Research Article
BibTex RIS Cite

Sıcak Kabartma Sırasında Kullanılan Kalıp Malzemelerinin Döngüsel Olefin Polimer (COP) Alttaşta Mikrofabrikasyonda Yapıların Doğruluğuna Etkisi

Year 2024, Volume: 24 Issue: 2, 457 - 464, 29.04.2024
https://doi.org/10.35414/akufemubid.1345104

Abstract

Araştırmadan pazara geçiş sırasında, termoplastik yüzeylerde mikroakışkan cihazların imalatı kaçınılmazdır. Daha yüksek üretim hacimleri için tipik olarak kullanılan pahalı enjeksiyon kalıplama işlemine geçmeden önce birkaç yüz ürün gibi küçük hacimli üretim süreçleri için, sıcak kabartma tipik yöntemdir. Bu çalışmada, sıcak kabartma sırasında kullanılan kalıp malzemelerinin döngüsel olefin polimer (COP) substratta mikrofabrikasyonda üretim sonuçları üzerindeki etkisini araştırdık. Spesifik olarak, basit bir akış odaklamalı mikroakışkan cihazı tasarladık ve bu tasarımı kullanarak silisyum, alüminyum dolgulu epoksi ve alüminyum alttaşlar kullanarak üç farklı kalıp ürettik. Bu üç farklı kalıp malzemesini COP substrat ile otomatik tezgâh üstü Carver sıcak preste kullanarak sıcak kabartma deneyleri yaptık. Son olarak, sıcak kabartmalı alt tabakaları optik mikroskop ve taramalı elektron mikroskop ile karakterize ettik. Üretim sonuçları, kalıp malzemesinin üretim sonuçları üzerinde büyük bir rol oynadığını göstermektedir. Kullanılan kalıp malzemeleri arasında silisyum alttaş, kalıptan çıkarma sonrasındaki kusurlara göre en kötü performansı göstermiştir. Epoksi ve alüminyum kalıplar, çoğunlukla termal genleşme katsayılarına (CTE) atfedilebilen alt tabakadaki mikro fabrikasyon özellik kusurları açısından benzerdi. Termoplastiğe daha yakın bir CTE'ye sahip bir kalıp malzemesi, çok daha iyi özellik doğruluğu ile sonuçlanacaktır.

References

  • Alrifaiy, A., Lindahl, O. A. and Ramser, K., 2012. Polymer-based microfluidic devices for pharmacy, biology and tissue engineering. Polymers, 4, 3. https://doi.org/10.3390/polym4031349
  • Becker, H. and Gärtner, C., 2008. Polymer microfabrication technologies for microfluidic systems. Analytical and Bioanalytical Chemistry, 390, 1. https://doi.org/10.1007/s00216-007-1692-2
  • Becker, H. and Locascio, L. E., 2002. Polymer microfluidic devices. Talanta, 56, 2. https://doi.org/10.1016/S0039-9140(01)00594-X
  • Berthier, E., Young, E. W. K. and Beebe, D., 2012. Engineers are from PDMS-land, biologists are from polystyrenia. Lab on a Chip, 12, 7. https://doi.org/10.1039/C2LC20982A
  • Blow, N., 2009. Microfluidics: The great divide. Nature Methods, 6, 9. https://doi.org/10.1038/nmeth0909-683
  • Cheng, G., Sahli, M., Gelin, J. C. and Barriere, T., 2014. Process parameter effects on dimensional accuracy of a hot embossing process for polymer-based micro-fluidic device manufacturing. International Journal of Advanced Manufacturing Technology, 75, 1–4. https://doi.org/10.1007/s00170-014-6135-6
  • Çoğun, F., Yıldırım, E. and Sahir Arikan, M. A., 2017. Investigation on replication of microfluidic channels by hot embossing. Materials and Manufacturing Processes, 32, 16. https://doi.org/10.1080/10426914.2017.1317795
  • Duffy, D. C., McDonald, J. C., Schueller, O. J. A. and Whitesides, G. M., 1998. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analytical Chemistry, 70, 23. https://doi.org/10.1021/ac980656z
  • Esch, M. B., Kapur, S., Irizarry, G. and Genova, V., 2003. Influence of master fabrication techniques on the characteristics of embossed microfluidic channels. Lab on a Chip, 3, 2. https://doi.org/10.1039/B300730H
  • Fiorini, G. S. and Chiu, D. T., 2005. Disposable microfluidic devices: Fabrication, function, and application. BioTechniques, 38, 3. https://doi.org/10.2144/05383RV02
  • Goral, V. N., Hsieh, Y. C., Petzold, O. N., Faris, R. A. and Yuen, P. K., 2011. Hot embossing of plastic microfluidic devices using poly(dimethylsiloxane) molds. Journal of Micromechanics and Microengineering, 21, 1. https://doi.org/10.1088/0960-1317/21/1/017002
  • Haynes, W. M., 2014. CRC handbook of chemistry and physics. CRC Press.
  • Jena, R. K., Yue, C. Y., Lam, Y. C., Tang, P. S. and Gupta, A., 2012. Comparison of different molds (epoxy, polymer and silicon) for microfabrication by hot embossing technique. Sensors and Actuators, B: Chemical, 163, 1. https://doi.org/10.1016/j.snb.2012.01.043
  • Khan Malek, C., Coudevylle, J. R., Jeannot, J. C. and Duffait, R., 2007. Revisiting micro hot-embossing with moulds in non-conventional materials. Microsystem Technologies, 13, 5–6. https://doi.org/10.1007/s00542-006-0184-1
  • Koerner, T., Brown, L., Xie, R. and Oleschuk, R. D., 2005. Epoxy resins as stamps for hot embossing of microstructures and microfluidic channels. Sensors and Actuators, B: Chemical, 107, 2. https://doi.org/10.1016/j.snb.2004.11.035
  • Konstantinou, D., Shirazi, A., Sadri, A. and Young, E. W. K., 2016. Combined hot embossing and milling for medium volume production of thermoplastic microfluidic devices. Sensors and Actuators, B: Chemical, 234. https://doi.org/10.1016/j.snb.2016.04.147
  • Kourmpetis, I., Kastania, A. S., Ellinas, K., Tsougeni, K., Baca, M., De Malsche, W. and Gogolides, E., 2019. Gradient-temperature hot-embossing for dense micropillar array fabrication on thick cyclo-olefin polymeric plates: An example of a microfluidic chromatography column fabrication. Micro and Nano Engineering, 5. https://doi.org/10.1016/j.mne.2019.100042
  • Lee, C. S., Kang, C. G. and Youn, S. W., 2010. Effect of forming conditions on linear patterning of polymer materials by hot embossing process. International Journal of Precision Engineering and Manufacturing, 11, 1. https://doi.org/10.1007/s12541-010-0015-2
  • Li, J. M., Liu, C. and Peng, J., 2008. Effect of hot embossing process parameters on polymer flow and microchannel accuracy produced without vacuum. Journal of Materials Processing Technology, 207, 1–3. https://doi.org/10.1016/j.jmatprotec.2007.12.062
  • Liu, J., Jin, X., Sun, T., Xu, Z., Liu, C., Wang, J., Chen, L. and Wang, L., 2013. Hot embossing of polymer nanochannels using PMMA moulds. Microsystem Technologies, 19, 4. https://doi.org/10.1007/s00542-012-1674-y
  • Liu, Y. and Jiang, X., 2017. Why microfluidics? Merits and trends in chemical synthesis. Lab on a Chip, 17, 23. https://doi.org/10.1039/C7LC00627F
  • Liu, Y., Zhang, P., Deng, Y., Hao, P., Fan, J., Chi, M. and Wu, Y., 2014. Polymeric microlens array fabricated with PDMS mold-based hot embossing. Journal of Micromechanics and Microengineering, 24, 9. https://doi.org/10.1088/0960-1317/24/9/095028
  • Nunes, P. S., Ohlsson, P. D., Ordeig, O. and Kutter, J. P., 2010. Cyclic olefin polymers: Emerging materials for lab-on-a-chip applications. Microfluidics and Nanofluidics, 9, 2–3. https://doi.org/10.1007/s10404-010-0605-4
  • Rodrigues, R. O., Lima, R., Gomes, H. T. and Silva, A. M. T., 2015. Polymer microfluidic devices: An overview of fabrication methods. U.Porto Journal of Engineering, 1, 1. https://doi.org/10.24840/2183-6493_001.001_0007
  • Sackmann, E. K., Fulton, A. L. and Beebe, D. J., 2014. The present and future role of microfluidics in biomedical research. Nature, 507, 7491. https://doi.org/10.1038/nature13118
  • Sun, H. L., Liu, C., Li, M. M., Liang, J. S. and Chen, H. H., 2009. Study on replication of densely patterned, high-depth channels on a polymer substrate using hot embossing techniques. In Materials Science Forum. https://doi.org/10.4028/www.scientific.net/MSF.628-629.411
  • Volpatti, L. R. and Yetisen, A. K., 2014. Commercialization of microfluidic devices. Trends in Biotechnology, 32, 7. https://doi.org/10.1016/j.tibtech.2014.04.010
  • Xia, Y. and Whitesides, G. M., 1998. SOFT LITHOGRAPHY. Annual Review of Materials Science, 28, 1, 153–84. https://doi.org/10.1146/annurev.matsci.28.1.153
  • Zhu, P. and Wang, L., 2017. Passive and active droplet generation with microfluidics: a review. Lab on a Chip, 17, 1. https://doi.org/10.1039/C6LC01018K
  • https://www.ptm-w.com/technical-library/product-bulletins/Epoxy%20Tooling%20Materials%20Bulletins/PT4925%20Bulletin%2005Jul11.pdf, (02.01.2024)
  • https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html,(02.01.2024)
  • http://www.lookpolymers.com/polymer_Zeon-Chemicals-Zeonor-1060R-Cyclo-Olefin-Polymer.php, (02.01.2024)

Effect of Mold Materials Used During Hot Embossing on Feature Fidelity for Microfabrication in Cyclic Olefin Polymer (COP) Substrate

Year 2024, Volume: 24 Issue: 2, 457 - 464, 29.04.2024
https://doi.org/10.35414/akufemubid.1345104

Abstract

During the transition from research to market, the fabrication of microfluidic devices in thermoplastic substrates is inevitable. For short production runs of several hundred products, hot embossing is the typical method before moving on to a typically more expensive injection molding process for higher production volumes. In this work, we investigated the effect of mold material used during hot embossing on feature fidelity for microfabrication in cyclic olefin polymer (COP) substrate. Specifically, we designed a simple flow-focusing microfluidic device and fabricated three different molds using silicon wafer by deep reactive ion etching (DRIE), aluminum filled high temperature epoxy by soft lithography and aluminum by CNC milling. We performed hot embossing experiments with 2mm thick COP substrates and these three different molds using automatic bench top Carver hot press. Finally, we characterized the hot embossed substrates by optical and scanning electron microscopy. Fabrication results demonstrate that the mold material plays a big role in feature fidelity. Among the mold materials used, silicon substrate performed the worst based on defects after demolding. Epoxy and aluminum molds were similar in terms of microfabricated feature defects in the substrate which could be mostly attributed to their coefficient of thermal expansion (CTE). A mold material with a CTE closer to the thermoplastic will result in much better feature fidelity.

References

  • Alrifaiy, A., Lindahl, O. A. and Ramser, K., 2012. Polymer-based microfluidic devices for pharmacy, biology and tissue engineering. Polymers, 4, 3. https://doi.org/10.3390/polym4031349
  • Becker, H. and Gärtner, C., 2008. Polymer microfabrication technologies for microfluidic systems. Analytical and Bioanalytical Chemistry, 390, 1. https://doi.org/10.1007/s00216-007-1692-2
  • Becker, H. and Locascio, L. E., 2002. Polymer microfluidic devices. Talanta, 56, 2. https://doi.org/10.1016/S0039-9140(01)00594-X
  • Berthier, E., Young, E. W. K. and Beebe, D., 2012. Engineers are from PDMS-land, biologists are from polystyrenia. Lab on a Chip, 12, 7. https://doi.org/10.1039/C2LC20982A
  • Blow, N., 2009. Microfluidics: The great divide. Nature Methods, 6, 9. https://doi.org/10.1038/nmeth0909-683
  • Cheng, G., Sahli, M., Gelin, J. C. and Barriere, T., 2014. Process parameter effects on dimensional accuracy of a hot embossing process for polymer-based micro-fluidic device manufacturing. International Journal of Advanced Manufacturing Technology, 75, 1–4. https://doi.org/10.1007/s00170-014-6135-6
  • Çoğun, F., Yıldırım, E. and Sahir Arikan, M. A., 2017. Investigation on replication of microfluidic channels by hot embossing. Materials and Manufacturing Processes, 32, 16. https://doi.org/10.1080/10426914.2017.1317795
  • Duffy, D. C., McDonald, J. C., Schueller, O. J. A. and Whitesides, G. M., 1998. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analytical Chemistry, 70, 23. https://doi.org/10.1021/ac980656z
  • Esch, M. B., Kapur, S., Irizarry, G. and Genova, V., 2003. Influence of master fabrication techniques on the characteristics of embossed microfluidic channels. Lab on a Chip, 3, 2. https://doi.org/10.1039/B300730H
  • Fiorini, G. S. and Chiu, D. T., 2005. Disposable microfluidic devices: Fabrication, function, and application. BioTechniques, 38, 3. https://doi.org/10.2144/05383RV02
  • Goral, V. N., Hsieh, Y. C., Petzold, O. N., Faris, R. A. and Yuen, P. K., 2011. Hot embossing of plastic microfluidic devices using poly(dimethylsiloxane) molds. Journal of Micromechanics and Microengineering, 21, 1. https://doi.org/10.1088/0960-1317/21/1/017002
  • Haynes, W. M., 2014. CRC handbook of chemistry and physics. CRC Press.
  • Jena, R. K., Yue, C. Y., Lam, Y. C., Tang, P. S. and Gupta, A., 2012. Comparison of different molds (epoxy, polymer and silicon) for microfabrication by hot embossing technique. Sensors and Actuators, B: Chemical, 163, 1. https://doi.org/10.1016/j.snb.2012.01.043
  • Khan Malek, C., Coudevylle, J. R., Jeannot, J. C. and Duffait, R., 2007. Revisiting micro hot-embossing with moulds in non-conventional materials. Microsystem Technologies, 13, 5–6. https://doi.org/10.1007/s00542-006-0184-1
  • Koerner, T., Brown, L., Xie, R. and Oleschuk, R. D., 2005. Epoxy resins as stamps for hot embossing of microstructures and microfluidic channels. Sensors and Actuators, B: Chemical, 107, 2. https://doi.org/10.1016/j.snb.2004.11.035
  • Konstantinou, D., Shirazi, A., Sadri, A. and Young, E. W. K., 2016. Combined hot embossing and milling for medium volume production of thermoplastic microfluidic devices. Sensors and Actuators, B: Chemical, 234. https://doi.org/10.1016/j.snb.2016.04.147
  • Kourmpetis, I., Kastania, A. S., Ellinas, K., Tsougeni, K., Baca, M., De Malsche, W. and Gogolides, E., 2019. Gradient-temperature hot-embossing for dense micropillar array fabrication on thick cyclo-olefin polymeric plates: An example of a microfluidic chromatography column fabrication. Micro and Nano Engineering, 5. https://doi.org/10.1016/j.mne.2019.100042
  • Lee, C. S., Kang, C. G. and Youn, S. W., 2010. Effect of forming conditions on linear patterning of polymer materials by hot embossing process. International Journal of Precision Engineering and Manufacturing, 11, 1. https://doi.org/10.1007/s12541-010-0015-2
  • Li, J. M., Liu, C. and Peng, J., 2008. Effect of hot embossing process parameters on polymer flow and microchannel accuracy produced without vacuum. Journal of Materials Processing Technology, 207, 1–3. https://doi.org/10.1016/j.jmatprotec.2007.12.062
  • Liu, J., Jin, X., Sun, T., Xu, Z., Liu, C., Wang, J., Chen, L. and Wang, L., 2013. Hot embossing of polymer nanochannels using PMMA moulds. Microsystem Technologies, 19, 4. https://doi.org/10.1007/s00542-012-1674-y
  • Liu, Y. and Jiang, X., 2017. Why microfluidics? Merits and trends in chemical synthesis. Lab on a Chip, 17, 23. https://doi.org/10.1039/C7LC00627F
  • Liu, Y., Zhang, P., Deng, Y., Hao, P., Fan, J., Chi, M. and Wu, Y., 2014. Polymeric microlens array fabricated with PDMS mold-based hot embossing. Journal of Micromechanics and Microengineering, 24, 9. https://doi.org/10.1088/0960-1317/24/9/095028
  • Nunes, P. S., Ohlsson, P. D., Ordeig, O. and Kutter, J. P., 2010. Cyclic olefin polymers: Emerging materials for lab-on-a-chip applications. Microfluidics and Nanofluidics, 9, 2–3. https://doi.org/10.1007/s10404-010-0605-4
  • Rodrigues, R. O., Lima, R., Gomes, H. T. and Silva, A. M. T., 2015. Polymer microfluidic devices: An overview of fabrication methods. U.Porto Journal of Engineering, 1, 1. https://doi.org/10.24840/2183-6493_001.001_0007
  • Sackmann, E. K., Fulton, A. L. and Beebe, D. J., 2014. The present and future role of microfluidics in biomedical research. Nature, 507, 7491. https://doi.org/10.1038/nature13118
  • Sun, H. L., Liu, C., Li, M. M., Liang, J. S. and Chen, H. H., 2009. Study on replication of densely patterned, high-depth channels on a polymer substrate using hot embossing techniques. In Materials Science Forum. https://doi.org/10.4028/www.scientific.net/MSF.628-629.411
  • Volpatti, L. R. and Yetisen, A. K., 2014. Commercialization of microfluidic devices. Trends in Biotechnology, 32, 7. https://doi.org/10.1016/j.tibtech.2014.04.010
  • Xia, Y. and Whitesides, G. M., 1998. SOFT LITHOGRAPHY. Annual Review of Materials Science, 28, 1, 153–84. https://doi.org/10.1146/annurev.matsci.28.1.153
  • Zhu, P. and Wang, L., 2017. Passive and active droplet generation with microfluidics: a review. Lab on a Chip, 17, 1. https://doi.org/10.1039/C6LC01018K
  • https://www.ptm-w.com/technical-library/product-bulletins/Epoxy%20Tooling%20Materials%20Bulletins/PT4925%20Bulletin%2005Jul11.pdf, (02.01.2024)
  • https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html,(02.01.2024)
  • http://www.lookpolymers.com/polymer_Zeon-Chemicals-Zeonor-1060R-Cyclo-Olefin-Polymer.php, (02.01.2024)
There are 32 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Articles
Authors

Ahmet Can Erten 0000-0002-9496-2651

Early Pub Date April 14, 2024
Publication Date April 29, 2024
Submission Date August 23, 2023
Published in Issue Year 2024 Volume: 24 Issue: 2

Cite

APA Erten, A. C. (2024). Effect of Mold Materials Used During Hot Embossing on Feature Fidelity for Microfabrication in Cyclic Olefin Polymer (COP) Substrate. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(2), 457-464. https://doi.org/10.35414/akufemubid.1345104
AMA Erten AC. Effect of Mold Materials Used During Hot Embossing on Feature Fidelity for Microfabrication in Cyclic Olefin Polymer (COP) Substrate. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. April 2024;24(2):457-464. doi:10.35414/akufemubid.1345104
Chicago Erten, Ahmet Can. “Effect of Mold Materials Used During Hot Embossing on Feature Fidelity for Microfabrication in Cyclic Olefin Polymer (COP) Substrate”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 2 (April 2024): 457-64. https://doi.org/10.35414/akufemubid.1345104.
EndNote Erten AC (April 1, 2024) Effect of Mold Materials Used During Hot Embossing on Feature Fidelity for Microfabrication in Cyclic Olefin Polymer (COP) Substrate. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 2 457–464.
IEEE A. C. Erten, “Effect of Mold Materials Used During Hot Embossing on Feature Fidelity for Microfabrication in Cyclic Olefin Polymer (COP) Substrate”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 2, pp. 457–464, 2024, doi: 10.35414/akufemubid.1345104.
ISNAD Erten, Ahmet Can. “Effect of Mold Materials Used During Hot Embossing on Feature Fidelity for Microfabrication in Cyclic Olefin Polymer (COP) Substrate”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/2 (April 2024), 457-464. https://doi.org/10.35414/akufemubid.1345104.
JAMA Erten AC. Effect of Mold Materials Used During Hot Embossing on Feature Fidelity for Microfabrication in Cyclic Olefin Polymer (COP) Substrate. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:457–464.
MLA Erten, Ahmet Can. “Effect of Mold Materials Used During Hot Embossing on Feature Fidelity for Microfabrication in Cyclic Olefin Polymer (COP) Substrate”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 2, 2024, pp. 457-64, doi:10.35414/akufemubid.1345104.
Vancouver Erten AC. Effect of Mold Materials Used During Hot Embossing on Feature Fidelity for Microfabrication in Cyclic Olefin Polymer (COP) Substrate. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(2):457-64.