Research Article
BibTex RIS Cite

Investigating the Molecular and Spectroscopic Properties of 2-chloroquinoline by Quantum Chemical Computational Methods

Year 2024, Volume: 24 Issue: 3, 504 - 518, 27.06.2024
https://doi.org/10.35414/akufemubid.1378105

Abstract

The current work deals with the exploration of fundamental molecular properties of 2-chloroquinoline molecule to reveal the chlorine substitution effect on the reactivity and potency of being active matter of quinoline derivatives. Accordingly, it includes a spectroscopic search for 2-chloroquinoline supported by experimental results obtained from FT-IR, FT-Raman, and 1H and 13C NMR spectra, and through quantum chemical calculations. The molecule’s optimized structure and energy parameters were obtained using the density functional theory B3LYP method 6-311++G(d,p) basis set. The vibrational characteristics of the molecule were obtained via the vibrational energy distribution analysis and in accordance with the simulated spectra obtained through molecular modeling. The 1H and 13C NMR chemical shift properties were estimated by the Gauge Invariant Atomic Orbital method and discussed in comparison with the experimental data. Moreover, molecular electrostatic potential surface characteristics, atomic partial charges, electronic orbitals, and possible electronic transitions of the compound were presented. It has been shown that chlorine substitution has significant effects on the fundamental characteristics of the compound and enhances its chemical reactivity in an important manner.

Project Number

FBE-2011/070, FBE-2017/139, ve FBE-2017/148

References

  • Arivazhagan, M., & Anitha Rexalin, D. (2012). FT-IR, FT-Raman, NMR studies and ab initio-HF, DFT-B3LYP vibrational analysis of 4-chloro-2-fluoroaniline. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 96, 668–676. https://doi.org/10.1016/j.saa.2012.07.040
  • Arivazhagan, M., & Krishnakumar, V. (2005). Normal coordinate analysis of 1-chloroisoquinoline and 2-methyl-8-nitroquinoline. Indian Journal of Pure & Applied Physics, 43(August), 573–578.
  • Arjunan, V., Mohan, S., Balamourougane, P. S., & Ravindran, P. (2009). Quantum chemical and spectroscopic investigations of 5-aminoquinoline. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 74(5), 1215–1223. https://doi.org/10.1016/j.saa.2009.09.039
  • Arjunan, V., Ravindran, P., Rani, T., & Mohan, S. (2011). FTIR, FT-Raman, FT-NMR, ab initio and DFT electronic structure investigation on 8-chloroquinoline and 8-nitroquinoline. Journal of Molecular Structure, 988(1), 91–101. https://doi.org/10.1016/j.molstruc.2010.12.032
  • Arjunan, V., Saravanan, I., Ravindran, P., & Mohan, S. (2009). Ab initio, density functional theory and structural studies of 4-amino-2-methylquinoline. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 74(2), 375–384. https://doi.org/10.1016/j.saa.2009.06.028
  • Atkins, P., & de Paula, J. (2014). Atkins’ Physical Chemistry. OUP Oxford. Balachandran, V., Boobalan, M., Amaladasan, M., & Velmathi, S. (2014). Synthesis and vibrational spectroscopic investigation of methyl l-prolinate hydrochloride: A computational insight. Spectroscopy Letters, 47(9), 676–689. https://doi.org/10.1080/00387010.2013.834456
  • Bardak, F., Karaca, C., Bilgili, S., Atac, A., Mavis, T., Asiri, A. M., Karabacak, M., & Kose, E. (2016). Conformational, electronic, and spectroscopic characterization of isophthalic acid (monomer and dimer structures) experimentally and by DFT. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 165, 33–46. https://doi.org/10.1016/j.saa.2016.03.050
  • Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098–3100. https://doi.org/10.1103/PhysRevA.38.3098
  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Davies, J. E., & Bond, A. D. (2001). Quinoline. Acta Crystallographica Section E, 57(10), 947–949.
  • Deady, L. W., Desneves, J., Kaye, A., Finlay, G., Baguley, B., & Denny, W. (2001). Positioning of the carboxamide side chain in 11-oxo-11H-indeno[1,2-b]quinolinecarboxamide anticancer agents: Effects on cytotoxicity. Bioorganic and Medicinal Chemistry, 9(2), 445–452. https://doi.org/10.1016/S0968-0896(00)00264-9
  • Dennington, R., Keith, T., & Millam, J. (2009). GaussView, Version 5. In Semichem Inc., Shawnee Mission KS (GaussView, Version 5,).
  • Ditchfield, R. (1972). Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility. The Journal of Chemical Physics, 56(11), 5688–5691. https://doi.org/10.1063/1.1677088
  • Dubé, D., Blouin, M., Brideau, C., Chan, C. C., Desmarais, S., Ethier, D., Falgueyret, J. P., Friesen, R. W., Girard, M., Girard, Y., Guay, J., Riendeau, D., Tagari, P., & Young, R. N. (1998). Quinolines as potent 5-lipoxygenase inhibitors: Synthesis and biological profile of L-746,530. Bioorganic and Medicinal Chemistry Letters, 8(10), 1255–1260. https://doi.org/10.1016/S0960-894X(98)00201-7
  • Fabian, J. (2010). TDDFT-calculations of Vis/NIR absorbing compounds. Dyes and Pigments, 84(1), 36–53. https://doi.org/10.1016/j.dyepig.2009.06.008
  • Famin, O., Krugliak, M., & Ginsburg, H. (1999). Kinetics of inhibition of glutathione-mediated degradation of ferriprotoporphyrin IX by antimalarial drugs. Biochemical Pharmacology, 58(1), 59–68. https://doi.org/10.1016/S0006-2952(99)00059-3
  • Fort, P. O., Pinto, D. C. G. a, Santos, C. M. M., & Silva, A. M. S. (2007). Advanced NMR techniques for structural characterization of heterocyclic structures. In Recent Research Developments in Heterocyclic Chemistry (Vol. 661, Issue 2).
  • Friebolin, H. (2005). Basic One- and Two-Dimensional NMR Spectroscopy. Wiley. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Gaussian 16 Revision A.03 (Gaussian, Inc., Wallingford CT, ). (2016). Gaussian 16 Revision A.03 (A.03). Gaussian, Inc., Wallingford, CT.
  • Fujita, M., Chiba, K., Tominaga, Y., & Hino, K. (1998). 7-(2-Aminomethyl-1-azetidinyl)-4-oxoquinoline-3-carboxylic Acids as Potent Antibacterial Agents: Design, Synthesis, and Antibacterial Activity. Chemical and Pharmaceutical Bulletin, 46(5), 787–796. https://doi.org/10.1248/cpb.46.787
  • Fukui, K. (1982). Role of frontier orbitals in chemical reactions. Science (New York, N.Y.), 218(4574), 747–754. https://doi.org/10.1126/science.218.4574.747
  • Guillaumont, D., & Nakamura, S. (2000). Calculation of the absorption wavelength of dyes using time-dependent density-functional theory (TD-DFT). Dyes and Pigments, 46(2), 85–92. https://doi.org/10.1016/S0143-7208(00)00030-9
  • Gupta, R., Gupta, A. K., Paul, S., & Kachroo, P. L. (1998). Synthesis and biological activities of some 2-chloro-6/8-substituted-3-(3-alkyll aryl-5, 6-dihydro-s-triazolo-[3, 4-h][1, 3, 4] thiadiazol-6-yl) quinolines. Indian Journal of Chemistry, 37B, 1211–1213.
  • Gupta, R., Gupta, A. K., Paul, S., & Somal, P. (2000). Microwave-assisted synthesis and biological activities of some 7/9-substituted-4-(3-alkyl/aryl-5, 6-dihydro-s-triazolo [3, 4-b][1, 3, 4] thiadiazol-6-yl) tetrazolo [1, 5-a] quinolines. Indian Journal of Chemistry, 39B, 847–852.
  • Hohenberg, P., Kohn, W., & Khon, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), 864–871. https://doi.org/10.1103/PhysRev.136.B864
  • Ismail, F. M. D., Dascombe, M. J., Carr, P., Mérette, S. A. M., & Rouault, P. (1998). Novel aryl-bis-quinolines with antimalarial activity in-vivo. Journal of Pharmacy and Pharmacology, 50(5), 483–492. https://doi.org/10.1111/j.2042-7158.1998.tb06189.x
  • Jamróz, M. H. (2013). Vibrational energy distribution analysis (VEDA): scopes and limitations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 220–230. https://doi.org/10.1016/j.saa.2013.05.096
  • Kalinowski, H. O., Berger, S., & Braun, S. (1988). Carbon-13 NMR spectroscopy. Wiley. Khan, K. M., Saify, Z. S., Khan, Z. A., Ahmed, M., Saeed, M., Schick, M., Kohlbau, H. J., & Voelter, W. (2000). Syntheses and cytotoxic, antimicrobial, antifungal and cardiovascular activity of new quinoline derivatives. Arzneimittelforschung, 50(10), 915–924. https://doi.org/10.1055/s-0031-1300313
  • Kidwai, M., Bhushan, K. R., Sapra, P., Saxena, R. K., & Gupta, R. (2000). Alumina-supported synthesis of antibacterial quinolines using microwaves. Bioorganic and Medicinal Chemistry, 8(1). https://doi.org/10.1016/S0968-0896(99)00256-4
  • Kimmel, R., Nečas, M., & Vícha, R. (2010). 2,4-Dichloroquinoline. Acta Crystallographica Section E Structure Reports Online, 66(6), o1261–o1261. https://doi.org/10.1107/S160053681001576X
  • Kose, E., Atac, A., & Bardak, F. (2018). The structural and spectroscopic investigation of 2-chloro-3-methylquinoline by DFT method and UV–Vis, NMR and vibrational spectral techniques combined with molecular docking analysis. Journal of Molecular Structure, 1163, 147–160. https://doi.org/10.1016/j.molstruc.2018.02.099
  • Kose, E., Karabacak, M., & Atac, A. (2015). The spectroscopic and quantum chemical studies of 3,4-difluoroaniline. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 143C, 265–280. https://doi.org/10.1016/j.saa.2015.01.079
  • Kumru, M., Altun, A., Kocademir, M., Küçük, V., Bardakçı, T., & Şaşmaz, B. (2016). Combined experimental and quantum chemical studies on spectroscopic (FT-IR, FT-Raman, UV–Vis, and NMR) and structural characteristics of quinoline-5-carboxaldehyde. Journal of Molecular Structure, 1125, 302–309. https://doi.org/10.1016/j.molstruc.2016.06.066
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785–789.
  • Luque, F. J., López, J. M., & Orozco, M. (2000). Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects.” Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 103(3–4), 343–345. https://doi.org/10.1007/s002149900013
  • Mulliken, R. S. (1955). Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. The Journal of Chemical Physics, 23(10), 1833–1840. https://doi.org/10.1063/1.1740588
  • Oanca, G., Stare, J., Todirascu, A. G., Creanga, D., & Dorohoi, D. O. (2016). Substituent influence on the spectra of some benzo[f]quinoline derivatives. Journal of Molecular Structure, 1126, 158–164. https://doi.org/10.1016/J.MOLSTRUC.2016.03.072
  • O’Boyle, N. M., Tenderholt, A. L., & Langner, K. M. (2008). Software News and Updates cclib : A Library for Package-Independent Computational Chemistry Algorithms. Journal of Computational Chemistry, 29(5), 839–845. https://doi.org/10.1002/jcc.20823
  • Okulik, N., & Jubert, A. H. (2005). Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Internet Electronic Journal of Molecular Design, 4, 17–30.
  • Ozel, A. E., Celik, S., & Akyuz, S. (2009). Vibrational spectroscopic investigation of free and coordinated 5-aminoquinoline: The IR, Raman and DFT studies. Journal of Molecular Structure, 924, 523–530. https://doi.org/10.1016/j.molstruc.2008.12.065
  • Parr, R. G., & Pearson, R. G. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105(26), 7512–7516. https://doi.org/10.1021/ja00364a005
  • Parr, R. G., Weitao, Y., & Yang, W. (1989). Density-Functional Theory of Atoms and Molecules. Oxford University Press, USA. Pathak, S. K., Haress, N. G., El-Emam, A. A., Srivastava, R., Prasad, O., & Sinha, L. (2014). Structural, spectroscopic (FT-IR, FT-Raman and UV) studies, HOMO–LUMO, NBO, NLO analysis and reactivity descriptors of 2,3 Difluoroaniline and 2,4-Difluoroaniline. Journal of Molecular Structure, 1074, 457–466. https://doi.org/10.1016/j.molstruc.2014.06.036
  • Pihlaja, K., & Kleinpeter, E. (1994). Carbon-13 NMR Chemical Shifts in Structural and Stereochemical Analysis. VCH. Pretsch, E., Bühlmann, P., & Affolter, C. (2009). Structure determination of organic compounds. In East China University of Science and Technology … (Fourth, Re, Vol. 40, Issue 3). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-93810-1
  • Runge, E., & Gross, E. K. U. (1984). Density-Functional Theory for Time-Dependent Systems. Physical Review Letters, 52(12), 997–1000. SDBS Web: http://sdbs.riodb.aist.go.jp (National Institute of Advanced Industrial Science and Technology). (2018). SDBS Web: http://sdbs.riodb.aist.go.jp (National Institute of Advanced Industrial Science and Technology). http://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi
  • Silverstein, R. M., Bassler, G. C., & Morrill, T. C. (1981). Spectrometric identification of organic compounds. Wiley.
  • Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005). Spectrometric identification of organic compounds. John Wiley & Sons.
  • Sivaprakash, S., Prakash, S., Mohan, S., & Jose, S. P. (2017). Molecular structure, vibrational analysis (IR and Raman) and quantum chemical investigations of 1-aminoisoquinoline. Journal of Molecular Structure, 1149, 835–845. https://doi.org/10.1016/j.molstruc.2017.08.060
  • Socrates, G. (2001). Infrared and Raman Characteristic Group Frequencies: Tables and Charts. John Wiley & Sons Ltd. Strekowski, L., Honkan, V. A., Czarny, A., Cegla, M. T., Wydra, R. L., Patterson, S. E., Mokrosz, J. L., & Schinazi, R. F. (1991). Synthesis and Quantitative Structure-Activity Relationship Analysis of 2-(Aryl or Heteroaryl)quinolin-4-amines, a New Class of Anti-HIV-1 Agents. Journal of Medicinal Chemistry, 34(5), 1739–1746. https://doi.org/10.1021/jm00109a031
  • Sundaraganesan, N., Karpagam, J., Sebastian, S., & Cornard, J. P. (2009). The spectroscopic (FTIR, FT-IR gas phase and FT-Raman), first order hyperpolarizabilities, NMR analysis of 2,4-dichloroaniline by ab initio HF and density functional methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73(1), 11–19. https://doi.org/10.1016/j.saa.2009.01.007
  • Tewari, S., Chauhan, P. M. S., Bhaduri, A. P., Fatima, N., & Chatterjee, R. K. (2000). Syntheses and antifilarial profile of 7-chloro-4(substituted amino) quinolines: A new class of antifilarial agents. Bioorganic and Medicinal Chemistry Letters, 10(13), 1409–1412. https://doi.org/10.1016/S0960-894X(00)00255-9
  • Varsányi, G. (1973). Assignments for vibrational spectra of 700 benzene derivatives. Halsted Press. https://doi.org/10.1016/0022-2860(75)85047-2
  • Wolinski, K., Hinton, J. F., & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112(23), 8251–8260. https://doi.org/10.1021/ja00179a005
  • Zangwill, A., & Soven, P. (1980). Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases. Physical Review A, 21(5), 1561–1572. https://doi.org/10.1103/PhysRevA.21.1561
  • Ziegler, J., Linck, R., & Wright, D. W. (2001). Heme aggregation inhibitors: Antimalarial drugs targeting an essential biomineralization process. Studies in Natural Products Chemistry, 25, 327–366. https://doi.org/10.1016/S1572-5995(01)80011-9

2-klorokinolinin Moleküler ve Spektroskopik Özelliklerinin Kuantum Kimyasal Hesaplama Yöntemleriyle Araştırılması

Year 2024, Volume: 24 Issue: 3, 504 - 518, 27.06.2024
https://doi.org/10.35414/akufemubid.1378105

Abstract

Mevcut çalışma, kinolin türevlerinin aktif madde olma potansiyeli ve reaktivitesi üzerindeki klor ikame etkisini ortaya çıkarmak için 2-klorokinolin molekülünün temel moleküler özelliklerinin araştırılmasıyla ilgilidir. Buna göre FT-IR, FT-Raman, 1H ve 13C NMR spektrumlarından elde edilen deneysel sonuçlarla ve kuantum kimyasal hesaplamalarla desteklenen 2-klorokinolin için spektroskopik bir araştırmayı içermektedir. Molekülün optimize edilmiş yapısı ve enerji parametreleri, yoğunluk fonksiyonel teorisi B3LYP yöntemi 6-311++G(d,p) temel seti kullanılarak elde edildi. Molekülün titreşim özellikleri, titreşim enerji dağılımı analizi yoluyla ve moleküler modelleme yoluyla elde edilen simüle edilmiş spektrumlara uygun olarak elde edildi. Atomik Orbitalleri İçeren Gauge Yaklaşımı yöntemiyle tahmin edilen 1H ve 13C NMR kimyasal kayma özellikleri deneysel verilerle karşılaştırıldı. Ayrıca bileşiğin moleküler elektrostatik potansiyel yüzey özellikleri, atomik kısmi yükler, elektronik yörüngeler ve olası elektronik geçişler sunuldu. Klor ikamesinin 2-klorokinolin molekülünün temel özellikleri üzerinde önemli etkileri olduğu ve kimyasal reaktivitesini önemli ölçüde arttırdığı gösterilmiştir.

Supporting Institution

Manisa Celal Bayar Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi, TÜBİTAK ULAKBİM, Yüksek Performans ve Grid Hesaplama Merkezi

Project Number

FBE-2011/070, FBE-2017/139, ve FBE-2017/148

Thanks

Bu çalışma Manisa Celal Bayar Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FBE-2011/070, FBE-2017/139, ve FBE-2017/148 no’lu projelerle desteklenmiştir. Ayrıca yapılan sayısal hesaplamalar tamamen/kısmen TÜBİTAK ULAKBİM, Yüksek Performans ve Grid Hesaplama Merkezi'nde (TRUBA kaynakları) yapılmıştır, desteklerinden dolayı teşekkür ederiz.

References

  • Arivazhagan, M., & Anitha Rexalin, D. (2012). FT-IR, FT-Raman, NMR studies and ab initio-HF, DFT-B3LYP vibrational analysis of 4-chloro-2-fluoroaniline. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 96, 668–676. https://doi.org/10.1016/j.saa.2012.07.040
  • Arivazhagan, M., & Krishnakumar, V. (2005). Normal coordinate analysis of 1-chloroisoquinoline and 2-methyl-8-nitroquinoline. Indian Journal of Pure & Applied Physics, 43(August), 573–578.
  • Arjunan, V., Mohan, S., Balamourougane, P. S., & Ravindran, P. (2009). Quantum chemical and spectroscopic investigations of 5-aminoquinoline. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 74(5), 1215–1223. https://doi.org/10.1016/j.saa.2009.09.039
  • Arjunan, V., Ravindran, P., Rani, T., & Mohan, S. (2011). FTIR, FT-Raman, FT-NMR, ab initio and DFT electronic structure investigation on 8-chloroquinoline and 8-nitroquinoline. Journal of Molecular Structure, 988(1), 91–101. https://doi.org/10.1016/j.molstruc.2010.12.032
  • Arjunan, V., Saravanan, I., Ravindran, P., & Mohan, S. (2009). Ab initio, density functional theory and structural studies of 4-amino-2-methylquinoline. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 74(2), 375–384. https://doi.org/10.1016/j.saa.2009.06.028
  • Atkins, P., & de Paula, J. (2014). Atkins’ Physical Chemistry. OUP Oxford. Balachandran, V., Boobalan, M., Amaladasan, M., & Velmathi, S. (2014). Synthesis and vibrational spectroscopic investigation of methyl l-prolinate hydrochloride: A computational insight. Spectroscopy Letters, 47(9), 676–689. https://doi.org/10.1080/00387010.2013.834456
  • Bardak, F., Karaca, C., Bilgili, S., Atac, A., Mavis, T., Asiri, A. M., Karabacak, M., & Kose, E. (2016). Conformational, electronic, and spectroscopic characterization of isophthalic acid (monomer and dimer structures) experimentally and by DFT. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 165, 33–46. https://doi.org/10.1016/j.saa.2016.03.050
  • Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098–3100. https://doi.org/10.1103/PhysRevA.38.3098
  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Davies, J. E., & Bond, A. D. (2001). Quinoline. Acta Crystallographica Section E, 57(10), 947–949.
  • Deady, L. W., Desneves, J., Kaye, A., Finlay, G., Baguley, B., & Denny, W. (2001). Positioning of the carboxamide side chain in 11-oxo-11H-indeno[1,2-b]quinolinecarboxamide anticancer agents: Effects on cytotoxicity. Bioorganic and Medicinal Chemistry, 9(2), 445–452. https://doi.org/10.1016/S0968-0896(00)00264-9
  • Dennington, R., Keith, T., & Millam, J. (2009). GaussView, Version 5. In Semichem Inc., Shawnee Mission KS (GaussView, Version 5,).
  • Ditchfield, R. (1972). Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility. The Journal of Chemical Physics, 56(11), 5688–5691. https://doi.org/10.1063/1.1677088
  • Dubé, D., Blouin, M., Brideau, C., Chan, C. C., Desmarais, S., Ethier, D., Falgueyret, J. P., Friesen, R. W., Girard, M., Girard, Y., Guay, J., Riendeau, D., Tagari, P., & Young, R. N. (1998). Quinolines as potent 5-lipoxygenase inhibitors: Synthesis and biological profile of L-746,530. Bioorganic and Medicinal Chemistry Letters, 8(10), 1255–1260. https://doi.org/10.1016/S0960-894X(98)00201-7
  • Fabian, J. (2010). TDDFT-calculations of Vis/NIR absorbing compounds. Dyes and Pigments, 84(1), 36–53. https://doi.org/10.1016/j.dyepig.2009.06.008
  • Famin, O., Krugliak, M., & Ginsburg, H. (1999). Kinetics of inhibition of glutathione-mediated degradation of ferriprotoporphyrin IX by antimalarial drugs. Biochemical Pharmacology, 58(1), 59–68. https://doi.org/10.1016/S0006-2952(99)00059-3
  • Fort, P. O., Pinto, D. C. G. a, Santos, C. M. M., & Silva, A. M. S. (2007). Advanced NMR techniques for structural characterization of heterocyclic structures. In Recent Research Developments in Heterocyclic Chemistry (Vol. 661, Issue 2).
  • Friebolin, H. (2005). Basic One- and Two-Dimensional NMR Spectroscopy. Wiley. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Gaussian 16 Revision A.03 (Gaussian, Inc., Wallingford CT, ). (2016). Gaussian 16 Revision A.03 (A.03). Gaussian, Inc., Wallingford, CT.
  • Fujita, M., Chiba, K., Tominaga, Y., & Hino, K. (1998). 7-(2-Aminomethyl-1-azetidinyl)-4-oxoquinoline-3-carboxylic Acids as Potent Antibacterial Agents: Design, Synthesis, and Antibacterial Activity. Chemical and Pharmaceutical Bulletin, 46(5), 787–796. https://doi.org/10.1248/cpb.46.787
  • Fukui, K. (1982). Role of frontier orbitals in chemical reactions. Science (New York, N.Y.), 218(4574), 747–754. https://doi.org/10.1126/science.218.4574.747
  • Guillaumont, D., & Nakamura, S. (2000). Calculation of the absorption wavelength of dyes using time-dependent density-functional theory (TD-DFT). Dyes and Pigments, 46(2), 85–92. https://doi.org/10.1016/S0143-7208(00)00030-9
  • Gupta, R., Gupta, A. K., Paul, S., & Kachroo, P. L. (1998). Synthesis and biological activities of some 2-chloro-6/8-substituted-3-(3-alkyll aryl-5, 6-dihydro-s-triazolo-[3, 4-h][1, 3, 4] thiadiazol-6-yl) quinolines. Indian Journal of Chemistry, 37B, 1211–1213.
  • Gupta, R., Gupta, A. K., Paul, S., & Somal, P. (2000). Microwave-assisted synthesis and biological activities of some 7/9-substituted-4-(3-alkyl/aryl-5, 6-dihydro-s-triazolo [3, 4-b][1, 3, 4] thiadiazol-6-yl) tetrazolo [1, 5-a] quinolines. Indian Journal of Chemistry, 39B, 847–852.
  • Hohenberg, P., Kohn, W., & Khon, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), 864–871. https://doi.org/10.1103/PhysRev.136.B864
  • Ismail, F. M. D., Dascombe, M. J., Carr, P., Mérette, S. A. M., & Rouault, P. (1998). Novel aryl-bis-quinolines with antimalarial activity in-vivo. Journal of Pharmacy and Pharmacology, 50(5), 483–492. https://doi.org/10.1111/j.2042-7158.1998.tb06189.x
  • Jamróz, M. H. (2013). Vibrational energy distribution analysis (VEDA): scopes and limitations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 220–230. https://doi.org/10.1016/j.saa.2013.05.096
  • Kalinowski, H. O., Berger, S., & Braun, S. (1988). Carbon-13 NMR spectroscopy. Wiley. Khan, K. M., Saify, Z. S., Khan, Z. A., Ahmed, M., Saeed, M., Schick, M., Kohlbau, H. J., & Voelter, W. (2000). Syntheses and cytotoxic, antimicrobial, antifungal and cardiovascular activity of new quinoline derivatives. Arzneimittelforschung, 50(10), 915–924. https://doi.org/10.1055/s-0031-1300313
  • Kidwai, M., Bhushan, K. R., Sapra, P., Saxena, R. K., & Gupta, R. (2000). Alumina-supported synthesis of antibacterial quinolines using microwaves. Bioorganic and Medicinal Chemistry, 8(1). https://doi.org/10.1016/S0968-0896(99)00256-4
  • Kimmel, R., Nečas, M., & Vícha, R. (2010). 2,4-Dichloroquinoline. Acta Crystallographica Section E Structure Reports Online, 66(6), o1261–o1261. https://doi.org/10.1107/S160053681001576X
  • Kose, E., Atac, A., & Bardak, F. (2018). The structural and spectroscopic investigation of 2-chloro-3-methylquinoline by DFT method and UV–Vis, NMR and vibrational spectral techniques combined with molecular docking analysis. Journal of Molecular Structure, 1163, 147–160. https://doi.org/10.1016/j.molstruc.2018.02.099
  • Kose, E., Karabacak, M., & Atac, A. (2015). The spectroscopic and quantum chemical studies of 3,4-difluoroaniline. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 143C, 265–280. https://doi.org/10.1016/j.saa.2015.01.079
  • Kumru, M., Altun, A., Kocademir, M., Küçük, V., Bardakçı, T., & Şaşmaz, B. (2016). Combined experimental and quantum chemical studies on spectroscopic (FT-IR, FT-Raman, UV–Vis, and NMR) and structural characteristics of quinoline-5-carboxaldehyde. Journal of Molecular Structure, 1125, 302–309. https://doi.org/10.1016/j.molstruc.2016.06.066
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785–789.
  • Luque, F. J., López, J. M., & Orozco, M. (2000). Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects.” Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 103(3–4), 343–345. https://doi.org/10.1007/s002149900013
  • Mulliken, R. S. (1955). Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. The Journal of Chemical Physics, 23(10), 1833–1840. https://doi.org/10.1063/1.1740588
  • Oanca, G., Stare, J., Todirascu, A. G., Creanga, D., & Dorohoi, D. O. (2016). Substituent influence on the spectra of some benzo[f]quinoline derivatives. Journal of Molecular Structure, 1126, 158–164. https://doi.org/10.1016/J.MOLSTRUC.2016.03.072
  • O’Boyle, N. M., Tenderholt, A. L., & Langner, K. M. (2008). Software News and Updates cclib : A Library for Package-Independent Computational Chemistry Algorithms. Journal of Computational Chemistry, 29(5), 839–845. https://doi.org/10.1002/jcc.20823
  • Okulik, N., & Jubert, A. H. (2005). Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Internet Electronic Journal of Molecular Design, 4, 17–30.
  • Ozel, A. E., Celik, S., & Akyuz, S. (2009). Vibrational spectroscopic investigation of free and coordinated 5-aminoquinoline: The IR, Raman and DFT studies. Journal of Molecular Structure, 924, 523–530. https://doi.org/10.1016/j.molstruc.2008.12.065
  • Parr, R. G., & Pearson, R. G. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105(26), 7512–7516. https://doi.org/10.1021/ja00364a005
  • Parr, R. G., Weitao, Y., & Yang, W. (1989). Density-Functional Theory of Atoms and Molecules. Oxford University Press, USA. Pathak, S. K., Haress, N. G., El-Emam, A. A., Srivastava, R., Prasad, O., & Sinha, L. (2014). Structural, spectroscopic (FT-IR, FT-Raman and UV) studies, HOMO–LUMO, NBO, NLO analysis and reactivity descriptors of 2,3 Difluoroaniline and 2,4-Difluoroaniline. Journal of Molecular Structure, 1074, 457–466. https://doi.org/10.1016/j.molstruc.2014.06.036
  • Pihlaja, K., & Kleinpeter, E. (1994). Carbon-13 NMR Chemical Shifts in Structural and Stereochemical Analysis. VCH. Pretsch, E., Bühlmann, P., & Affolter, C. (2009). Structure determination of organic compounds. In East China University of Science and Technology … (Fourth, Re, Vol. 40, Issue 3). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-93810-1
  • Runge, E., & Gross, E. K. U. (1984). Density-Functional Theory for Time-Dependent Systems. Physical Review Letters, 52(12), 997–1000. SDBS Web: http://sdbs.riodb.aist.go.jp (National Institute of Advanced Industrial Science and Technology). (2018). SDBS Web: http://sdbs.riodb.aist.go.jp (National Institute of Advanced Industrial Science and Technology). http://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi
  • Silverstein, R. M., Bassler, G. C., & Morrill, T. C. (1981). Spectrometric identification of organic compounds. Wiley.
  • Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005). Spectrometric identification of organic compounds. John Wiley & Sons.
  • Sivaprakash, S., Prakash, S., Mohan, S., & Jose, S. P. (2017). Molecular structure, vibrational analysis (IR and Raman) and quantum chemical investigations of 1-aminoisoquinoline. Journal of Molecular Structure, 1149, 835–845. https://doi.org/10.1016/j.molstruc.2017.08.060
  • Socrates, G. (2001). Infrared and Raman Characteristic Group Frequencies: Tables and Charts. John Wiley & Sons Ltd. Strekowski, L., Honkan, V. A., Czarny, A., Cegla, M. T., Wydra, R. L., Patterson, S. E., Mokrosz, J. L., & Schinazi, R. F. (1991). Synthesis and Quantitative Structure-Activity Relationship Analysis of 2-(Aryl or Heteroaryl)quinolin-4-amines, a New Class of Anti-HIV-1 Agents. Journal of Medicinal Chemistry, 34(5), 1739–1746. https://doi.org/10.1021/jm00109a031
  • Sundaraganesan, N., Karpagam, J., Sebastian, S., & Cornard, J. P. (2009). The spectroscopic (FTIR, FT-IR gas phase and FT-Raman), first order hyperpolarizabilities, NMR analysis of 2,4-dichloroaniline by ab initio HF and density functional methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73(1), 11–19. https://doi.org/10.1016/j.saa.2009.01.007
  • Tewari, S., Chauhan, P. M. S., Bhaduri, A. P., Fatima, N., & Chatterjee, R. K. (2000). Syntheses and antifilarial profile of 7-chloro-4(substituted amino) quinolines: A new class of antifilarial agents. Bioorganic and Medicinal Chemistry Letters, 10(13), 1409–1412. https://doi.org/10.1016/S0960-894X(00)00255-9
  • Varsányi, G. (1973). Assignments for vibrational spectra of 700 benzene derivatives. Halsted Press. https://doi.org/10.1016/0022-2860(75)85047-2
  • Wolinski, K., Hinton, J. F., & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112(23), 8251–8260. https://doi.org/10.1021/ja00179a005
  • Zangwill, A., & Soven, P. (1980). Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases. Physical Review A, 21(5), 1561–1572. https://doi.org/10.1103/PhysRevA.21.1561
  • Ziegler, J., Linck, R., & Wright, D. W. (2001). Heme aggregation inhibitors: Antimalarial drugs targeting an essential biomineralization process. Studies in Natural Products Chemistry, 25, 327–366. https://doi.org/10.1016/S1572-5995(01)80011-9
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Photonics, Optoelectronics and Optical Communications, Atomic, Molecular and Optical Physics (Other)
Journal Section Articles
Authors

Fehmi Bardak 0000-0001-9684-3616

Etem Kose 0000-0001-5791-8873

Project Number FBE-2011/070, FBE-2017/139, ve FBE-2017/148
Early Pub Date June 8, 2024
Publication Date June 27, 2024
Submission Date October 18, 2023
Acceptance Date May 6, 2024
Published in Issue Year 2024 Volume: 24 Issue: 3

Cite

APA Bardak, F., & Kose, E. (2024). 2-klorokinolinin Moleküler ve Spektroskopik Özelliklerinin Kuantum Kimyasal Hesaplama Yöntemleriyle Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(3), 504-518. https://doi.org/10.35414/akufemubid.1378105
AMA Bardak F, Kose E. 2-klorokinolinin Moleküler ve Spektroskopik Özelliklerinin Kuantum Kimyasal Hesaplama Yöntemleriyle Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. June 2024;24(3):504-518. doi:10.35414/akufemubid.1378105
Chicago Bardak, Fehmi, and Etem Kose. “2-Klorokinolinin Moleküler Ve Spektroskopik Özelliklerinin Kuantum Kimyasal Hesaplama Yöntemleriyle Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 3 (June 2024): 504-18. https://doi.org/10.35414/akufemubid.1378105.
EndNote Bardak F, Kose E (June 1, 2024) 2-klorokinolinin Moleküler ve Spektroskopik Özelliklerinin Kuantum Kimyasal Hesaplama Yöntemleriyle Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 3 504–518.
IEEE F. Bardak and E. Kose, “2-klorokinolinin Moleküler ve Spektroskopik Özelliklerinin Kuantum Kimyasal Hesaplama Yöntemleriyle Araştırılması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 3, pp. 504–518, 2024, doi: 10.35414/akufemubid.1378105.
ISNAD Bardak, Fehmi - Kose, Etem. “2-Klorokinolinin Moleküler Ve Spektroskopik Özelliklerinin Kuantum Kimyasal Hesaplama Yöntemleriyle Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/3 (June 2024), 504-518. https://doi.org/10.35414/akufemubid.1378105.
JAMA Bardak F, Kose E. 2-klorokinolinin Moleküler ve Spektroskopik Özelliklerinin Kuantum Kimyasal Hesaplama Yöntemleriyle Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:504–518.
MLA Bardak, Fehmi and Etem Kose. “2-Klorokinolinin Moleküler Ve Spektroskopik Özelliklerinin Kuantum Kimyasal Hesaplama Yöntemleriyle Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 3, 2024, pp. 504-18, doi:10.35414/akufemubid.1378105.
Vancouver Bardak F, Kose E. 2-klorokinolinin Moleküler ve Spektroskopik Özelliklerinin Kuantum Kimyasal Hesaplama Yöntemleriyle Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(3):504-18.