Research Article
BibTex RIS Cite

The Role of Chitosan, a Potential Organic Substance, in Combating Salt Stress in Tomato

Year 2023, Volume: 23 Issue: 5, 1085 - 1093, 30.10.2023
https://doi.org/10.35414/akufemubid.1287609

Abstract

Soil salinity is one of the critical factors that cause yield losses in tomato cultivation. Dealing with stress
caused by salinity has recently become a global issue. It is known that chitosan has a role in reducing
the harmful effects of abiotic stresses on plants. Chitosan, which is used as a non-toxic, biocompatible,
biodegradable, and organic supplement, has attracted great interest in agricultural production in recent
years. In this study, the effect of chitosan on morphological growth parameters and its role in healing
seed damage in tomato seedlings under salt stress was investigated. The extent of salt damage in
tomato seedlings and the effect of chitosan against it was evaluated by morphological parameters and
DNA damage by Comet assay. The morphological effect of salt stress on seedlings was obtained from
plant height, stem height, stem diameter, leaf area, and petiole length data. The level of DNA damage
caused by stress was determined by the tail length, tail DNA % value, and tail moment, which are
considered as indicators of DNA damage. It was determined that the applied chitosan had a positive
effect on the morphological characteristics of tomato seedlings. It was determined that chitosan
supplementation was effective in reducing DNA damage at some doses. Our study results determined
that the applied salt caused stress in tomato seedlings depending on the dose and chitosan could be
used effectively to protect tomato seedlings from the destructive effects of salt stress. It can also be
used to detect DNA damage in future studies with the comet assay technique.

Project Number

FBA-2021-765

References

  • Ahmad, W., Zahir, A., Nadeem, M., Garros, L., Drouet, S., Renouard, S., . Abbasi, B. H., 2019. Enhanced production of lignans and neolignans in chitosan-treated flax (Linum usitatissimum L.) cell cultures. Process biochemistry, 79, 155-165.
  • Ashour, H.A., Esmail, S.E.A., Kotb M.S., 2020. Ornamental horticulture. OrnamentalHorticulture, 27 (1), pp. 88-102
  • Bakhoum, G.S., Sadak, M.S., Badr, E.A.E.M., 2020. Mitigation of adverse effects of salinity stress on sunflower plant (Helianthus annuus L.) by exogenous application of chitosan. Bulletin of the National Research Centre, 44 (1), 10.1186/s42269-020-00343-7
  • Bulut, H., 2020. Arpada Tuz Stresine Karşı Zingeronun Koruyucu Etkisi. Journal of the Institute of Science and Technology, 10 (4) , 2932-2942. DOI: 10.21597/jist.686577
  • Garude, N.R., Vemula, A.N., 2019. Seed priming with chitosan for enhanced plant growth under salt stress. Retrieved from, 9 (3), pp. 6-11
  • Gerami, M., Majidian, P., Ghorbanpour, A., Alipour Z., 2020. Stevia rebaudiana bertoni responses to salt stress and chitosan elicitor. Physiology and Molecular Biology of Plants, 26 (5), pp. 965-974, 10.1007/s12298-020-00788-0
  • Golkar, P., Taghizadeh, M., Yousefian, Z., 2019. The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell, Tissue and Organ Culture, 137 (3), pp. 575-585, 10.1007/s11240-019-01592-9
  • Gyori, B. M., Venkatachalam, G., Thiagarajan, P. S., Hsu, D., Clement M.V., 2014. an automated tool for comet assay image analysis. Redox Biology, 9 (2) :457-65. doi: 10.1016/j.redox.2013.12.020. eCollection 2014.
  • Hassan, F.A.S., Ali, E., Gaber, A., Fetouh, M.I., Mazrou, R. 2021. Chitosan nanoparticles effectively combat salinity stress by enhancing antioxidant activity and alkaloid biosynthesis in Catharanthus roseus (L.) G. Don. Plant Physiology and Biochemistry, 162, pp. 291-300, 10.1016/j.plaphy.2021.03.004
  • Hernández-Hernández, H., Juárez-Maldonado, A., Benavides-Mendoza, A., Ortega-Ortiz, H., Cadenas-Pliego, G., Sánchez-Aspeytia, D., González-Morales, S., 2018. Chitosan-PVA and copper nanoparticles improve growth and overexpress the SOD and JA genes in tomato plants under salt stress. Agronomy, 8 (9), 10.3390/agronomy8090175
  • Hidangmayum, A., Dwivedi, P., Katiyar, D., and Hemantaranjan, A., 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiology and molecular biology of plants, 25 (2), 313-326.
  • Jabeen, N., Ahmad, R., 2013. The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan. Journal of the Science of Food and Agriculture, 93 (7), pp. 1699-1705, 10.1002/jsfa.5953
  • Kang, L.Y. Lu, Q.S. Shao, H.B. Shi, P., 2017. Effects of drought on NDVI of winter wheat growth in Binzhou irrigation region. Jiangsu J. Agric. Sci., 33, pp. 83-93 Li, X.X., Huang, P. Zhuang, Du H.D., 2016. Research advances of stress tolerance in sweet sorghum. Jiangsu J. Agric. Sci., 32, pp. 1429-1433
  • Mosavikia, A.A., Mosavi, S.G., Seghatoleslami, M., Baradaran R., 2020. Chitosan nanoparticle and pyridoxine seed priming improves tolerance to salinity in milk thistle seedling [Silybum marianum (L.) gaertn.].Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48 (1), pp. 221-233, 10.15835/NBHA48111777
  • Mukherjee, A., Gichner, T., 2009. Plant bioassays: comet assay in higher plants. Research Methods Plant Sciences, 1 (), pp. 97-108
  • Muley, A.B., Shingote, P.R., Patil, A.P., Dalvi, S.G., Suprasanna, P., 2019. Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydrate polymers, 210, 289-301.
  • Oliveira, H.C., Gomes, B.C.R., Pelegrino, M.T., Seabra. A.B., 2016. Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide - Biology and Chemistry, 61, pp. 10-19, 10.1016/j.niox.2016.09.010
  • Rabêlo, V.M., Magalhães, P.C., Bressanin, L.A., Carvalho, D.T., dos Reis, C.O., Karam, D., de Souza, T.C., 2019. The foliar application of a mixture of semisynthetic chitosan derivatives induces tolerance to water deficit in maize, improving the antioxidant system and increasing photosynthesis and grain yield. Scientific Reports, 9 (1), pp. 1-13, 10.1038/s41598-019-44649-7
  • Safikhan, S., Khoshbakht, K., Chaichi, M.R., Amini, A., Motesharezadeh, B., 2018. Role of chitosan on the growth, physiological parameters and enzymatic activity of milk thistle (Silybum marianum (L.) Gaertn.) in a pot experiment. Journal of Applied Research on Medicinal and Aromatic Plants, 10, pp. 49-58, 10.1016/j.jarmap.2018.06.002
  • Sen, S.K., Chouhan, D., Das, D., Ghosh, R., Mandal, P., 2020. Improvisation of salinity stress response in mung bean through solid matrix priming with normal and nano-sized chitosan. International Journal of Biological Macromolecules, 145, pp. 108-123, 10.1016/j.ijbiomac.2019.12.170
  • Sen, S.K., Mandal, P., 2016. Solid matrix priming with chitosan enhances seed germination and seedling invigoration in mung bean under salinity stress. Journal of Central European Agriculture, 17 (3), pp. 749-762, 10.5513/JCEA01/17.3.1773
  • Shams P.L., 2018. Effect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea maize L. under salt stress condition. Plant Physiology, 9 (1), 2661-2670.
  • Sheikhalipour, M., Esmaielpour, B., Behnamian, M., Gohari, G., Giglou, M.T., Vachova, P., Skalicky, M., 2021. Chitosan–selenium nanoparticle (Cs–Se np) foliar spray alleviates salt stress in bitter melon. Nanomaterials, 11 (3), pp. 1-23, 10.3390/nano11030684
  • Su, L.J., Zhang, J.H., Gomez, H., Murugan, R., Hong, X., Xu, D., Peng, Z.Y. 2019. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative Medicine and Cellular Longevity, 10.1155/2019/5080843
  • Tice, R.R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H, Miyamae, Y., Rojas, E., Ryu, J.C., Sasaki, Y.F., 2000. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen, 35 (3) :206-21. doi: 10.1002/(sici)1098-2280(2000)35:3<206::aid-em8>3.0.co;2-j.
  • Turk, H. 2019. Chitosan-induced enhanced expression and activation of alternative oxidase confer tolerance to salt stress in maize seedlings. Plant Physiology and Biochemistry, 141, pp. 415-422, 10.1016/j.plaphy.2019.06.025
  • Ullah, N., Basit, A., Ahmad, I., Ullah, I., Shah, S.T., Mohamed, H.I., Javed, S., 2020. Mitigation the adverse effect of salinity stress on the performance of the tomato crop by exogenous application of chitosan. Bulletin of the National Research Centre, 44 (1), 10.1186/s42269-020-00435-4
  • Zayed, M., Elkafafi, S., Zedan, A., Dawoud, S., 2017. Effect of Nano chitosan on growth, physiological and biochemical parameters of Phaseolus vulgaris under salt stress. Journal of Plant Production, 8 (5), pp. 577-585,
  • Zhou, J., Wu, J.C., Du, B.M., Li, P.L., 2016. A comparative study on drought resistances of four species of lianas. Jiangsu J. Agric. SCI, 32, pp. 674-679

Domateste Tuz Stresi İle Mücadelede Potansiyel Bir Organik Madde Olan Kitosanın Rolü

Year 2023, Volume: 23 Issue: 5, 1085 - 1093, 30.10.2023
https://doi.org/10.35414/akufemubid.1287609

Abstract

Domates yetiştiriciliğinde verim kayıplarına neden olan kritik faktörlerden birisi toprak tuzluluğudur.
Tuzluluğun neden olduğu stres ile mücadele son zamanlarda küresel bir konu haline gelmiştir. Kitosanın
abiyotik streslerin bitkiler üzerinde neden olduğu zararlı etkilerini azaltmada rolü olduğu bilinmektedir.
Toksik olmayan, biyolojik olarak uyumlu, biyolojik olarak parçalanabilen ve organik bir takviye olarak
kullanılan kitosan, tarımsal üretimde son yıllarda büyük ilgi görmektedir. Bu çalışmada, tuz stresi
altındaki domates fidelerinde kitosanın morfolojik büyüme parametrelerine etkisi ve çekirdek hasarını
iyileştirmedeki rolü incelenmiştir. Domates fidelerinde tuz hasarının boyutu ve kitosanın buna karşı
etkisi morfolojik parametreler ve Comet assay ile DNA hasarı değerlendirilmiştir. Tuz stresinin fideler
üzerindeki morfolojik etkisi bitki boyu, gövde yüksekliği, gövde çapı, yaprak alanı ve yaprak sapı
uzunluğu verilerinden elde edilmiştir. Stres etkisiyle oluşan DNA hasar düzeyi, DNA hasarının göstergesi
olarak kabul edilen kuyruk uzunluğu, kuyruk DNA % değeri ve kuyruk momenti ile belirlenmiştir.
Uygulanan kitosanın domates fidelerinin morfolojik özellikleri üzerinde olumlu etkisi olduğu
saptanmıştır. Kitosan takviyesinin bazı dozlarda DNA hasarını azaltmada etkili olmuştur. Çalışma
sonuçlarımız uygulanan tuzun domates fidelerinde doz miktarına bağlı olarak strese neden olduğunu ve
kitosanın domates fidelerini tuz stresinin yıkıcı etkilerinden korumak için etkin bir şekilde
kullanılabileceğini ortaya koymuştur.

Supporting Institution

Erzincan Binali Yıldırım Üniversitesi BAP Koordinatörlüğü

Project Number

FBA-2021-765

Thanks

Bu çalışma Erzincan Binali Yıldırım Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü (BAP) tarafından desteklenen FBA-2021-765 kodlu projeden elde edilmiştir. Katkıları için teşekkür ederiz.

References

  • Ahmad, W., Zahir, A., Nadeem, M., Garros, L., Drouet, S., Renouard, S., . Abbasi, B. H., 2019. Enhanced production of lignans and neolignans in chitosan-treated flax (Linum usitatissimum L.) cell cultures. Process biochemistry, 79, 155-165.
  • Ashour, H.A., Esmail, S.E.A., Kotb M.S., 2020. Ornamental horticulture. OrnamentalHorticulture, 27 (1), pp. 88-102
  • Bakhoum, G.S., Sadak, M.S., Badr, E.A.E.M., 2020. Mitigation of adverse effects of salinity stress on sunflower plant (Helianthus annuus L.) by exogenous application of chitosan. Bulletin of the National Research Centre, 44 (1), 10.1186/s42269-020-00343-7
  • Bulut, H., 2020. Arpada Tuz Stresine Karşı Zingeronun Koruyucu Etkisi. Journal of the Institute of Science and Technology, 10 (4) , 2932-2942. DOI: 10.21597/jist.686577
  • Garude, N.R., Vemula, A.N., 2019. Seed priming with chitosan for enhanced plant growth under salt stress. Retrieved from, 9 (3), pp. 6-11
  • Gerami, M., Majidian, P., Ghorbanpour, A., Alipour Z., 2020. Stevia rebaudiana bertoni responses to salt stress and chitosan elicitor. Physiology and Molecular Biology of Plants, 26 (5), pp. 965-974, 10.1007/s12298-020-00788-0
  • Golkar, P., Taghizadeh, M., Yousefian, Z., 2019. The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell, Tissue and Organ Culture, 137 (3), pp. 575-585, 10.1007/s11240-019-01592-9
  • Gyori, B. M., Venkatachalam, G., Thiagarajan, P. S., Hsu, D., Clement M.V., 2014. an automated tool for comet assay image analysis. Redox Biology, 9 (2) :457-65. doi: 10.1016/j.redox.2013.12.020. eCollection 2014.
  • Hassan, F.A.S., Ali, E., Gaber, A., Fetouh, M.I., Mazrou, R. 2021. Chitosan nanoparticles effectively combat salinity stress by enhancing antioxidant activity and alkaloid biosynthesis in Catharanthus roseus (L.) G. Don. Plant Physiology and Biochemistry, 162, pp. 291-300, 10.1016/j.plaphy.2021.03.004
  • Hernández-Hernández, H., Juárez-Maldonado, A., Benavides-Mendoza, A., Ortega-Ortiz, H., Cadenas-Pliego, G., Sánchez-Aspeytia, D., González-Morales, S., 2018. Chitosan-PVA and copper nanoparticles improve growth and overexpress the SOD and JA genes in tomato plants under salt stress. Agronomy, 8 (9), 10.3390/agronomy8090175
  • Hidangmayum, A., Dwivedi, P., Katiyar, D., and Hemantaranjan, A., 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiology and molecular biology of plants, 25 (2), 313-326.
  • Jabeen, N., Ahmad, R., 2013. The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan. Journal of the Science of Food and Agriculture, 93 (7), pp. 1699-1705, 10.1002/jsfa.5953
  • Kang, L.Y. Lu, Q.S. Shao, H.B. Shi, P., 2017. Effects of drought on NDVI of winter wheat growth in Binzhou irrigation region. Jiangsu J. Agric. Sci., 33, pp. 83-93 Li, X.X., Huang, P. Zhuang, Du H.D., 2016. Research advances of stress tolerance in sweet sorghum. Jiangsu J. Agric. Sci., 32, pp. 1429-1433
  • Mosavikia, A.A., Mosavi, S.G., Seghatoleslami, M., Baradaran R., 2020. Chitosan nanoparticle and pyridoxine seed priming improves tolerance to salinity in milk thistle seedling [Silybum marianum (L.) gaertn.].Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48 (1), pp. 221-233, 10.15835/NBHA48111777
  • Mukherjee, A., Gichner, T., 2009. Plant bioassays: comet assay in higher plants. Research Methods Plant Sciences, 1 (), pp. 97-108
  • Muley, A.B., Shingote, P.R., Patil, A.P., Dalvi, S.G., Suprasanna, P., 2019. Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydrate polymers, 210, 289-301.
  • Oliveira, H.C., Gomes, B.C.R., Pelegrino, M.T., Seabra. A.B., 2016. Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide - Biology and Chemistry, 61, pp. 10-19, 10.1016/j.niox.2016.09.010
  • Rabêlo, V.M., Magalhães, P.C., Bressanin, L.A., Carvalho, D.T., dos Reis, C.O., Karam, D., de Souza, T.C., 2019. The foliar application of a mixture of semisynthetic chitosan derivatives induces tolerance to water deficit in maize, improving the antioxidant system and increasing photosynthesis and grain yield. Scientific Reports, 9 (1), pp. 1-13, 10.1038/s41598-019-44649-7
  • Safikhan, S., Khoshbakht, K., Chaichi, M.R., Amini, A., Motesharezadeh, B., 2018. Role of chitosan on the growth, physiological parameters and enzymatic activity of milk thistle (Silybum marianum (L.) Gaertn.) in a pot experiment. Journal of Applied Research on Medicinal and Aromatic Plants, 10, pp. 49-58, 10.1016/j.jarmap.2018.06.002
  • Sen, S.K., Chouhan, D., Das, D., Ghosh, R., Mandal, P., 2020. Improvisation of salinity stress response in mung bean through solid matrix priming with normal and nano-sized chitosan. International Journal of Biological Macromolecules, 145, pp. 108-123, 10.1016/j.ijbiomac.2019.12.170
  • Sen, S.K., Mandal, P., 2016. Solid matrix priming with chitosan enhances seed germination and seedling invigoration in mung bean under salinity stress. Journal of Central European Agriculture, 17 (3), pp. 749-762, 10.5513/JCEA01/17.3.1773
  • Shams P.L., 2018. Effect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea maize L. under salt stress condition. Plant Physiology, 9 (1), 2661-2670.
  • Sheikhalipour, M., Esmaielpour, B., Behnamian, M., Gohari, G., Giglou, M.T., Vachova, P., Skalicky, M., 2021. Chitosan–selenium nanoparticle (Cs–Se np) foliar spray alleviates salt stress in bitter melon. Nanomaterials, 11 (3), pp. 1-23, 10.3390/nano11030684
  • Su, L.J., Zhang, J.H., Gomez, H., Murugan, R., Hong, X., Xu, D., Peng, Z.Y. 2019. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative Medicine and Cellular Longevity, 10.1155/2019/5080843
  • Tice, R.R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H, Miyamae, Y., Rojas, E., Ryu, J.C., Sasaki, Y.F., 2000. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen, 35 (3) :206-21. doi: 10.1002/(sici)1098-2280(2000)35:3<206::aid-em8>3.0.co;2-j.
  • Turk, H. 2019. Chitosan-induced enhanced expression and activation of alternative oxidase confer tolerance to salt stress in maize seedlings. Plant Physiology and Biochemistry, 141, pp. 415-422, 10.1016/j.plaphy.2019.06.025
  • Ullah, N., Basit, A., Ahmad, I., Ullah, I., Shah, S.T., Mohamed, H.I., Javed, S., 2020. Mitigation the adverse effect of salinity stress on the performance of the tomato crop by exogenous application of chitosan. Bulletin of the National Research Centre, 44 (1), 10.1186/s42269-020-00435-4
  • Zayed, M., Elkafafi, S., Zedan, A., Dawoud, S., 2017. Effect of Nano chitosan on growth, physiological and biochemical parameters of Phaseolus vulgaris under salt stress. Journal of Plant Production, 8 (5), pp. 577-585,
  • Zhou, J., Wu, J.C., Du, B.M., Li, P.L., 2016. A comparative study on drought resistances of four species of lianas. Jiangsu J. Agric. SCI, 32, pp. 674-679
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Articles
Authors

Hüseyin Bulut 0000-0003-3424-7012

Halil İbrahim Öztürk 0000-0002-8977-0831

Project Number FBA-2021-765
Early Pub Date October 27, 2023
Publication Date October 30, 2023
Submission Date April 25, 2023
Published in Issue Year 2023 Volume: 23 Issue: 5

Cite

APA Bulut, H., & Öztürk, H. İ. (2023). Domateste Tuz Stresi İle Mücadelede Potansiyel Bir Organik Madde Olan Kitosanın Rolü. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(5), 1085-1093. https://doi.org/10.35414/akufemubid.1287609
AMA Bulut H, Öztürk Hİ. Domateste Tuz Stresi İle Mücadelede Potansiyel Bir Organik Madde Olan Kitosanın Rolü. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. October 2023;23(5):1085-1093. doi:10.35414/akufemubid.1287609
Chicago Bulut, Hüseyin, and Halil İbrahim Öztürk. “Domateste Tuz Stresi İle Mücadelede Potansiyel Bir Organik Madde Olan Kitosanın Rolü”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 5 (October 2023): 1085-93. https://doi.org/10.35414/akufemubid.1287609.
EndNote Bulut H, Öztürk Hİ (October 1, 2023) Domateste Tuz Stresi İle Mücadelede Potansiyel Bir Organik Madde Olan Kitosanın Rolü. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 5 1085–1093.
IEEE H. Bulut and H. İ. Öztürk, “Domateste Tuz Stresi İle Mücadelede Potansiyel Bir Organik Madde Olan Kitosanın Rolü”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 5, pp. 1085–1093, 2023, doi: 10.35414/akufemubid.1287609.
ISNAD Bulut, Hüseyin - Öztürk, Halil İbrahim. “Domateste Tuz Stresi İle Mücadelede Potansiyel Bir Organik Madde Olan Kitosanın Rolü”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/5 (October 2023), 1085-1093. https://doi.org/10.35414/akufemubid.1287609.
JAMA Bulut H, Öztürk Hİ. Domateste Tuz Stresi İle Mücadelede Potansiyel Bir Organik Madde Olan Kitosanın Rolü. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:1085–1093.
MLA Bulut, Hüseyin and Halil İbrahim Öztürk. “Domateste Tuz Stresi İle Mücadelede Potansiyel Bir Organik Madde Olan Kitosanın Rolü”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 5, 2023, pp. 1085-93, doi:10.35414/akufemubid.1287609.
Vancouver Bulut H, Öztürk Hİ. Domateste Tuz Stresi İle Mücadelede Potansiyel Bir Organik Madde Olan Kitosanın Rolü. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(5):1085-93.