Research Article
BibTex RIS Cite

Bir Yük Depolama Elektrodu Olarak Co3O4 Sentezi İçin Eriyik Tuz Yaklaşımı

Year 2023, Volume: 23 Issue: 5, 1256 - 1266, 30.10.2023
https://doi.org/10.35414/akufemubid.1275507

Abstract

Yük depolama elektrotları olarak kobalt oksit (Co3O4) nanokürelerini sentezlemek için çok yönlü bir
eriyik tuz yöntemi hedeflenmiştir. Co3O4 nanoküreleri KNO3 erimiş tuzunda sadece tek adımda 5 dakika
içerisinde hazırlanmıştır. Nanokürelerin ortalama boyut dağılımı yaklaşık 80-130 nm’dir. Kobalt oksidin
spesifik kapasitansı 6 M KOH elektrolitinde 10 mV/s'de 285 F/g ve 0.5 A/g'da 171 F/g olarak bulunmuş
ve dış ve iç yüzey kapasitif katkılarını anlamak için Trasatti yöntemi kullanılmıştır. Malzeme orta seviyede
bir kapasite koruması (5 A/g’da %63.1) ve iyi bir döngüsel kararlılık (1200 çevrim sonrası %90.5)
göstermiştir. Bu deneysel çalışma herhangi bir çözücü kullanımını gerektirmemektedir ve bu nedenle
enerji depolama alanında iyi elektrokimyasal özelliklere sahip çeşitli geçiş metal oksitlerinin
hazırlanması için yeşil ve sürekli bir yaklaşım sağlayabilir.

References

  • Afrooze, A., and Shaik D., 2023. Porous Co3O4 Nanospheres Synthesized via Solution Combustion Method for Supercapacitors. Chemical Papers, 77, 1201–1211.
  • Anuradha, C.T., and Raji, P., 2022. Hydrothermal Synthesis, Characterization, and Electrochemical Behaviour of Cobalt Oxide Co3O4 Nanoparticles for Stable Electrode with Enhanced Supercapacitance. Brazilian Journal of Physics, 52, 211-215.
  • Ardizzone, S., Fregonara G., and Trasatti S., 1990. Inner and Outer Active Surface of RuO2 Electrodes. Electrochimica Acta, 35, 263–267.
  • Arjunan, A., Ramasamy S., Kim J., and Kim S.K., 2023. Co3O4 Nanoparticles-Embedded Nitrogen-Doped Porous Carbon Spheres for High-Energy Hybrid Supercapacitor Electrodes. Journal of Energy Storage, 68, 107758.
  • Chen, M., Ge Q., Qi, M., Liang X., Wang F., and Chen, Q., 2019. Surface & Coatings Technology Cobalt Oxides Nanorods Arrays as Advanced Electrode for High Performance Supercapacitor. Surface & Coatings Technology, 360, 73–77.
  • Du, P., Dong Y., Dong Y., Wang X., and Zhang H., 2022. Fabrication of Uniform MnO2 Layer-Modified Activated Carbon Cloth for High-Performance Flexible Quasi-Solid-State Asymmetric Supercapacitor. Journal of Materials Science, 57, 3497–3512.
  • Gao, W., Zhao Y., Chen W., Zhuang J., Shang M., Sun D., and Xie A., 2023. From Plastic to Supercapacitor Electrode Materials: Preparation and Properties of Cobalt Oxide/Carbon Composites with Polyethylene Terephthalate as Carbon Source. Ceramics International, 49 (5), 7266–7273.
  • Guo, D., Song X., Li F., Tan L., Ma H., Zhang L., and Zhao Y., 2018. Oriented Synthesis of Co3O4 Core-Shell Microspheres for High-Performance Asymmetric Supercapacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 546, 1–8.
  • Jadhav, S., Jadhav A., Mandlekar B., Sarawade P., and Anamika V., Kadam A., 2023. Influence of Deposition Current and Different Electrolytes on Charge Storage Performance of Co3O4 Electrode Material. Journal of Physics and Chemistry of Solids, 180, 111422.
  • Kebabsa, L., Kim J., Lee D, and Lee B., 2020. Highly Porous Cobalt Oxide-Decorated Carbon Nanofibers Fabricated from Starch as Free-Standing Electrodes for Supercapacitors. Applied Surface Science, 511, 145313.
  • Kim, B.H., Yang K.S., and Yang D.J., 2013. Electrochemical Behavior of Activated Carbon Nanofiber-Vanadium Pentoxide Composites for Double-Layer Capacitors. Electrochimica Acta, 109, 859–865.
  • Kurtan, U. 2022. Uniformly Decorated Nanocubes in Carbon Nanofibers for a Supercapacitor with Ultrahigh Cyclability and Stability. Journal of Electronic Materials, 51, 5159–5168.
  • Kurtan, U. and Aydın H., 2021. Introducing Organic Metallic Salts to Enhance Capacitive Energy Storage of Carbon Nanofibers. Journal of Energy Storage, 42, 103016.
  • Lee, S.W., Gallant B., Byon H.R, Hammond P.T, and Shao-Horn Y., 2011. Nanostructured Carbon-Based Electrodes: Bridging the Gap between Thin-Film Lithium-Ion Batteries and Electrochemical Capacitors. Energy & Environmental Science, 4, 1972–1985.
  • Liang, K., Tang X., and Hu W., 2012. High-Performance Three-Dimensional Nanoporous NiO Film as a Supercapacitor Electrode. Journal of Materials Chemistry, 22, 11062–11067.
  • Lima-Tenório M.K., Ferreira C.S., Rebelo QHF., Souza R.F.B., Passos R.R., Pineda E.A.G., and Pocrifka L.A., 2018. Pseudocapacitance Properties of Co3O4 Nanoparticles Synthesized Using a Modified Sol-Gel Method. Materials Research, 21, e20170521.
  • Liu, F., Su H., Jin L., Zhang H., Chu X., and Yang W., 2017. Facile Synthesis of Ultrafine Cobalt Oxide Nanoparticles for High-Performance Supercapacitors. Journal of Colloid and Interface Science, 505, 796–804.
  • Liu, M.C., Kong L.B., Lu C., Li X. M., Luo Y.C., and Kang L., 2012. A Sol − Gel Process for Fabrication of NiO/ NiCo2O4/Co3O4 Composite with Improved Electrochemical Behavior for Electrochemical Capacitors. ACS Appl. Mater. Interfaces, 4, 4631–4636.
  • Ma, C., Wu L., Dirican M., Cheng H., Li J., Song Y., Shi J., and Zhang X., 2020. ZnO-Assisted Synthesis of Lignin-Based Ultra-Fine Microporous Carbon Nanofibers for Supercapacitors. Journal of Colloid and Interface Science, 586, 412-422.
  • Meher, S.K., Justin P., and Rao G.R., 2011. Microwave-Mediated Synthesis for Improved Morphology and Pseudocapacitance Performance of Nickel Oxide. ACS Applied Materials & Interfaces, 3, 2063–2073.
  • Nashim, A., Pany S., and Parida K.M., 2021. Systematic Investigation on the Charge Storage Behavior of GdCrO3 in Aqueous Electrolyte. Journal of Energy Storage, 42, 103145.
  • Packiaraj, R., Devendran P., Venkatesh K.S., Bahadur S.A., Manikandan A., and Nallamuthu N., 2019. Electrochemical Investigations of Magnetic Co3O4 Nanoparticles as an Active Electrode for Supercapacitor Applications. Journal of Superconductivity and Novel Magnetism, 32, 2427–2436.
  • Pore, O. C., Fulari A. V, Kamble R. K., Shelake A. S., Velhal N. B., Fulari V. J., and Lohar G. M., 2021. Hydrothermally Synthesized Co3O4 Microflakes for Supercapacitor and Non-Enzymatic Glucose Sensor. Journal of Materials Science: Materials in Electronics, 32, 20742–20754.
  • Priyadharsini, C. I., Marimuthu G., Pazhanivel T., Anbarasan P. M., Aroulmoji V., Siva V., and Mohana L., 2020. Sol–Gel Synthesis of Co3O4 Nanoparticles as an Electrode Material for Supercapacitor Applications. Journal of Sol-Gel Science and Technology, 96, 416–422.
  • Tan, Y., Gao Q., Yang C., Yang K., Tian W., and Zhu L., 2015. One-Dimensional Porous Nanofibers of Co3O4 on the Carbon Matrix from Human Hair with Superior Lithium Ion Storage Performance. Scientific Reports, 5, 12382.
  • Tharasan, P., Somprasong M., Kenyota N., Kanjana N., Maiaugree W., Jareonboon W., and Laokul P., 2022. Preparation and Electrochemical Performance of Nanostructured Co3O4 Particles. Journal of Nanoparticle Research, 24, 126.
  • Tummala, R., Guduru R.K., and Mohanty P.S., 2012. Nanostructured Co3O4 Electrodes for Supercapacitor Applications from Plasma Spray Technique. Journal of Power Sources, 209, 44–51.
  • UmaSudharshini, A., Bououdina M., Venkateshwarlu M., Dhamodharan P., and Manoharan C., 2021. Solvothermal Synthesis of Cu-Doped Co3O4 Nanosheets at Low Reaction Temperature for Potential Supercapacitor Applications. Applied Physics A, 127, 353.
  • Üstün, B., Aydın H., Koç S.N., and Kurtan Ü., 2023. Electrospun Amorphous CoOx/C Composite Nanofibers Doped with Heteroatoms for Symmetric Supercapacitors. Fuel, 341, 127735.
  • Vidhyadharan, B., Zain N.K.M, Misnon I.I., Aziz R.A., Ismail J., Yusoff M.M., and Jose R., 2014. High Performance Supercapacitor Electrodes from Electrospun Nickel Oxide Nanowires. Journal of Alloys and Compounds, 610, 143.
  • Wang, D., Wang Q., and Wang T., 2011. Morphology-Controllable Synthesis of Cobalt Oxalates and Their Conversion to Mesoporous C Co3O4 Nanostructures for Application in Supercapacitors. Inorganic Chemistry, 50, 6482–6492.
  • Wang, H.Q., Li Z.S., Huang Y.H., Li Q.Y., and Wang X.Y., 2010. A Novel Hybrid Supercapacitor Based on Spherical Activated Carbon and Spherical MnO2 in a Non-Aqueous Electrolyte. Journal of Materials Chemistry, 20, 3883–3889.
  • Wang, L., Duan G., Zhu J., Chen S. M., Liu X., and Palanisamy S., 2016. Mesoporous Transition Metal Oxides Quasi-Nanospheres with Enhanced Electrochemical Properties for Supercapacitor Applications. Journal of Colloid and Interface Science, 483, 73–83.
  • Yang, W., Gao Z., Ma J., Wang J., Wang B., and Liu L., 2013. Effects of Solvent on the Morphology of Nanostructured Co3O4 and Its Application for High-Performance Supercapacitors. Electrochimica Acta, 112, 378–385.
  • Zhang, Z. J., Chen X.Y., Xie D.H., Cui P., and Liu J.W., 2014. Temperature-Dependent Structure and Electrochemical Performance of Highly Nanoporous Carbon from Potassium Biphthalate and Magnesium Powder via a Template Carbonization Process. Journal of Materials Chemistry A, 2, 9675–9683.

Molten Salt Approach for Co3O4 Synthesis as a Charge Storage Electrode

Year 2023, Volume: 23 Issue: 5, 1256 - 1266, 30.10.2023
https://doi.org/10.35414/akufemubid.1275507

Abstract

A versatile molten salt method was targeted to fabricate the cobalt oxide (Co3O4) nanospheres as
charge storage electrodes. The Co3O4 nanospheres were prepared in KNO3 molten salt in only one step
within 5 minutes. The nanospheres were with an average size distribution of almost 80-130 nm. The
specific capacitance of cobalt oxide was found to be 285 F/g at 10 mV/s and 171 F/g at 0.5 A /g in 6 M
KOH and the Trasatti method was used to understand the outer and inner surface capacitive
contributions. The material possessed a moderate rate capability (63.1% at 5 A/g) and had good cyclic
stability (90.5% after 1200 cycles). This experimental study does not require any solvent usage and thus
can provide a green and continuous approach for the preparation of various transition metal oxides
with good electrochemical properties in the energy storage field.

References

  • Afrooze, A., and Shaik D., 2023. Porous Co3O4 Nanospheres Synthesized via Solution Combustion Method for Supercapacitors. Chemical Papers, 77, 1201–1211.
  • Anuradha, C.T., and Raji, P., 2022. Hydrothermal Synthesis, Characterization, and Electrochemical Behaviour of Cobalt Oxide Co3O4 Nanoparticles for Stable Electrode with Enhanced Supercapacitance. Brazilian Journal of Physics, 52, 211-215.
  • Ardizzone, S., Fregonara G., and Trasatti S., 1990. Inner and Outer Active Surface of RuO2 Electrodes. Electrochimica Acta, 35, 263–267.
  • Arjunan, A., Ramasamy S., Kim J., and Kim S.K., 2023. Co3O4 Nanoparticles-Embedded Nitrogen-Doped Porous Carbon Spheres for High-Energy Hybrid Supercapacitor Electrodes. Journal of Energy Storage, 68, 107758.
  • Chen, M., Ge Q., Qi, M., Liang X., Wang F., and Chen, Q., 2019. Surface & Coatings Technology Cobalt Oxides Nanorods Arrays as Advanced Electrode for High Performance Supercapacitor. Surface & Coatings Technology, 360, 73–77.
  • Du, P., Dong Y., Dong Y., Wang X., and Zhang H., 2022. Fabrication of Uniform MnO2 Layer-Modified Activated Carbon Cloth for High-Performance Flexible Quasi-Solid-State Asymmetric Supercapacitor. Journal of Materials Science, 57, 3497–3512.
  • Gao, W., Zhao Y., Chen W., Zhuang J., Shang M., Sun D., and Xie A., 2023. From Plastic to Supercapacitor Electrode Materials: Preparation and Properties of Cobalt Oxide/Carbon Composites with Polyethylene Terephthalate as Carbon Source. Ceramics International, 49 (5), 7266–7273.
  • Guo, D., Song X., Li F., Tan L., Ma H., Zhang L., and Zhao Y., 2018. Oriented Synthesis of Co3O4 Core-Shell Microspheres for High-Performance Asymmetric Supercapacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 546, 1–8.
  • Jadhav, S., Jadhav A., Mandlekar B., Sarawade P., and Anamika V., Kadam A., 2023. Influence of Deposition Current and Different Electrolytes on Charge Storage Performance of Co3O4 Electrode Material. Journal of Physics and Chemistry of Solids, 180, 111422.
  • Kebabsa, L., Kim J., Lee D, and Lee B., 2020. Highly Porous Cobalt Oxide-Decorated Carbon Nanofibers Fabricated from Starch as Free-Standing Electrodes for Supercapacitors. Applied Surface Science, 511, 145313.
  • Kim, B.H., Yang K.S., and Yang D.J., 2013. Electrochemical Behavior of Activated Carbon Nanofiber-Vanadium Pentoxide Composites for Double-Layer Capacitors. Electrochimica Acta, 109, 859–865.
  • Kurtan, U. 2022. Uniformly Decorated Nanocubes in Carbon Nanofibers for a Supercapacitor with Ultrahigh Cyclability and Stability. Journal of Electronic Materials, 51, 5159–5168.
  • Kurtan, U. and Aydın H., 2021. Introducing Organic Metallic Salts to Enhance Capacitive Energy Storage of Carbon Nanofibers. Journal of Energy Storage, 42, 103016.
  • Lee, S.W., Gallant B., Byon H.R, Hammond P.T, and Shao-Horn Y., 2011. Nanostructured Carbon-Based Electrodes: Bridging the Gap between Thin-Film Lithium-Ion Batteries and Electrochemical Capacitors. Energy & Environmental Science, 4, 1972–1985.
  • Liang, K., Tang X., and Hu W., 2012. High-Performance Three-Dimensional Nanoporous NiO Film as a Supercapacitor Electrode. Journal of Materials Chemistry, 22, 11062–11067.
  • Lima-Tenório M.K., Ferreira C.S., Rebelo QHF., Souza R.F.B., Passos R.R., Pineda E.A.G., and Pocrifka L.A., 2018. Pseudocapacitance Properties of Co3O4 Nanoparticles Synthesized Using a Modified Sol-Gel Method. Materials Research, 21, e20170521.
  • Liu, F., Su H., Jin L., Zhang H., Chu X., and Yang W., 2017. Facile Synthesis of Ultrafine Cobalt Oxide Nanoparticles for High-Performance Supercapacitors. Journal of Colloid and Interface Science, 505, 796–804.
  • Liu, M.C., Kong L.B., Lu C., Li X. M., Luo Y.C., and Kang L., 2012. A Sol − Gel Process for Fabrication of NiO/ NiCo2O4/Co3O4 Composite with Improved Electrochemical Behavior for Electrochemical Capacitors. ACS Appl. Mater. Interfaces, 4, 4631–4636.
  • Ma, C., Wu L., Dirican M., Cheng H., Li J., Song Y., Shi J., and Zhang X., 2020. ZnO-Assisted Synthesis of Lignin-Based Ultra-Fine Microporous Carbon Nanofibers for Supercapacitors. Journal of Colloid and Interface Science, 586, 412-422.
  • Meher, S.K., Justin P., and Rao G.R., 2011. Microwave-Mediated Synthesis for Improved Morphology and Pseudocapacitance Performance of Nickel Oxide. ACS Applied Materials & Interfaces, 3, 2063–2073.
  • Nashim, A., Pany S., and Parida K.M., 2021. Systematic Investigation on the Charge Storage Behavior of GdCrO3 in Aqueous Electrolyte. Journal of Energy Storage, 42, 103145.
  • Packiaraj, R., Devendran P., Venkatesh K.S., Bahadur S.A., Manikandan A., and Nallamuthu N., 2019. Electrochemical Investigations of Magnetic Co3O4 Nanoparticles as an Active Electrode for Supercapacitor Applications. Journal of Superconductivity and Novel Magnetism, 32, 2427–2436.
  • Pore, O. C., Fulari A. V, Kamble R. K., Shelake A. S., Velhal N. B., Fulari V. J., and Lohar G. M., 2021. Hydrothermally Synthesized Co3O4 Microflakes for Supercapacitor and Non-Enzymatic Glucose Sensor. Journal of Materials Science: Materials in Electronics, 32, 20742–20754.
  • Priyadharsini, C. I., Marimuthu G., Pazhanivel T., Anbarasan P. M., Aroulmoji V., Siva V., and Mohana L., 2020. Sol–Gel Synthesis of Co3O4 Nanoparticles as an Electrode Material for Supercapacitor Applications. Journal of Sol-Gel Science and Technology, 96, 416–422.
  • Tan, Y., Gao Q., Yang C., Yang K., Tian W., and Zhu L., 2015. One-Dimensional Porous Nanofibers of Co3O4 on the Carbon Matrix from Human Hair with Superior Lithium Ion Storage Performance. Scientific Reports, 5, 12382.
  • Tharasan, P., Somprasong M., Kenyota N., Kanjana N., Maiaugree W., Jareonboon W., and Laokul P., 2022. Preparation and Electrochemical Performance of Nanostructured Co3O4 Particles. Journal of Nanoparticle Research, 24, 126.
  • Tummala, R., Guduru R.K., and Mohanty P.S., 2012. Nanostructured Co3O4 Electrodes for Supercapacitor Applications from Plasma Spray Technique. Journal of Power Sources, 209, 44–51.
  • UmaSudharshini, A., Bououdina M., Venkateshwarlu M., Dhamodharan P., and Manoharan C., 2021. Solvothermal Synthesis of Cu-Doped Co3O4 Nanosheets at Low Reaction Temperature for Potential Supercapacitor Applications. Applied Physics A, 127, 353.
  • Üstün, B., Aydın H., Koç S.N., and Kurtan Ü., 2023. Electrospun Amorphous CoOx/C Composite Nanofibers Doped with Heteroatoms for Symmetric Supercapacitors. Fuel, 341, 127735.
  • Vidhyadharan, B., Zain N.K.M, Misnon I.I., Aziz R.A., Ismail J., Yusoff M.M., and Jose R., 2014. High Performance Supercapacitor Electrodes from Electrospun Nickel Oxide Nanowires. Journal of Alloys and Compounds, 610, 143.
  • Wang, D., Wang Q., and Wang T., 2011. Morphology-Controllable Synthesis of Cobalt Oxalates and Their Conversion to Mesoporous C Co3O4 Nanostructures for Application in Supercapacitors. Inorganic Chemistry, 50, 6482–6492.
  • Wang, H.Q., Li Z.S., Huang Y.H., Li Q.Y., and Wang X.Y., 2010. A Novel Hybrid Supercapacitor Based on Spherical Activated Carbon and Spherical MnO2 in a Non-Aqueous Electrolyte. Journal of Materials Chemistry, 20, 3883–3889.
  • Wang, L., Duan G., Zhu J., Chen S. M., Liu X., and Palanisamy S., 2016. Mesoporous Transition Metal Oxides Quasi-Nanospheres with Enhanced Electrochemical Properties for Supercapacitor Applications. Journal of Colloid and Interface Science, 483, 73–83.
  • Yang, W., Gao Z., Ma J., Wang J., Wang B., and Liu L., 2013. Effects of Solvent on the Morphology of Nanostructured Co3O4 and Its Application for High-Performance Supercapacitors. Electrochimica Acta, 112, 378–385.
  • Zhang, Z. J., Chen X.Y., Xie D.H., Cui P., and Liu J.W., 2014. Temperature-Dependent Structure and Electrochemical Performance of Highly Nanoporous Carbon from Potassium Biphthalate and Magnesium Powder via a Template Carbonization Process. Journal of Materials Chemistry A, 2, 9675–9683.
There are 35 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Ümran Kurtan 0000-0002-1279-7729

Early Pub Date October 27, 2023
Publication Date October 30, 2023
Submission Date April 2, 2023
Published in Issue Year 2023 Volume: 23 Issue: 5

Cite

APA Kurtan, Ü. (2023). Molten Salt Approach for Co3O4 Synthesis as a Charge Storage Electrode. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(5), 1256-1266. https://doi.org/10.35414/akufemubid.1275507
AMA Kurtan Ü. Molten Salt Approach for Co3O4 Synthesis as a Charge Storage Electrode. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. October 2023;23(5):1256-1266. doi:10.35414/akufemubid.1275507
Chicago Kurtan, Ümran. “Molten Salt Approach for Co3O4 Synthesis As a Charge Storage Electrode”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 5 (October 2023): 1256-66. https://doi.org/10.35414/akufemubid.1275507.
EndNote Kurtan Ü (October 1, 2023) Molten Salt Approach for Co3O4 Synthesis as a Charge Storage Electrode. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 5 1256–1266.
IEEE Ü. Kurtan, “Molten Salt Approach for Co3O4 Synthesis as a Charge Storage Electrode”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 5, pp. 1256–1266, 2023, doi: 10.35414/akufemubid.1275507.
ISNAD Kurtan, Ümran. “Molten Salt Approach for Co3O4 Synthesis As a Charge Storage Electrode”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/5 (October 2023), 1256-1266. https://doi.org/10.35414/akufemubid.1275507.
JAMA Kurtan Ü. Molten Salt Approach for Co3O4 Synthesis as a Charge Storage Electrode. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:1256–1266.
MLA Kurtan, Ümran. “Molten Salt Approach for Co3O4 Synthesis As a Charge Storage Electrode”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 5, 2023, pp. 1256-6, doi:10.35414/akufemubid.1275507.
Vancouver Kurtan Ü. Molten Salt Approach for Co3O4 Synthesis as a Charge Storage Electrode. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(5):1256-6.