2 and phosphoric acid: implications for the measurement of clumped isotopes in carbonates. Geochem., Geophys. Geosyst., 20, 1–21.
  • Şenalp, M., Bahtiyar, I., Işıkalp, U., Uz, E. and Kaya, M. 2018. Sequence Stratigraphy and Sedimentology of the Paleozoic Successions on the Arabian Platform and Their Impact to Hydrocarbon Explorations in Southeast Turkey. Turkish Association of Petroleum Geologists, 396.
  • Şenalp, M., Tetiker, S., and Şentürk, M., 2021. Güneydoğu Türkiye’nin Paleozoyik İstiflerinin Stratigrafisi, Sedimantolojisi ve Hidrokarbon Potansiyeli. Türkiye Jeoloji Bülteni, 64, 143-198.
  • Tang, J., Dietzel, M., Fernandez, A., Tripati, A. K., and Rosenheim, B. E., 2014. Evaluation of kinetic effects on clumped isotope fractionation (Δ47) during inorganic calcite precipitation. Geochimica et Cosmochimica Acta, 134, 120–136.
  • Temple. P. G., and Perry. L. J., 1962. Geology and oil occurrence. Southeast Turkey: American Assocation Petroleum Geologists Bullettin, 46, 1596-1612.
  • Tripati, A. K., Eagle, R. A., Thiagarajan, N., Gagnon, A. C., Bauch, H., Halloran, P. R. and Eiler, J. M., 2010. 13C18O isotope signatures and “clumped isotope” thermometry in foraminifera and coccoliths, Geochim. Cosmochim. Acta, 74, 5697–5717,
  • Urey, H., 1947. The thermodynamic properties of isotopic substances. .Journal of Chemical Society, 99, 562–581.
  • Veillard, C., John, C., Krevor, S., and Najorka, J., 2019. Rock-buffered recrystallization of Marion Plateau dolomites at low temperature evidenced by clumped isotope thermometry and X-Ray diffraction analysis. Geochimica et Cosmochimica Acta. 252.
  • Veizer, J., Ala, D., Azmy, K., Bruckschen, P., and Buhl, D., 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161, 59–88.
  • Wacker, U., Fiebig, J., and Schoene, B. R., 2013. Clumped isotope analysis of carbonates: Comparison of two different acid digestion techniques. Rapid Communications in Mass Spectrometry, 27, 1631–1642.
  • Winkelstern, I. Z., and Lohmann, K. C., 2016. Shallow burial alteration of dolomite and limestone clumped isotope geochemistry. Geology, 44, 467–470.
  • Zaarur, S., Affek, H. P., and Brandon, M. T., 2013. A revised calibration of the clumped isotope thermometer. Earth and Planetary Science Letters, 382, 47–57.
  • Zenger, D. H., Dunham, J. B., Ethington, R. L., 1980. Concepts and models of dolomitization. Society for Sedimentary Geology (SEPM), Special Publication, 28 , 320.

Clumped Isotope Signatures of Dolomites as Reservoir Rocks, Southeast Anatolia

Year 2022, Volume: 22 Issue: 4, 925 - 943, 31.08.2022
https://doi.org/10.35414/akufemubid.1105170

Abstract

Clumped isotope technique is a new generation of geothermometry that possesses a great ability to understand diaganetic processes in deeply-buried ancient rocks well. A total of 28 dolostone samples from Cambrian to Eocene aged dolomitized rocks across burial depth range of ~1-3.2 km were measured using this method. In this study, the paleotemperature of dolostones and δ18O of the dolomitizing water values have been determined in a regional selection of cores and drilling cuttings obtained from dolomite reservoirs of SE Anatolia. The clumped isotopes found a temperature range of 37.2-161.9 oC and δ18Ofluid of +0.9‰ to 9‰. Our study revealed evidences supported by petrographic evaluation for four distinct patterns in the paleotemperatures and δ18Ofluid. The first group reflects early dolomitization temperature of 43±7 oC for Hoya Formation and partial recrystalization temperature of 53oC for Mardin Group-ED, linking to intensive evaporation effect at the surface and/or shallow burial event. The second group consisting of Cudi Group dolostones provided temperature values between 64.3 oC and 93.8 oC, calculating δ18Ofluid values until 9‰. It is considered to represent recrytallization temperature occured by highly evaporative marine waters. Clumped isotope signatures consisting of Mardin Group-GD ve Koruk Formation dolomites from the third group were converted into temperature and δ18Ofluid values up to 134.5 oC and 8‰. These values are characterized with punctuated recrystalization event under deep burial conditions. Last group having highest T (oC) and δ18Ofluid values exceed 140 oC and +6.5‰. These results are interpreted to display existence of hydrothermal fluids responsible for thick dolomite depositions. Therefore, this research unveils huge potential of clumped isotope method to help decode dolomitization events that produced oil reservoirs.

Project Number

2214A PROGRAMI PROJE NO: 1059B141700284

References

  • Affek, H. P., Bar-Matthews, M., Ayalon, A., Matthews, A. and Eiler, J. M., 2008. Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by ‘clumped isotope’ thermometry. Geochimica et Cosmochimica Acta, 72 (22), 5351-5360.
  • Al-Qayim, B., and Othman, D., 2012. Reservoir characterization of an intra-orogenic Carbonates platform: Pila Spi Formation, Taq Taq oil field, Kurdistan, Iraq. Geological Society of London Special Publications. 370, 139-168.
  • Barata, J., Vahrenkamp, V., Van Laer, P. J., Swart, P., and Murray, S., 2015 "A Regional Analysis of Clumped Isotope Geochemistry to Define the Timing of Creation of Micro-Porosity in a Lower Cretaceous Giant Reservoir." Paper presented at the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE.
  • Becker, S., Reuning, L., Amthor, J. E., & Kukla, P. A., 2019. Diagenetic Processes and Reservoir Heterogeneity in Salt-Encased Microbial Carbonate Reservoirs (Late Neoproterozoic,Oman). Geofluids.1-19
  • Bergmann, K., Finnegan, S., Creel, R., Eiler, J., Hughes, N., Popov, L. and Fischer, W., 2018. A paired apatite and calcite clumped isotope thermometry approach to estimating Cambro-Ordovician seawater temperatures and isotopic composition. Geochimica et Cosmochimica Acta, 224, 18–41.
  • Bonifacie, M., & Calmels, D., & Eiler, J., 2013. Clumped isotope thermometry of marbles as an idicator of the closure temperatures of calcite and dolomite with respect to solid-state reordering of C–O bonds. Mineralogical Magazine. 77, 735.
  • Bonifacie, M., Calmels, D., Eiler, J. M., Horita, J., Chaduteau, C., Vasconcelos, C., Bourrand, J. J., 2017. Calibration of the dolomite clumped isotope thermometer from 25 to 350 °C, and implications for a universal calibration for all (Ca, Mg, Fe) CO3 carbonates. Geochimica et Cosmochimica Acta, 200, 255–279.
  • Cater, J. M. L., Gillcrist, J. R., 1994. Karstic reservoirs of the mid—Cretaceous Mardin Group. SE Turkey: tectonic and eustatic controls on their genesis, distribution and preservation. Journal of Petroleum Geology. 17, 253—278.
  • Chaojin, L., Murray, S., Koeshidayatullah, A., Swart, P. K., 2022. Clumped Isotope Acid Fractionation Factors for Dolomite and Calcite Revisited: Should We Care?. Chemical Geology. 588, 120637.
  • Çağlayan, M. A., İnal, R. N., Şengün, M., Yurtsever, A., 1984, Structural setting of the Bitlis Massif. In "Geology of the Taurus Belt", O. Tekeli and M.C. Göncüoğlu (eds.), International Symposium on the Geology of Taurus Belt, The Geological Society of Turkey. 129-139.
  • Çelikdemir, E., Dülger, S., Görür, N., Wagner, C., Uygur, K., 1991. Stratigraphy, sedimentology, and hydrocarbon potential of the Mardin Group, SE Turkey. Special Publications of the European Association of Petroleum Geoscientists 1, 439–454.
  • Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., and Eiler, J. M. 2011. Defining an absolute reference frame for ‘clumped’ isotope studies of CO2. Geochimica et Cosmochimica Acta, 75 (22), 7117–7131.
  • Dennis, K.J., and Schrag, D.P., 2010. Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration: Geochimica et Cosmochimica Acta, 74, 4110–4122.
  • Eiler, J. M., 2007. “Clumped-isotope” geochemistry-The study of naturally-occurring, multiply substituted isotopologues. Earth and Planetary Science Letters, 262, 309-327.
  • Epstein, S., Buchsbaum, R., Lowenstam, H., and Urey, H. C., 1951. Carbonate water isotopic temperature scale.Geol.Soc. Am. Bull., 62, 417–426.
  • Evans, D., Sagoo, N., Renema, W., Cotton, L. J., Müller, W., Todd, J. A., et al. 2018. Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry. Proceedings of the National Academy of Sciences of the United States of America, 115, 1–6
  • Ferry, J. M., Passey, B. H., Vasconcelos, C., and Eiler, J. M., 2011. Formation of dolomite at 40-80°C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry. Geology, 39, 571–574.
  • Fontaine, J. M., Monod, O., Braud, J., and Perinçek, D., 1989. The Hezan units, a fragment of South Neo-tethyan passive continental margin in Southeast Turkey: Journal of Petroleum geology, 12, 29-50.
  • Flügel, E., 2004. Microfacies Analysis of Limestone: Analysis, Interpretation and Application. Springer Verlag, Berlin, 976.
  • Geske, A., Goldstein, R. H., Mavromatis, V., Richter, D. K., Buhl, D., Kluge, T., John, C. M., and Immenhauser, A., 2015. The magnesium isotope (delta Mg-26) signature of dolomites: Geochimica et Cosmochimica Acta, v. 149, 131–151.
  • Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W. F., Schauble, E. A., et al. 2006. 13C-18O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta, 70, 1439–1456.
  • Goldstein, R., and Reynolds, J., 1994. Systematics of Fluid Inclusions. SEPM Short Course Notes, 31, 188.
  • Gregg, J. M., and Shelton, K. L., 1990. Dolomitization and Dolomite Neomorphism in the Back Reef Facies of the Bonneterre and Davis Formations (Cambrian), Southeastern Missouri. Journal of Sedimentary Research, 60, 549-562.
  • Güven, A., Karabulut, A., Tezcan, Ş.Ü. ve Balkaş, Ö. 1982. Hazro Antiklinali Alanındaki Paleozoyik Üst Sistemine ait Oluşukların Stratigrafisi ve Hazro Formasyonu Fasiyes Analizi. Türkiye 6. Petrol Kongresi, Ankara 11-21.
  • Hardie, L. A., 1987. Dolomitization: a critical-view of some current views: Journal of Sedimentary Petrology, 57, 166–183.
  • Henkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J., Perez-Huerta, A. and Yancey, T. E., 2014. Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. Geochimica et Cosmochimica Acta, 139, 362–382.
  • Horita, J., 2014. Oxygen and carbon isotope fractionation in the system dolomite–water–CO2 to elevated temperatures. Geochim. Cosmochim. Acta, 129, 111–124.
  • Huntington, K. W., Wernicke, B. P., and Eiler, J. M., 2010. Influence of climate change and uplift on Colorado plateau paleotemperatures from carbonate clumped isotope thermometry. Tectonics, 29.
  • John, C. M., 2015. Burial Estimates Constrained By Clumped İsotope Thermometry: Example Of The Lower Cretaceous Qishn Formation (Haushi-Huqf High, Oman). In: Armitage, P. J., Butcher, A. R., et al. (eds) Reservoir Quality of Clastic and Carbonate Rocks: Analysis, Modelling and Prediction. Geological Society, London, Special Publications, 435.
  • Kirkpatrjck, R. J., 1981. Kinetics of crystallization of igneous rocks, in Lasage, A. C., and Kirkpatrick, R.J., eds., Kinetics of Geochemical Processes: Reviews in Mineralogy, Mineralogical Society of America, 8, 321-397.
  • Koeshidayatullah, A., Corlett, H., Stacey, J., Swart, P., Boyce, A., Robertson, H., Whitaker, F., & Hollis, C., 2020. Evaluating new fault‐controlled hydrothermal dolomitisation models: Insights from the Cambrian Dolomite, Western Canadian Sedimentary Basin. Sedimentology. 10.1111/sed.12729.
  • Land, L. S., 1980. The Isotopic and Trace Element Geochemistry of Dolomite: The State of the Art. In: Zenger, D.H., Dunham, J. B., and Ethington, R. L., Eds., Concepts and Models of Dolomitization, Society for Sedimentary Geology, Special Publications, 28, 87-110.
  • Lind, I. L., 1993. Stylolites in chalk from Leg 130, Ontong Java Plateau. Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program, 130, 445-451.
  • Lloyd, M. K., Ryb, U., and Eiler, J. M., 2018. Experimental calibration of clumped isotope reordering in dolomite. Geochim. Cosmochim. Acta, 242, 1–20.
  • Lohmann, K. C., 1988. Geochemical Patterns of Meteoric Diagenetic Systems and Their Application to Studies of Paleokarst, in James, N. P., and Choquette, P. W., eds., Paleokarst: New York, Springer-Verlag, 58–80.
  • Lukoczki, G., Haas, J., Gregg, J., Machel, H., Kele, S., John, C., 2020. Early dolomitization and partial burial recrystallization: a case study of Middle Triassic peritidal dolomites in the Villány Hills (SW Hungary) using petrography, carbon, oxygen, strontium and clumped isotope data. International Journal of Earth Sciences. 109, 1051-1070.
  • MacDonald, J., John, C., and Girard, J. P., 2015. Dolomitization processes in hydrocarbon reservoirs: insight from geothermometry using clumped isotopes. Procedia Earth and Planetary Science, 13, 265–268.
  • MacDonald. J. M., John. C., and Girard. J. P., 2018. Testing clumped isotopes as a reservoir characterization tool: a comparison with fluid inclusions in a dolomitized sedimentary carbonate reservoir buried to 2-4 km. In: Lawson. M., Formolo. M.J., and Eiler. J. M., (eds.) From Source to Seep: Geochemical Applications in Hydrocarbon Systems Series: Geological Society of London. Special Publications, 468, 189-202.
  • Machel, H., 2004. Concepts and models of dolomitization: A critical reappraisal. Geological Society, London, Special Publications, 235, 7-63.
  • MacKenzie, F. T., and Andersson, A. J., 2013. The marine carbon system and ocean acidification during phanerozoic time. Geochemical Perspectives, 2, 1–227.
  • Mangenot, X., Gasparrini, M., Gerdes, A., Bonifacie, M., and Rouchon, V., 2018. An emerging thermochronometer for carbonate-bearing rocks: ∆47 /(U-Pb). Geology, 46, 1067–1070.
  • Millan, M. I., Machel, H. G., and Bernasconi, S. M., 2016. Constraining temperatures of formation and composition of dolomitizing fluids in the upper Dnisku Formation (Alberta, Canada) with clumped isotopes. Journal of Sedimentary Research, 86, 107–112.
  • Morse, J. W., and Mckenzie, F. T., 1990. Geochemistry of Sedimentary Carbonates. Developments in Sedimentology, Elsevier Science, Amsterdam. 48, 760.
  • Murray, S. T., Arienzo, M. M., and Swart, P. K., 2016. Determining the Δ47 acid fractionation in dolomites. Geochim. Cosmochim. Acta, 174, 42–53.
  • Murray, S. T., and Swart, P. K., 2017. Evaluating formation fluid models and calibrations using clumped isotope paleothermometry on Bahamian dolomites. Geochim. Cosmochim. Acta, 206, 73–93.
  • Müller, I. A., Rodriguez-Blanco, J. D., Storck, J. C., Nascimento, G. S., Bontognali, T. R. R., Vasconcelos, C., et al. 2019. Calibration of the oxygen and clumped isotope thermometers for (proto-)dolomite based on synthetic and natural carbonates. Chemical Geology, 525, 1–17.
  • Perinçek, D., 1979. Interrelation of the Arabian and Anatolian plates, Guide Book for excursion "B", First Geological Congress of the Middle East, Ankara, 34.
  • Perinçek, D., Duran, O., Bozdoğan, N., Çoruh, T., 1992. Stratigraphy and Paleogeographical Evolution of the Autochthonous Sedimentary Rocks in Southeast Turkey. Ozan Sungurlu Symposium, Proceedings. 274-305.
  • Radke, B. M, and Mathis, R. L., 1980. On the Formation and Occurrence of Saddle Dolomite. Journal of Sedimentary Research, 50, 1149-1168.
  • Rahimi, A., Adabi, M. H., Aghanabati, A., Majidifard, M. R., and Jamali, A. M., 2016. Dolomitization Mechanism Based on Petrography and Geochemistry in the Shotori Formation (Middle Triassic), Central Iran. Open Journal of Geology, 6, 1149-1168.
  • Rigo de Righi, M., and Cortesini, A., 1964. Gravity tectonics in foothills structure belt of SE Turkey. AAPG Bull., 48, 1596-1611.
  • Salem, R., 1984. Geologic and hydrocarbon evaluation of the Cudi group sequence (Triassic-Jurassic) in southeast Turkey: Part 1 and 2: TPAO Arama Grup Başkanlığı Raporu, 1968, 76.
  • Schauble, E. A., Ghosh, P., and Eiler, J. M., 2006. Preferential formation of 13C-18O bonds in carbonate minerals, estimated using firstprinciples lattice dynamics. Geochimica et Cosmochimica Acta, 70, 2510–2529.
  • Sena, C. M., John, C. M., Jourdan, A. L., Vandeginste, V., and Manning, C., 2014. Dolomitization of lower cretaceous peritidal carbonates by modified seawater: constraints from clumped isotopic paleothermometry, elemental chemistry, and strontium isotopes. Journal of Sedimentary Research, 84, 552–566.
  • Sibley, D. F., and Gregg, J. M., 1987. Classification of dolomite rock textures. Journal of Sedimentary Geology, 57, 967-975.
  • Spencer, C., Kim, S. T., 2015. Carbonate clumped isotope paleothermometry: A review of recent advances in CO2 gas evolution, purification, measurement and standardization techniques. Geosciences Journal, 19, 357–374.
  • Spötl, C., and Pitman, J. K., 1998. Saddle (baroque) dolomite in carbonates and sandstones: a reappraisal of the burial-diagenetic concept. In: MORAD, S. (ed.) Carbonate Cementation in Sandstones. International Association of Sedimentologists, Special Publications, 26, 437.460.
  • Staudigel, P. T., Murray, S., Dunham, D. Frank. T., Fielding. C. R., and Swart. P. K. 2018. Cryogenic brines as diagenetic fluids: Reconstructing the alteration history of the Victoria Land Basin using clumped isotopes. Geochimica et Cosmochimica Acta. 224, 154–170.
  • Stolper, D. A., and Eiler, J. M., 2015. The kinetics of solid state isotope-exchange reactions for clumped isotopes: a study of inorganic calcites and apatites from natural and experimental samples. American Journal of Science, 315, 363–411.
  • Swart, P. K., 2015. The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology, 62, 1233–1304.
  • Swart, P. K., James, N. P., Mallinson, D., Malone, M.J., Matsuda, H. and Simo, T. 2002. Data report: carbonate mineralogy of sites Drilled during Leg 182. In: Proceedings of the Ocean Drilling Program Scientific Results (Eds Feary, D.A., Hine, A.C. and Malone, M.J.), 182.
  • Swart, P. K., and Melim, L., 2000. The origin of dolomites in Tertiary sediments from the margin of Great Bahama Bank: Journal of Sedimentary Research, 70, 738–748.
  • Swart, P. K., Reijmer, J. J., and Otto, R., 2009. A reevaluationof facies on Great Bahama Bank II: variations in the δ13C, δ18O and mineralogy of surface sediments. In:Perspectivesin Carbonate Geology: A Tribute to the Career of Robert Nathan Ginsburg, IAS Special Publication(Eds P.K. Swart,G.P. Eberli and J.A. McKenzie), Wiley-Blackwell,Oxford. 41, 47–60.
  • Swart, P. K., Cantrell, D. L., Arienzo, M. M., and Murray, S. T., 2016. Evidence for high temperature and δ18O-enriched fluids in the Arab-D of the Ghawar Field, Saudi Arabia. Sedimentology, 63, 1739–1752.
  • Swart, P. K., Murray, S. T., Staudigel, P. T., and Hodell, D. A., 2019. Oxygen isotopic exchange between CO2 and phosphoric acid: implications for the measurement of clumped isotopes in carbonates. Geochem., Geophys. Geosyst., 20, 1–21.
  • Şenalp, M., Bahtiyar, I., Işıkalp, U., Uz, E. and Kaya, M. 2018. Sequence Stratigraphy and Sedimentology of the Paleozoic Successions on the Arabian Platform and Their Impact to Hydrocarbon Explorations in Southeast Turkey. Turkish Association of Petroleum Geologists, 396.
  • Şenalp, M., Tetiker, S., and Şentürk, M., 2021. Güneydoğu Türkiye’nin Paleozoyik İstiflerinin Stratigrafisi, Sedimantolojisi ve Hidrokarbon Potansiyeli. Türkiye Jeoloji Bülteni, 64, 143-198.
  • Tang, J., Dietzel, M., Fernandez, A., Tripati, A. K., and Rosenheim, B. E., 2014. Evaluation of kinetic effects on clumped isotope fractionation (Δ47) during inorganic calcite precipitation. Geochimica et Cosmochimica Acta, 134, 120–136.
  • Temple. P. G., and Perry. L. J., 1962. Geology and oil occurrence. Southeast Turkey: American Assocation Petroleum Geologists Bullettin, 46, 1596-1612.
  • Tripati, A. K., Eagle, R. A., Thiagarajan, N., Gagnon, A. C., Bauch, H., Halloran, P. R. and Eiler, J. M., 2010. 13C18O isotope signatures and “clumped isotope” thermometry in foraminifera and coccoliths, Geochim. Cosmochim. Acta, 74, 5697–5717,
  • Urey, H., 1947. The thermodynamic properties of isotopic substances. .Journal of Chemical Society, 99, 562–581.
  • Veillard, C., John, C., Krevor, S., and Najorka, J., 2019. Rock-buffered recrystallization of Marion Plateau dolomites at low temperature evidenced by clumped isotope thermometry and X-Ray diffraction analysis. Geochimica et Cosmochimica Acta. 252.
  • Veizer, J., Ala, D., Azmy, K., Bruckschen, P., and Buhl, D., 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161, 59–88.
  • Wacker, U., Fiebig, J., and Schoene, B. R., 2013. Clumped isotope analysis of carbonates: Comparison of two different acid digestion techniques. Rapid Communications in Mass Spectrometry, 27, 1631–1642.
  • Winkelstern, I. Z., and Lohmann, K. C., 2016. Shallow burial alteration of dolomite and limestone clumped isotope geochemistry. Geology, 44, 467–470.
  • Zaarur, S., Affek, H. P., and Brandon, M. T., 2013. A revised calibration of the clumped isotope thermometer. Earth and Planetary Science Letters, 382, 47–57.
  • Zenger, D. H., Dunham, J. B., Ethington, R. L., 1980. Concepts and models of dolomitization. Society for Sedimentary Geology (SEPM), Special Publication, 28 , 320.
There are 77 citations in total.

Details

Primary Language Turkish
Subjects General Geology, Geology (Other)
Journal Section Articles
Authors

Deniz Atasoy 0000-0001-7889-7100

Aylin Geçer 0000-0002-7470-9560

Arzu Aktosun 0000-0002-0533-2501

Aynur Geçer Büyükutku 0000-0002-4058-0527

Project Number 2214A PROGRAMI PROJE NO: 1059B141700284
Publication Date August 31, 2022
Submission Date April 19, 2022
Published in Issue Year 2022 Volume: 22 Issue: 4

Cite

APA Atasoy, D., Geçer, A., Aktosun, A., Geçer Büyükutku, A. (2022). Güneydoğu Anadolu Bölgesi’nde Rezervuar Kayacı Olan Dolomitlerin Kümelenmiş İzotop Sinyalleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(4), 925-943. https://doi.org/10.35414/akufemubid.1105170
AMA Atasoy D, Geçer A, Aktosun A, Geçer Büyükutku A. Güneydoğu Anadolu Bölgesi’nde Rezervuar Kayacı Olan Dolomitlerin Kümelenmiş İzotop Sinyalleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. August 2022;22(4):925-943. doi:10.35414/akufemubid.1105170
Chicago Atasoy, Deniz, Aylin Geçer, Arzu Aktosun, and Aynur Geçer Büyükutku. “Güneydoğu Anadolu Bölgesi’nde Rezervuar Kayacı Olan Dolomitlerin Kümelenmiş İzotop Sinyalleri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 4 (August 2022): 925-43. https://doi.org/10.35414/akufemubid.1105170.
EndNote Atasoy D, Geçer A, Aktosun A, Geçer Büyükutku A (August 1, 2022) Güneydoğu Anadolu Bölgesi’nde Rezervuar Kayacı Olan Dolomitlerin Kümelenmiş İzotop Sinyalleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 4 925–943.
IEEE D. Atasoy, A. Geçer, A. Aktosun, and A. Geçer Büyükutku, “Güneydoğu Anadolu Bölgesi’nde Rezervuar Kayacı Olan Dolomitlerin Kümelenmiş İzotop Sinyalleri”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 4, pp. 925–943, 2022, doi: 10.35414/akufemubid.1105170.
ISNAD Atasoy, Deniz et al. “Güneydoğu Anadolu Bölgesi’nde Rezervuar Kayacı Olan Dolomitlerin Kümelenmiş İzotop Sinyalleri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/4 (August 2022), 925-943. https://doi.org/10.35414/akufemubid.1105170.
JAMA Atasoy D, Geçer A, Aktosun A, Geçer Büyükutku A. Güneydoğu Anadolu Bölgesi’nde Rezervuar Kayacı Olan Dolomitlerin Kümelenmiş İzotop Sinyalleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:925–943.
MLA Atasoy, Deniz et al. “Güneydoğu Anadolu Bölgesi’nde Rezervuar Kayacı Olan Dolomitlerin Kümelenmiş İzotop Sinyalleri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 4, 2022, pp. 925-43, doi:10.35414/akufemubid.1105170.
Vancouver Atasoy D, Geçer A, Aktosun A, Geçer Büyükutku A. Güneydoğu Anadolu Bölgesi’nde Rezervuar Kayacı Olan Dolomitlerin Kümelenmiş İzotop Sinyalleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(4):925-43.