Meme Mikrodalgası Hipertermi Aplikatörü İçin Geliştirilen Doku Taklidi Jel Karakterizasyonu
Year 2023,
Volume: 23 Issue: 5, 1190 - 1196, 30.10.2023
Ömer Işık
,
Erdal Korkmaz
Abstract
İnsan vücudu ile elektromanyetik dalgaların etkileşimi, dokuların ve hücrelerin dielektrik özellikleri gibi
faktörlerin yanı sıra diğer etkenler tarafından da şekillenir. Mikrodalga hipertermi ve mikrodalga
görüntüleme uygulamalarında, deney ortamı ölçüm düzeneklerinde simülasyon sonuçlarını doğrulamak
için doku taklit eden materyallere ihtiyaç vardır. Bu çalışmada hipertermi uygulamalarında kullanılmak
üzere kadın memelerine ait bazı doku taklit materyallerinin karakterizasyonu sunulmuştur. Karakterize
edilen doku taklit malzemelerinin maliyeti ucuz ve üretim aşamaları kolaydır. Deri, kas, meme yağı ve
kanserli dokular ISM bandı 434 MHz'de önerilmektedir.
Supporting Institution
TÜBİTAK
Thanks
Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 111E087 proje numarası ile desteklenen doktora tezimden üretilmiştir.
References
- Baysal, B., & Khodadoust, A. P. (2018). Tissue-mimicking gel phantoms with tunable electromagnetic properties for medical applications. Sensors, 18(2), 602.
- Chaudhary, SS, Mishra, RK, Swarup, A, Thomas, JM. (1984). Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies. Indian J Biochem Biophys., 21(1):76-9. PMID: 6490065.
- Chou, C., Chen, G., Guy, A., & Luk, K. H. (1984). Formulas for preparing phantom muscle tissue at various radiofrequencies. Bioelectromagnetics, 5(4), 435–441. https://doi.org/10.1002/bem.2250050408
- Fukunaga, K., Watanabe, S., Yamanaka, Y. (2004). Dielectric Properties of Tissue-Equivalent Liquids and Their Effects on Specific Absorption Rate, IEEE Transactions on Electromagnetic Compatibility, vol. 46, no. 1, pp 126-129, February 2004.
- Furse, C.M.. (2000). Design of an antenna for pacemaker communication, Microwave RF, vol. 39, no. 3, pp. 73–76, Mar. 2000.
- Gabriel, C., Gabriel, S., Corthout, E. (1996) The dielectric properties of biological tissues: I. Literature survey, Phys. Med. Biol., 41, pp. 2231-2249, 1996.
- Gabriel, S., Lau, R.W., Gabriel, C. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Phys. Med. Biol., 41, pp. 2251-2269, 1996.
- Gultekinoglu, M., & Celik, E. (2019). Electromagnetic properties of tissue-mimicking phantoms: Materials, design considerations, and applications, IEEE Access, 7, 97744-97759.
- Korkmaz, E., Isik, O., & Nassor, M. A. (2013). A compact microstrip spiral antenna embedded in water Bolus for hyperthermia applications. International Journal of Antennas and Propagation, 2013, 1–6. https://doi.org/10.1155/2013/954986
- Korkmaz, E., Isik, O., & Sagkol, H. (2015). A directive antenna array applicator for focused electromagnetic hyperthermia treatment of breast cancer, European Conference on Antennas and Propagation, 1–4. https://ieeexplore.ieee.org/stamp/redirect.jsp?arnumber=/7209133/7228134/07228244.pdf&arnumber=7228244
- Lazebnik, M., Popovic, D., McCartney, L., Watkins, C. B., Lindstrom, M. J., Harter, J., Sewall, S., Ogilvie, T., Magliocco, A., Breslin, T. M., Temple, W. J., Mew, D., Booske, J. H., Okoniewski, M., & Hagness, S. C. (2007). A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries, Physics in Medicine and Biology, 52(20), 6093–6115. https://doi.org/10.1088/0031-9155/52/20/002
- Yilmaz, T., Karacolak, T., Topsakal, E. (2008) Characterization and testing of a skin mimicking material for implantable antennas operating at ISM band (2.4 GHz-2.48 GHz), IEEE Antennas and Wireless Propogation Letters, 7: 418-420, DOI:10.1109/LAWP.2008.2001736
- Zastrow, E., Davis, S.K., Lazebnik, M., Kelcz, F., Van Veen, B.D., Hagness, S.C. (2018). Development of Anatomically Realistic Numerical Breast Phantoms With Accurate Dielectric Properties for Modeling Microwave Interactions With the Human Breast, IEEE Transactions on Biomedical Engineering, vol. 55, no. 12, pp. 2792-2800.
Tissue Mimicking Gel Characterization Developed for a Breast Microwave Hyperthermia Applicator
Year 2023,
Volume: 23 Issue: 5, 1190 - 1196, 30.10.2023
Ömer Işık
,
Erdal Korkmaz
Abstract
The interaction of electromagnetic waves with the human body is determined by the dielectric
properties of tissues and cells along with other considerations. The complex dielectric properties of the
materials are very important for the interaction of the electromagnetic waves within the human body.
In microwave hyperthermia and microwave imaging applications, there is a need of tissue mimicking
materials to validate the simulation results in in vitro measurement setups. In this paper, we presented
the characterization of some tissue materials belonging to female breast to be used for hyperthermia
applications. The characterized tissue mimicking materials are inexpensive and have simple recipes that
are easy to formulate. Skin, muscle, breast fat and cancerous tissues are proposed at ISM band 434
MHz.
References
- Baysal, B., & Khodadoust, A. P. (2018). Tissue-mimicking gel phantoms with tunable electromagnetic properties for medical applications. Sensors, 18(2), 602.
- Chaudhary, SS, Mishra, RK, Swarup, A, Thomas, JM. (1984). Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies. Indian J Biochem Biophys., 21(1):76-9. PMID: 6490065.
- Chou, C., Chen, G., Guy, A., & Luk, K. H. (1984). Formulas for preparing phantom muscle tissue at various radiofrequencies. Bioelectromagnetics, 5(4), 435–441. https://doi.org/10.1002/bem.2250050408
- Fukunaga, K., Watanabe, S., Yamanaka, Y. (2004). Dielectric Properties of Tissue-Equivalent Liquids and Their Effects on Specific Absorption Rate, IEEE Transactions on Electromagnetic Compatibility, vol. 46, no. 1, pp 126-129, February 2004.
- Furse, C.M.. (2000). Design of an antenna for pacemaker communication, Microwave RF, vol. 39, no. 3, pp. 73–76, Mar. 2000.
- Gabriel, C., Gabriel, S., Corthout, E. (1996) The dielectric properties of biological tissues: I. Literature survey, Phys. Med. Biol., 41, pp. 2231-2249, 1996.
- Gabriel, S., Lau, R.W., Gabriel, C. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Phys. Med. Biol., 41, pp. 2251-2269, 1996.
- Gultekinoglu, M., & Celik, E. (2019). Electromagnetic properties of tissue-mimicking phantoms: Materials, design considerations, and applications, IEEE Access, 7, 97744-97759.
- Korkmaz, E., Isik, O., & Nassor, M. A. (2013). A compact microstrip spiral antenna embedded in water Bolus for hyperthermia applications. International Journal of Antennas and Propagation, 2013, 1–6. https://doi.org/10.1155/2013/954986
- Korkmaz, E., Isik, O., & Sagkol, H. (2015). A directive antenna array applicator for focused electromagnetic hyperthermia treatment of breast cancer, European Conference on Antennas and Propagation, 1–4. https://ieeexplore.ieee.org/stamp/redirect.jsp?arnumber=/7209133/7228134/07228244.pdf&arnumber=7228244
- Lazebnik, M., Popovic, D., McCartney, L., Watkins, C. B., Lindstrom, M. J., Harter, J., Sewall, S., Ogilvie, T., Magliocco, A., Breslin, T. M., Temple, W. J., Mew, D., Booske, J. H., Okoniewski, M., & Hagness, S. C. (2007). A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries, Physics in Medicine and Biology, 52(20), 6093–6115. https://doi.org/10.1088/0031-9155/52/20/002
- Yilmaz, T., Karacolak, T., Topsakal, E. (2008) Characterization and testing of a skin mimicking material for implantable antennas operating at ISM band (2.4 GHz-2.48 GHz), IEEE Antennas and Wireless Propogation Letters, 7: 418-420, DOI:10.1109/LAWP.2008.2001736
- Zastrow, E., Davis, S.K., Lazebnik, M., Kelcz, F., Van Veen, B.D., Hagness, S.C. (2018). Development of Anatomically Realistic Numerical Breast Phantoms With Accurate Dielectric Properties for Modeling Microwave Interactions With the Human Breast, IEEE Transactions on Biomedical Engineering, vol. 55, no. 12, pp. 2792-2800.