Bakteriyal sekonder metabolitler, mikroorganizmaları kontrol
etmek için kullanılabilir. Bu çalışmada Apis mellifera ve Varroa
destructor'dan elde edilmiş olan farklı Bacillus izolatlarının
antimikrobiyal aktivite özelliklerinin belirlenmesi
amaçlanmıştır. Bacillus türlerinin bazı bakteri ve patojen
mayalara (Candida albicans) karşı antimikrobiyal aktiviteleri
disk difüzyon yöntemine göre araştırıldı. Araştırma sonucunda
çalışmada kullanılan Bacillus izolatlarının sekonder
metabolitleri, test edilen mikroorganizmaların gelişimini farklı
oranlarda (1,1-8,4 mm inhibisyon bölgesi) inhibe etmiştir. GAP2
(Bacillus subtilis) ve GAP9 (Bacillus thuringiensis) yüksek
antibakteriyel aktivite göstermiştir. Bakteriyel izolatlardan izole
edilen metabolitlerin çoğunun Escherichia coli ATCC2471 ve
Serratia marcescens ATCC13880'e duyarlı olduğu görüldü
(p<0,05). GV6, GV7, GAP7, GAP8, GAP11, GAP13 ve GAP15
izolatlarından elde edilen ürünlerin deneylerde kullanılan
bakterilerin hiçbirine etkisinin olmadığı belirlendi (p<0,05).
GAP2 ve GAP9 izolatları başta olmak üzere sekonder metabolit
üreten Bacillus suşlarının tıp, veterinerlik, tarım ve gıda
endüstrisinde saprofitik ve patojenik mikroorganizmalara
yönelik çeşitli uygulamalarda kullanılma potansiyeline sahip
olabileceği düşünülmektedir
Akkoç, N., Şanlibaba, P. and Akçeli̇k, M., 2009. Bakteriyosinler: Alternatif Gıda Koruyucuları. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1), 59–70.
Aslim, B. and Yucel, N., 2008. In vitro antimicrobial activity of essential oil from endemic Origanum minutiflorum on ciprofloxacin-resistant Campylobacter spp. Food chemistry, 107(2), 602-606. https://doi.org/10.1016/j.foodchem.2007.08.048
Atmaca, S., Özekinci, T., Yakut, S., Akpolat, N. and Gül, K., 2018. Serratia Türlerinin İdentifikasyonu, Klinik Dağılımı, Antibiyotik Duyarlılığı. Ankem Dergisi, 32(2), 62-71. https://doi.org/10.5222/ankem.2018.062
Barry, A. L., Garcia, F. and Thrupp, L. D., 1970. An Improved Single-disk Method for Testing the Antibiotic Susceptibility of Rapidly-growing Pathogens. American Journal of Clinical Pathology, 53(2), 149–158. https://doi.org/10.1093/ajcp/53.2.149
Barsby, T., Michael, T. and Kelly, M.T., 2002. Tupuseleiamides and Basiliskamids, new acyldipeptides produced in culture by a Bacillus laterosporus isolate obtained from a tropical marine habitat. Journal of Neuroscience Research. 65(10), 1447-1451. https://doi.org/10.1021/np0201321
Bauer, A. W., Kirby, W. M., Sherris, J. C. and Turck, M., 1966. Antibiotic susceptibility testing by a standardized single disk method. Technical Bulletin of the Registry of Medical Technologists, 36(3), 49–52.
Bérdy, J., 2005. Bioactive microbial metabolites. The Journal of Antibiotics, 58(1), 1–26. https://doi.org/10.1038/ja.2005.1
Chatterjee, S., Chatterjee, S., Lad, S. J., Phansalkar, M. S., Rupp, R. H., Ganguli, B. N. and Kogler, H., 1992. Mersacidin, a new antibiotic from Bacillus fermentation, isolation, purification and chemical characterization. The Journal of Antibiotics, 45(6), 832-838. https://doi.org/10.7164/antibiotics.45.832
Cowan, M. M., 1999. Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582. https://doi.org/10.1128/CMR.12.4.564
Davies, J., Davies, D., 2010. Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74(3):417-33. https://doi.org/10.1128/MMBR.00016-10
Demain, A. L. and Fang, A., 2000. The natural functions of secondary metabolites. Advances in Biochemical Engineering/Biotechnology, 69, 1–39. https://doi.org/10.1007/3-540-44964-7_1
Demirkan, E., Aybey, A. and Ak, A. U., 2021. Optimization of culture conditions for antibacterial substance production from newly isolated Brevibacillus laterosporus EA62. The European Research Journal, 7(2), 152–158. https://doi.org/10.18621/eurj.603491
Hong, H.A., Duc, L.H. and Cutting, S.M., 2005. The use of bacterial spore formers as probiotics. FEMS Microbiology Reviews, 29, 813–835. https://doi.org/10.1016/j.femsre.2004.12.001
Hong, G., Li, Y., Yang, M., Li, G., Jin, Y., Xiong, H. and Hou, X., 2023. Baseline gut microbial profiles are associated with the efficacy of Bacillus subtilis and Enterococcus faecium in IBS-D. Scandinavian Journal of Gastroenterology, 58(4), 339-348. https://doi.org/10.1080/00365521.2022.2136013
Hosoya, Y., Okamoto, S., Muramatsu, H. and Ochik, K., 1998. Acquisition of certain streptomycin resistance (Str.). Antimicrobial Agents and Chemotherapy, 42(8), 2041-2047. https://doi.org/10.1128/AAC.42.8.2041
Johnvesly, B., Manjunath, B.R. and Naik, G.R., 2002. Pigeon pea waste as a novel, inexpensive, substrate for production of a thermostable alkaline protease from thermoalkalophilic Bacillus sp. JB-99. Bioresource Technology, 82(1): 61-64. PMID 11848379. https://doi.org/10.1016/S0960-8524(01)00147-X
Kaspar, F., Neubauer, P. and Gimpel, M., 2019. Bioactive Secondary Metabolites from Bacillus subtilis: A Comprehensive Review. Journal of Natural Products, 82(7), 2038–2053. https://doi.org/10.1021/acs.jnatprod.9b00110
Keswani, C., Singh, H. B., García-Estrada, C., Caradus, J., He, Y. W., Mezaache-Aichour, S., Glare, T. R., Borriss, R. and Sansinenea, E., 2020. Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides. Applied Microbiology and Biotechnology, 104(3), 1013–1034. https://doi.org/10.1007/s00253-019-10300-8
Miller, D. L., Smith, E. A. and Newton, I. L. G., 2021. A bacterial symbiont protects honey bees from fungal disease. Host Microbial Interactions, 12(3). https://doi.org/10.1128/mBio.00503-21
Nabavi, S. M., Marchese, A., Izadi, M., Curti, V., Daglia, M. and Fazel Nabavi, S., 2014. Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food chemistry, 173, 339-347. https://doi.org/10.1016/j.foodchem.2014.10.042
Perez, J., Dela Rubia, T., Moreno, J. and Martinez, J., 1992. Phenolic content and antibacterial activity of olive oil waste waters. Environmental Toxicology and Chemistry: An International Journal, 11(4), 489-495. https://doi.org/10.1002/etc.5620110406
Perez, C., Suarez, C. and Castro, G. R., 1993. Antimicrobial activity determined in strains of Bacillus circulans cluster. Folia Microbiologica, 38(1), 25–28. https://doi.org/10.1007/BF02814544
Prashanthi, R., Shreevatsa, G. K., Krupalini, S. and Manoj, L., 2021. Isolation, characterization, and molecular identification of soil bacteria showing antibacterial activity against human pathogenic bacteria. Journal, Genetic Engineering & Biotechnology, 19(1). https://doi.org/10.1186/s43141-021-00219-x
Ren, Z.Z., Zheng, Y. and Sun, M., 2007. Purification and properties of an antimicrobial substance from marine Brevibcillus laterosporus LH-1. Acta Micobiological Slinica, 47(6):997-1001.
Reygaert, W. C., 2018. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS microbiology, 4(3), 482. https://doi.org/10.3934/microbiol.2018.3.482
Rosovitz, M.J., Voskuil, M.I. and Chambliss, G.H., 1998. Topley and Wilson’s Microbiology and Microbial Infections, Systematic Bacteriology. In: Collier L, Balows A, and Susman editors. Bacillus. 9nd edn. Volume 2, New York, USA: Oxford University Press, pp. 709-730.
Ruiz, B., Chávez, A., Forero, A., García-Huante, Y., Romero, A., Sánchez, M. and Langley, E., 2010. Production of microbial secondary metabolites: regulation by the carbon source. Critical Reviews in Microbiology, 36(2):146-67. https://doi.org/10.3109/10408410903489576
Sansinenea, E. and Ortiz, A., 2011. Secondary metabolites of soil Bacillus spp. Biotechnology Letters, 33(8), 1523–1538. https://doi.org/10.1007/s10529-011-0617-5
Sharma, S., Verma, H. N. and Sharma, N. K., 2014. Cationic bioactive peptide from the seeds of Benincasa hispida. International Journal of Peptides, 14, 156-160. https://doi.org/10.1155/2014/156060
Spellberg, B., 2014. The future of antibiotics. Critical care, 18(3): 228. https://doi.org/10.1186/cc13948
Steele, M. I., Motta, E. V. S., Gattu, T., Martinez, D. and Moran, N. A., 2021. The Gut Microbiota Protects Bees from Invasion by a Bacterial Pathogen. Microbiology Spectrum, 9(2). https://doi.org/10.1128/Spectrum.00394-21
Stoica, R.-M., 2019. Antimicrobial compounds of the genus Bacillus: A review. Romanian Biotechnological Letters, 24(6), 1111–1119. https://doi.org/10.25083/rbl/24.6/1111.1119
Tenover, C.F., 2006. Mechanisms of antimicrobial resistance in bacteria. The American Journal of Medicine. 119, 3-10. https://doi.org/10.1016/j.amjmed.2006.03.011
Turnbull, P.C.B., 1996. "Bacillus". In: Baron S (Ed.). Barron's Medical Microbiology. Univ of Texas Medical Branch. ISBN 978-0-9631172-1-2.
Usta, M., 2021a. Determination of Honey Bee (Apis mellifera) Bacterial Flora, cry Gene Analysis and Honey Bee Health, (Bal Arısı (Apis mellifera) Bakteri Florasının Belirlenmesi. cry Geni Analizi ve Bal Arısı Sağlığı). Uludağ Arıcılık Dergisi, 21(2), 157–167. https://doi.org/10.31467/uluaricilik.954479.
Usta, M., 2021b. Isolation and determination of bacterial microbiota of Varroa destructor and isolation of Lysinibacillus sp. from it. Egyptian Journal of Biological Pest Control, 31(1), 1–8. https://doi.org/10.1186/s41938-021-00482-7
Wang, T., Liang, Y., Wu, M., Chen, Z., Lin, J. and Yang, L., 2015. Natural products from Bacillus subtilis with antimicrobial properties. Chinese Journal of Chemical Engineering, 23(4), 744–754. https://doi.org/10.1016/j.cjche.2014.05.020
Zivkovic Zaric, R., Zaric, M., Sekulic, M., Zornic, N., Nesic, J., Rosic, V. and Canovic, P., 2023. Antimicrobial Treatment of Serratia marcescens Invasive Infections: Systematic Review. Antibiotics, 12(2), 367. https://doi.org/10.3390/antibiotics12020367
Determination of Antimicrobial Effects of Secondary Metabolites of Different Bacteria Belonging to the Genus Bacillus
Secondary metabolites of bacteria can be used to control
microorganisms. In this study, the antimicrobial activity
properties of Bacillus isolates from Apis mellifera and Varroa
destructor have been determined. The antimicrobial activities
of Bacillus species against some bacteria and pathogenic yeast
(Candida albicans) were investigated according to the disc
diffusion method. As a result of the research, secondary
metabolites of Bacillus isolates used in the study inhibited the
development of the tested microorganisms at different rates
(1.1-8.4 mm inhibition zone). Two isolates GAP2 (Bacillus
subtilis) and GAP9 (Bacillus thuringiensis) showed high
antibacterial activity. Most of the metabolites isolated from
bacterial isolates were shown to be sensitive to Escherichia coli
ATCC2471 and Serratia marcescens ATCC13880 (p<0.05). It was
determined that the products obtained from GV6, GV7, GAP7,
GAP8, GAP11, GAP13, and GAP15 isolates did not affect any of
the bacteria used in the experiments (p<0.05). It is thought
that Bacillus strains producing secondary metabolites,
especially GAP2 and GAP9 isolates, may have the potential to
be used in various applications for saprophytic and pathogenic
microbes in medicine, veterinary medicine, agriculture, and the
food industry.
We would like to thank Trabzon Regional Directorate of Forestry and Biological Control Laboratory against Forest Pests for making use of the infrastructure facilities.
References
Akkoç, N., Şanlibaba, P. and Akçeli̇k, M., 2009. Bakteriyosinler: Alternatif Gıda Koruyucuları. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1), 59–70.
Aslim, B. and Yucel, N., 2008. In vitro antimicrobial activity of essential oil from endemic Origanum minutiflorum on ciprofloxacin-resistant Campylobacter spp. Food chemistry, 107(2), 602-606. https://doi.org/10.1016/j.foodchem.2007.08.048
Atmaca, S., Özekinci, T., Yakut, S., Akpolat, N. and Gül, K., 2018. Serratia Türlerinin İdentifikasyonu, Klinik Dağılımı, Antibiyotik Duyarlılığı. Ankem Dergisi, 32(2), 62-71. https://doi.org/10.5222/ankem.2018.062
Barry, A. L., Garcia, F. and Thrupp, L. D., 1970. An Improved Single-disk Method for Testing the Antibiotic Susceptibility of Rapidly-growing Pathogens. American Journal of Clinical Pathology, 53(2), 149–158. https://doi.org/10.1093/ajcp/53.2.149
Barsby, T., Michael, T. and Kelly, M.T., 2002. Tupuseleiamides and Basiliskamids, new acyldipeptides produced in culture by a Bacillus laterosporus isolate obtained from a tropical marine habitat. Journal of Neuroscience Research. 65(10), 1447-1451. https://doi.org/10.1021/np0201321
Bauer, A. W., Kirby, W. M., Sherris, J. C. and Turck, M., 1966. Antibiotic susceptibility testing by a standardized single disk method. Technical Bulletin of the Registry of Medical Technologists, 36(3), 49–52.
Bérdy, J., 2005. Bioactive microbial metabolites. The Journal of Antibiotics, 58(1), 1–26. https://doi.org/10.1038/ja.2005.1
Chatterjee, S., Chatterjee, S., Lad, S. J., Phansalkar, M. S., Rupp, R. H., Ganguli, B. N. and Kogler, H., 1992. Mersacidin, a new antibiotic from Bacillus fermentation, isolation, purification and chemical characterization. The Journal of Antibiotics, 45(6), 832-838. https://doi.org/10.7164/antibiotics.45.832
Cowan, M. M., 1999. Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582. https://doi.org/10.1128/CMR.12.4.564
Davies, J., Davies, D., 2010. Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74(3):417-33. https://doi.org/10.1128/MMBR.00016-10
Demain, A. L. and Fang, A., 2000. The natural functions of secondary metabolites. Advances in Biochemical Engineering/Biotechnology, 69, 1–39. https://doi.org/10.1007/3-540-44964-7_1
Demirkan, E., Aybey, A. and Ak, A. U., 2021. Optimization of culture conditions for antibacterial substance production from newly isolated Brevibacillus laterosporus EA62. The European Research Journal, 7(2), 152–158. https://doi.org/10.18621/eurj.603491
Hong, H.A., Duc, L.H. and Cutting, S.M., 2005. The use of bacterial spore formers as probiotics. FEMS Microbiology Reviews, 29, 813–835. https://doi.org/10.1016/j.femsre.2004.12.001
Hong, G., Li, Y., Yang, M., Li, G., Jin, Y., Xiong, H. and Hou, X., 2023. Baseline gut microbial profiles are associated with the efficacy of Bacillus subtilis and Enterococcus faecium in IBS-D. Scandinavian Journal of Gastroenterology, 58(4), 339-348. https://doi.org/10.1080/00365521.2022.2136013
Hosoya, Y., Okamoto, S., Muramatsu, H. and Ochik, K., 1998. Acquisition of certain streptomycin resistance (Str.). Antimicrobial Agents and Chemotherapy, 42(8), 2041-2047. https://doi.org/10.1128/AAC.42.8.2041
Johnvesly, B., Manjunath, B.R. and Naik, G.R., 2002. Pigeon pea waste as a novel, inexpensive, substrate for production of a thermostable alkaline protease from thermoalkalophilic Bacillus sp. JB-99. Bioresource Technology, 82(1): 61-64. PMID 11848379. https://doi.org/10.1016/S0960-8524(01)00147-X
Kaspar, F., Neubauer, P. and Gimpel, M., 2019. Bioactive Secondary Metabolites from Bacillus subtilis: A Comprehensive Review. Journal of Natural Products, 82(7), 2038–2053. https://doi.org/10.1021/acs.jnatprod.9b00110
Keswani, C., Singh, H. B., García-Estrada, C., Caradus, J., He, Y. W., Mezaache-Aichour, S., Glare, T. R., Borriss, R. and Sansinenea, E., 2020. Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides. Applied Microbiology and Biotechnology, 104(3), 1013–1034. https://doi.org/10.1007/s00253-019-10300-8
Miller, D. L., Smith, E. A. and Newton, I. L. G., 2021. A bacterial symbiont protects honey bees from fungal disease. Host Microbial Interactions, 12(3). https://doi.org/10.1128/mBio.00503-21
Nabavi, S. M., Marchese, A., Izadi, M., Curti, V., Daglia, M. and Fazel Nabavi, S., 2014. Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food chemistry, 173, 339-347. https://doi.org/10.1016/j.foodchem.2014.10.042
Perez, J., Dela Rubia, T., Moreno, J. and Martinez, J., 1992. Phenolic content and antibacterial activity of olive oil waste waters. Environmental Toxicology and Chemistry: An International Journal, 11(4), 489-495. https://doi.org/10.1002/etc.5620110406
Perez, C., Suarez, C. and Castro, G. R., 1993. Antimicrobial activity determined in strains of Bacillus circulans cluster. Folia Microbiologica, 38(1), 25–28. https://doi.org/10.1007/BF02814544
Prashanthi, R., Shreevatsa, G. K., Krupalini, S. and Manoj, L., 2021. Isolation, characterization, and molecular identification of soil bacteria showing antibacterial activity against human pathogenic bacteria. Journal, Genetic Engineering & Biotechnology, 19(1). https://doi.org/10.1186/s43141-021-00219-x
Ren, Z.Z., Zheng, Y. and Sun, M., 2007. Purification and properties of an antimicrobial substance from marine Brevibcillus laterosporus LH-1. Acta Micobiological Slinica, 47(6):997-1001.
Reygaert, W. C., 2018. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS microbiology, 4(3), 482. https://doi.org/10.3934/microbiol.2018.3.482
Rosovitz, M.J., Voskuil, M.I. and Chambliss, G.H., 1998. Topley and Wilson’s Microbiology and Microbial Infections, Systematic Bacteriology. In: Collier L, Balows A, and Susman editors. Bacillus. 9nd edn. Volume 2, New York, USA: Oxford University Press, pp. 709-730.
Ruiz, B., Chávez, A., Forero, A., García-Huante, Y., Romero, A., Sánchez, M. and Langley, E., 2010. Production of microbial secondary metabolites: regulation by the carbon source. Critical Reviews in Microbiology, 36(2):146-67. https://doi.org/10.3109/10408410903489576
Sansinenea, E. and Ortiz, A., 2011. Secondary metabolites of soil Bacillus spp. Biotechnology Letters, 33(8), 1523–1538. https://doi.org/10.1007/s10529-011-0617-5
Sharma, S., Verma, H. N. and Sharma, N. K., 2014. Cationic bioactive peptide from the seeds of Benincasa hispida. International Journal of Peptides, 14, 156-160. https://doi.org/10.1155/2014/156060
Spellberg, B., 2014. The future of antibiotics. Critical care, 18(3): 228. https://doi.org/10.1186/cc13948
Steele, M. I., Motta, E. V. S., Gattu, T., Martinez, D. and Moran, N. A., 2021. The Gut Microbiota Protects Bees from Invasion by a Bacterial Pathogen. Microbiology Spectrum, 9(2). https://doi.org/10.1128/Spectrum.00394-21
Stoica, R.-M., 2019. Antimicrobial compounds of the genus Bacillus: A review. Romanian Biotechnological Letters, 24(6), 1111–1119. https://doi.org/10.25083/rbl/24.6/1111.1119
Tenover, C.F., 2006. Mechanisms of antimicrobial resistance in bacteria. The American Journal of Medicine. 119, 3-10. https://doi.org/10.1016/j.amjmed.2006.03.011
Turnbull, P.C.B., 1996. "Bacillus". In: Baron S (Ed.). Barron's Medical Microbiology. Univ of Texas Medical Branch. ISBN 978-0-9631172-1-2.
Usta, M., 2021a. Determination of Honey Bee (Apis mellifera) Bacterial Flora, cry Gene Analysis and Honey Bee Health, (Bal Arısı (Apis mellifera) Bakteri Florasının Belirlenmesi. cry Geni Analizi ve Bal Arısı Sağlığı). Uludağ Arıcılık Dergisi, 21(2), 157–167. https://doi.org/10.31467/uluaricilik.954479.
Usta, M., 2021b. Isolation and determination of bacterial microbiota of Varroa destructor and isolation of Lysinibacillus sp. from it. Egyptian Journal of Biological Pest Control, 31(1), 1–8. https://doi.org/10.1186/s41938-021-00482-7
Wang, T., Liang, Y., Wu, M., Chen, Z., Lin, J. and Yang, L., 2015. Natural products from Bacillus subtilis with antimicrobial properties. Chinese Journal of Chemical Engineering, 23(4), 744–754. https://doi.org/10.1016/j.cjche.2014.05.020
Zivkovic Zaric, R., Zaric, M., Sekulic, M., Zornic, N., Nesic, J., Rosic, V. and Canovic, P., 2023. Antimicrobial Treatment of Serratia marcescens Invasive Infections: Systematic Review. Antibiotics, 12(2), 367. https://doi.org/10.3390/antibiotics12020367
Yeşilyurt, A., Biryol, S., Soydinç, A., İşık, S., et al. (2024). Determination of Antimicrobial Effects of Secondary Metabolites of Different Bacteria Belonging to the Genus Bacillus. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(1), 1-7. https://doi.org/10.35414/akufemubid.1348983
AMA
Yeşilyurt A, Biryol S, Soydinç A, İşık S, Usta M. Determination of Antimicrobial Effects of Secondary Metabolites of Different Bacteria Belonging to the Genus Bacillus. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. February 2024;24(1):1-7. doi:10.35414/akufemubid.1348983
Chicago
Yeşilyurt, Aydın, Seda Biryol, Ali Soydinç, Sevda İşık, and Mehtap Usta. “Determination of Antimicrobial Effects of Secondary Metabolites of Different Bacteria Belonging to the Genus Bacillus”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 1 (February 2024): 1-7. https://doi.org/10.35414/akufemubid.1348983.
EndNote
Yeşilyurt A, Biryol S, Soydinç A, İşık S, Usta M (February 1, 2024) Determination of Antimicrobial Effects of Secondary Metabolites of Different Bacteria Belonging to the Genus Bacillus. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 1 1–7.
IEEE
A. Yeşilyurt, S. Biryol, A. Soydinç, S. İşık, and M. Usta, “Determination of Antimicrobial Effects of Secondary Metabolites of Different Bacteria Belonging to the Genus Bacillus”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 1, pp. 1–7, 2024, doi: 10.35414/akufemubid.1348983.
ISNAD
Yeşilyurt, Aydın et al. “Determination of Antimicrobial Effects of Secondary Metabolites of Different Bacteria Belonging to the Genus Bacillus”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/1 (February 2024), 1-7. https://doi.org/10.35414/akufemubid.1348983.
JAMA
Yeşilyurt A, Biryol S, Soydinç A, İşık S, Usta M. Determination of Antimicrobial Effects of Secondary Metabolites of Different Bacteria Belonging to the Genus Bacillus. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:1–7.
MLA
Yeşilyurt, Aydın et al. “Determination of Antimicrobial Effects of Secondary Metabolites of Different Bacteria Belonging to the Genus Bacillus”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 1, 2024, pp. 1-7, doi:10.35414/akufemubid.1348983.
Vancouver
Yeşilyurt A, Biryol S, Soydinç A, İşık S, Usta M. Determination of Antimicrobial Effects of Secondary Metabolites of Different Bacteria Belonging to the Genus Bacillus. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(1):1-7.