Research Article
BibTex RIS Cite

Use of Static Tests for the Determination of Acid Mine Drainage (AMD) Properties of Cemented Paste Backfill

Year 2024, Volume: 24 Issue: 4, 964 - 972, 20.08.2024
https://doi.org/10.35414/akufemubid.1389872

Abstract

Cemented paste backfill (CPB) is a successfully prepared engineering material from fine mine processing tailings, cement and water. Tailings may contain sulfidic minerals when metallic ores such as Zn, Cu, Pb etc. are subjected to mineral processing. Tailings with high sulfur content can go through oxidation in the presence of oxygen and moisture and, cause the formation of acid mine drainage (AMD). In general, AMD lowers the pH of environmental waters and, causes heavy metal releases. Therefore, AMD potential is an important parameter to consider from an environmental perspective. One of the tests initially used to determine AMD potential is static testing. As a result of static tests, if the neutralization capacity of waste is higher than its acid-generating potential, this type of tailings is classified as non-hazardous in terms of AMD. In this study, AMD potentials of sulfidic tailings and CPB samples prepared from such tailings were investigated by static modified acid base account (ABA) test. As a result of the study, CPB samples were found to have 15% higher net neutralization potential compared to the tailings sample. In addition, fundamental information about the importance of static tests, which are commonly used in determining the AMD originating from tailings and/or CPB was given. This study is a significant experimental static test study on cured solid CPB specimen.

Project Number

118M505 nolu 1001 Tübitak Projesi

References

  • ASTM C 39. 2002. Standard test method for compressive strength of cylindrical concrete specimens. Annual Book of ASTM Standards, American Society of Testing Material. Aka M., 2008. Maden Atıklarının Yönetimi & Maden Atıkları Yönetmeliği. Çevre Mühendisleri Odası. Ankara, 37. Akcil A., And Koldas S., 2006. Acid Mine Drainage (AMD): causes, treatment and case studies. Journal of Cleaner Production, 14,1139–1145. https://doi.org/10.1016/j.jclepro.2004.09.006
  • Barnes A., Bowell R., Warrender R., Sapsford D., Sexsmith K., Charles J., Declercq J., Santonastaso M. and Dey B. 2015. Comparison between Long-Term Humidity Cell Testing and Static Net Acid Generation ( NAG ) Tests : Potential for NAG Use in Preliminary Mine Site Water Quality Predictions. 10th International Conference on Acid Rock Drainage (ICARD). Santiago, 1–10.
  • Bascetin, A., Tuylu, S. 2018. Application of Pb-Zn tailings for surface paste disposal: geotechnical and geochemical observations. International Journal of Mining, Reclamation and Environment, 32(5), 312–326. https://doi.org/10.1080/17480930.2017.1282411
  • Bascetin, A., Tuylu, S., Ozdemir, O., Adiguzel, D., & Benzaazoua, M. 2018. An investigation of crack formation in surface paste disposal method for pyritic Pb–Zn tailings. International Journal of Environmental Science and Technology, 15(2), 281-288 https://doi.org/10.1007/s13762-017-1380-5
  • Bascetin, A., Adiguzel, D., Eker, H., & Tuylu, S. 2022. The investigation of geochemical and geomechanical properties in surface paste disposal by pilot‑scale tests. International Journal of Mining, Reclamation and Environment, 36(8), 537–551. https://doi.org/10.1080/17480930.2022.2076501
  • Benzaazoua, M., Bussière B., Dagenais A.M. Archambault M. 2004. Kinetic tests comparison and interpretation for prediction of the Joutel tailings acid generation potential. Environmental Geology, 1086–1101.
  • Bouzahzah, H., Benzaazoua M., Bussiere B. Plante B. 2014. Prediction of Acid Mine Drainage: Importance of Mineralogy and the Test Protocols for Static and Kinetic Tests. Mine Water and the Environment, 33, 54–65. https://doi.org/10.1007/s10230-013-0249-1
  • Bouzahzah, H., Benzaazoua M., Plante B. and Bussiere B. 2015. A quantitative approach for the estimation of the “fizz rating” parameter in the acid-base accounting tests: A new adaptations of the Sobek test. Journal of Geochemical Exploration, 153, 53-65. https://doi.org/10.1016/j.gexplo.2015.03.003
  • BS EN 15863. 2015. Characterization of waste. Leaching behaviour test for basic characterization. Dynamic monolithic leaching test with periodic leachant renewal, under fixed conditions. European Standard. ISBN: 978 0 580 83658 9. 66pp.
  • BS EN 15875. 2011.Characterisation of waste. Static test for determination of acid potential and neutralisation potential of sulfidic waste. European Standard. ISBN: 978 0 580 80587 5. 30pp.
  • Chapman J., Hockley D., Sexsmith K., Arthur B. and Donohue S. 2003. Testing Acid Generation in Cemented Paste Backfill. 6th International Conference on Acid Rock Drainage. 863–867.
  • Cihangir F., Koc E., Orak M., Deveci T.Y., and Ercikdi B., 2023. Importance of Statıc Tests for the Predıctıon of AMD Potentıal of Cemented Paste Backfıll, 23rd International Multidisciplinary Scientific GeoConference SGEM 2023. Sofia, 23(1), 349-356. https://doi.org/10.5593/sgem2023/1.1/s03.42
  • Çetiner, E.G., Ünver B. Hindistan M.A. 2006. Regulations related with mining wastes: European community and Turkey. Scientific Mining Journal, 45, 23–34.
  • DeVos, K., & Verburg, R. (2006). Cemented paste backfill leachate characteristics - Snap Lake Diamond Mine. Journal American Society of Mining and Reclamation, 2006(2), 476–493. https://doi.org/10.21000/JASMR06020476
  • Dold, B. 2017. Acid rock drainage prediction: A critical review. Journal of Geochemical Exploration, 172, 120–132. https://doi.org/10.1016/j.gexplo.2016.09.014
  • Ercikdi, B., Baki, H., and İzki, M. 2013. Effect of desliming of sulphide-rich mill tailingson the long-term strength of cemented paste backfill. Journal of environmental management, 115, 5-13. https://doi.org/10.1016/j.jenvman.2012.11.014
  • Ercikdi, B., Yılmaz, T., Külekci, G. 2014. Strength and ultrasonic properties of cemented paste backfill. Ultrasonics, 54(1), 195–204. https://doi.org/10.1016/j.ultras.2013.04.013
  • Ergüler, G.K., 2012. Sülfürlü bir maden sahasında asit maden drenaj oluşum potansiyelinin belirlenmesi ve modellenmesi. Doktora Tezi, Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü, Kütahya, 267. Ergüler, Z.A., Ergüler G. K., 2015. The effect of particle size on acid mine drainage generation: Kinetic column tests. Minerals Engineering, 76, 154–167. https://doi.org/10.1016/j.mineng.2014.10.002
  • Fall, M., Benzaazoua M., Ouellet S. 2005. Experimental characterization of the effect of tailings fineness and density on the quality of cemented paste backfill. Minerals Engineering, 18(1):41–44 https://doi.org/10.1016/j.mineng.2004.05.012
  • Gray N.F. 1997. Environmental impact and remediation of acid mine drainage: A management problem. Environmental Geology, 30, 62–71.
  • Hassani, F., Archibald J. 1998. Mine backfill. In: Canadian Institute of Mine, Metallurgy and Petroleum, Published on CD-ROM Proceedings, Canada, 263p.
  • Karadeniz, M. 2008. Sülfürlü Madenlerin Sorunu Asit Maden Drenajı ve Çözümü. Fersa Matbaacılık. Ankara: TMMOB Maden Mühendisleri Odası, 231.
  • Koc, E., Cihangir F. and Ercikdi B. 2023. Chapter 3 - Geochemical evaluation of sulfidic tailings and cemented paste backfill with respect to environmental impacts. Managing Mining and Minerals Processing Wastes. Qi C. and Benson C.H. (editors), Elsevier, 47–70. https://doi.org/10.1016/B978-0-323-91283-9.00003-1
  • Kuyucak, N. 2002. Acid mine drainage prevention and control options. CIM Bulletin, 95,96–102.
  • Lawrence, R.W. 1990. Prediction of the behaviour of mining and processing wastes in the environment,. F. Doyle (ed.), Proceedings Western Regional Symposium on Mining and Mineral Processing Wastes, Society for Mining, Metallurgy, and Exploration, Inc., Littleton, CO, 115-121.
  • Lawrence, R.W., Poling G.W., Ritcey G.M., Merchant P.B. 1989. Assessment of Predictive Methods for the Determination of AMD Potential in Mine Tailings and Waste Rock. Tailings and Effluent Management, 317–331.
  • Lei, L.Q., Song C.A., Xie X.L., Li, Y.H, and Wang, F. 2010. Acid mine drainage and heavy metal contamination in groundwater of metal sulfide mine at arid territory (BS mine, Western Australia). Transactions of Nonferrous Metals Society of China (English Edition), 20, 1488–1493. https://doi.org/10.1016/S1003-6326(09)60326-5
  • Li, T., Singh U., Coxon J., Grice T.G., Sainsbury D. 2002. Development and application of paste fill using dry tailings. First International Seminar on Deep and High Stress Mining, Perth, 10 pp
  • Moodley, I., Sheridan C.M., Kappelmeyer U. and Akcil A. 2018. Environmentally sustainable acid mine drainage remediation: Research developments with a focus on waste/by-products. Minerals Engineering, 126, 207–220. https://doi.org/10.1016/j.mineng.2017.08.008
  • Morin, K. and Hutt N.M. 2001. Environmental geochemistry of minesite drainage: practical theory and case studies. Environmental Geochemistry of Minesite Drainage. Vancouver, 19. ISBN 0-9682039-1-4
  • Park, I., Tabelin C.B., Jeon S., Li X., Seno K., Ito M. and Hiroyoshi N. 2019. A review of recent strategies for acid mine drainage prevention and mine tailings recycling, Chemosphere. 219, 588–606. https://doi.org/10.1016/j.chemosphere.2018.11.053
  • Plante, B., Bussière B. and Benzaazoua M. 2012. Static tests response on 5 Canadian hard rock mine tailings with low net acid-generating potentials. Journal of Geochemical Exploration, 114, 57–69. https://doi.org/10.1016/j.gexplo.2011.12.003
  • Rodríguez-Galán, M., Baena-Moreno F.M., Vázquez S., Vázquez S., Arroyo-Torralvo F., Vilches L.F. and Zhang Z. 2019. Remediation of acid mine drainage. Environmental Chemistry Letters, 17, 1529–1538. https://doi.org/10.1007/s10311-019-00894-w
  • Sheshpari, M. 2015. A Review on Influential Parameters on the Strength of Cemented Paste Backfill (CPB)-Part II. Electronic Journal of Geotechnical Engineering, 20(22), 12467- 12491
  • Skousen, J.G., Ziemkiewicz P.F. and McDonald L.M. 2019. Acid mine drainage formation, control and treatment: Approaches and strategies. Extractive Industries and Society, 6, 241–249. https://doi.org/10.1016/j.exis.2018.09.008
  • Sobek, A.A., Schuller W.A., Freeman J.R. and Smith R.M. 1978. Field and Laboratory Methods Applicable to Overburdens and Minesoils. U.S. Environmental Protection Agency. Cincinnati, 218.
  • Strömberg, B. and Banwart S.A. 1999. Experimental study of acidity-consuming processes in mining waste rock: Some influences of mineralogy and particle size. Applied Geochemistry, 14, 1–16.
  • T.C. Resmî Gazete. 2015. Maden Atıkları Yönetmeliği. 15 Temmuz 2015 Tarihli ve 29417 Sayılı Resmî Gazete. https://www.resmigazete.gov.tr/eskiler/2015/07/20150715-3.html
  • Tomiyama, S., Igarashi T., Tabelin C.B., Tangviroon P. and Ii, H. 2019. Acid mine drainage sources and hydrogeochemistry at the Yatani mine, Yamagata, Japan: A geochemical and isotopic study. Journal of Contaminant Hydrology, 225. https://doi.org/10.1016/j.jconhyd.2019.103502
  • U.S. EPA. 2009. National Primary Drinking Water Guidelines. Epa 816-F-09-004. U.S. Environmental Protection Agency. 1, 7. Xu, R., Li B., Xiao E., Young L.Y., Sun X., Kong T., Dong Y., Wang Q., Yang Z., Chen L. And Sun W. 2020. Uncovering microbial responses to sharp geochemical gradients in a terrace contaminated by acid mine drainage. Environmental Pollution, 261. 114226 https://doi.org/10.1016/j.envpol.2020.114226
  • Yilmaz, T. and Ercikdi B. 2021. Effect of construction and demolition waste on the long-term geo-environmental behaviour of cemented paste backfill. International Journal of Environmental Science and Technology, 19, 3701-3714. https://doi.org/10.1007/s13762-021-03359-2
  • Yılmaz, T., and Ercikdi, B. 2022. Effect of construction and demolition waste on the long-term geo-environmental behaviour of cemented paste backfill. International Journal of Environmental Science and Technology, 19(5), 3701–3714. https://doi.org/10.1007/s13762-021-03359-2
  • Yılmaz, T., Ercikdi, B. 2022b. Kalsitik ve dolomitik kireçtaşlarının çimentolu macun dolgunun çevresel davranışına etkisi. Bilimsel Madencilik Dergisi. 61(1), 31-40. https://doi.org/10.30797/madencilik.967090
  • Yılmaz, T., Ercikdi, B., and Cihangir, F. 2020. Evaluation of the neutralization performances of the industrial waste products (IWPs) in sulphide-rich environment of cemented paste backfill. Journal of Environmental Management, 258, 110037. https://doi.org/10.1016/j.jenvman.2019.110037
  • Yılmaz, T., Ercikdi B. and Deveci H. 2021. Evaluation of geochemical behaviour of flooded cemented paste backfill of sulphide-rich tailings by dynamic-tank leaching test. International Journal of Mining, Reclamation and Environment, 35, 336–355. https://doi.org/10.1080/17480930.2020.1829778
  • İnternet Kaynakları 1. INAP: The International Network for Acid Prevention. http://www.gardguide.com, (11.11.2023) 2. T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı. Maden atıkları yönetmeliğinin uygulanmasına ilişkin açıklamalar. 01 Haziran 2018. https://webdosya.csb.gov.tr/db/cygm/duyurular/may-ac-klama201805-20180601164229.pdf, (11.03.2024)

Statik Testlerin Çimentolu Macun Dolguda Asit Maden Drenajı (AMD) Özelliklerinin Belirlenmesinde Kullanımı

Year 2024, Volume: 24 Issue: 4, 964 - 972, 20.08.2024
https://doi.org/10.35414/akufemubid.1389872

Abstract

Çimentolu macun dolgu (ÇMD), ince boyutlu maden tesis atığı, çimento ve suyun başarılı bir mühendislik karışımıdır. Özellikle bakır, kurşun, çinko gibi metalik cevherlerin işlenmesi durumunda oluşan atıklar sülfürlü mineraller içerebilmektedir. Sülfür içeriği yüksek atıklar oksijen ve nemin olduğu ortamlarda oksidasyona uğrayarak asit maden drenajı (AMD) oluşumuna sebep olabilmektedir. Genel olarak AMD, su ortamının pH değerini düşürmekte ve ağır metal salınımına neden olmaktadır. Bu nedenle, AMD potansiyeli çevresel açıdan dikkate alınması gereken önemli bir parametredir. Sülfürlü mineral içeren malzemelerin AMD potansiyelini belirlemek için ilk etapta kullanılan testlerden birisi statik testlerdir. Statik testler sonucunda atıkların nötralizasyon kapasitesinin asit oluşturma potansiyelinden yüksek olması durumunda, bu tür atıklar AMD açısından zararsız olarak sınıflandırılmaktadır. Bu çalışmada, sülfürlü atık ve aynı atıktan hazırlanmış ÇMD numunelerinde AMD potansiyeli statik modifiye asit-baz hesabı (ABH) testi ile incelenmiştir. Bulgular, ÇMD numunelerinin atık numunesine kıyasla %15 daha yüksek net nötralizasyon potansiyeline (NNP) sahip olduğunu göstermiştir. Çalışmada ayrıca sülfürlü mineral içeren atık ve/veya ÇMD’de AMD’nin belirlenmesinde yaygın olarak kullanılan statik testlerin önemi hakkında bilgi verilmiştir. Bu çalışma kür almış ÇMD numunesi üzerinde yapılan deneysel bir statik test çalışması olması bakımından önem arz etmektedir.

Ethical Statement

Çalışmamız "Etik Beyan" gerektirmemektedir.

Supporting Institution

Tübitak

Project Number

118M505 nolu 1001 Tübitak Projesi

Thanks

Bu çalışma 118M505 nolu Tübitak Projesi kapsamında desteklenmiştir.

References

  • ASTM C 39. 2002. Standard test method for compressive strength of cylindrical concrete specimens. Annual Book of ASTM Standards, American Society of Testing Material. Aka M., 2008. Maden Atıklarının Yönetimi & Maden Atıkları Yönetmeliği. Çevre Mühendisleri Odası. Ankara, 37. Akcil A., And Koldas S., 2006. Acid Mine Drainage (AMD): causes, treatment and case studies. Journal of Cleaner Production, 14,1139–1145. https://doi.org/10.1016/j.jclepro.2004.09.006
  • Barnes A., Bowell R., Warrender R., Sapsford D., Sexsmith K., Charles J., Declercq J., Santonastaso M. and Dey B. 2015. Comparison between Long-Term Humidity Cell Testing and Static Net Acid Generation ( NAG ) Tests : Potential for NAG Use in Preliminary Mine Site Water Quality Predictions. 10th International Conference on Acid Rock Drainage (ICARD). Santiago, 1–10.
  • Bascetin, A., Tuylu, S. 2018. Application of Pb-Zn tailings for surface paste disposal: geotechnical and geochemical observations. International Journal of Mining, Reclamation and Environment, 32(5), 312–326. https://doi.org/10.1080/17480930.2017.1282411
  • Bascetin, A., Tuylu, S., Ozdemir, O., Adiguzel, D., & Benzaazoua, M. 2018. An investigation of crack formation in surface paste disposal method for pyritic Pb–Zn tailings. International Journal of Environmental Science and Technology, 15(2), 281-288 https://doi.org/10.1007/s13762-017-1380-5
  • Bascetin, A., Adiguzel, D., Eker, H., & Tuylu, S. 2022. The investigation of geochemical and geomechanical properties in surface paste disposal by pilot‑scale tests. International Journal of Mining, Reclamation and Environment, 36(8), 537–551. https://doi.org/10.1080/17480930.2022.2076501
  • Benzaazoua, M., Bussière B., Dagenais A.M. Archambault M. 2004. Kinetic tests comparison and interpretation for prediction of the Joutel tailings acid generation potential. Environmental Geology, 1086–1101.
  • Bouzahzah, H., Benzaazoua M., Bussiere B. Plante B. 2014. Prediction of Acid Mine Drainage: Importance of Mineralogy and the Test Protocols for Static and Kinetic Tests. Mine Water and the Environment, 33, 54–65. https://doi.org/10.1007/s10230-013-0249-1
  • Bouzahzah, H., Benzaazoua M., Plante B. and Bussiere B. 2015. A quantitative approach for the estimation of the “fizz rating” parameter in the acid-base accounting tests: A new adaptations of the Sobek test. Journal of Geochemical Exploration, 153, 53-65. https://doi.org/10.1016/j.gexplo.2015.03.003
  • BS EN 15863. 2015. Characterization of waste. Leaching behaviour test for basic characterization. Dynamic monolithic leaching test with periodic leachant renewal, under fixed conditions. European Standard. ISBN: 978 0 580 83658 9. 66pp.
  • BS EN 15875. 2011.Characterisation of waste. Static test for determination of acid potential and neutralisation potential of sulfidic waste. European Standard. ISBN: 978 0 580 80587 5. 30pp.
  • Chapman J., Hockley D., Sexsmith K., Arthur B. and Donohue S. 2003. Testing Acid Generation in Cemented Paste Backfill. 6th International Conference on Acid Rock Drainage. 863–867.
  • Cihangir F., Koc E., Orak M., Deveci T.Y., and Ercikdi B., 2023. Importance of Statıc Tests for the Predıctıon of AMD Potentıal of Cemented Paste Backfıll, 23rd International Multidisciplinary Scientific GeoConference SGEM 2023. Sofia, 23(1), 349-356. https://doi.org/10.5593/sgem2023/1.1/s03.42
  • Çetiner, E.G., Ünver B. Hindistan M.A. 2006. Regulations related with mining wastes: European community and Turkey. Scientific Mining Journal, 45, 23–34.
  • DeVos, K., & Verburg, R. (2006). Cemented paste backfill leachate characteristics - Snap Lake Diamond Mine. Journal American Society of Mining and Reclamation, 2006(2), 476–493. https://doi.org/10.21000/JASMR06020476
  • Dold, B. 2017. Acid rock drainage prediction: A critical review. Journal of Geochemical Exploration, 172, 120–132. https://doi.org/10.1016/j.gexplo.2016.09.014
  • Ercikdi, B., Baki, H., and İzki, M. 2013. Effect of desliming of sulphide-rich mill tailingson the long-term strength of cemented paste backfill. Journal of environmental management, 115, 5-13. https://doi.org/10.1016/j.jenvman.2012.11.014
  • Ercikdi, B., Yılmaz, T., Külekci, G. 2014. Strength and ultrasonic properties of cemented paste backfill. Ultrasonics, 54(1), 195–204. https://doi.org/10.1016/j.ultras.2013.04.013
  • Ergüler, G.K., 2012. Sülfürlü bir maden sahasında asit maden drenaj oluşum potansiyelinin belirlenmesi ve modellenmesi. Doktora Tezi, Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü, Kütahya, 267. Ergüler, Z.A., Ergüler G. K., 2015. The effect of particle size on acid mine drainage generation: Kinetic column tests. Minerals Engineering, 76, 154–167. https://doi.org/10.1016/j.mineng.2014.10.002
  • Fall, M., Benzaazoua M., Ouellet S. 2005. Experimental characterization of the effect of tailings fineness and density on the quality of cemented paste backfill. Minerals Engineering, 18(1):41–44 https://doi.org/10.1016/j.mineng.2004.05.012
  • Gray N.F. 1997. Environmental impact and remediation of acid mine drainage: A management problem. Environmental Geology, 30, 62–71.
  • Hassani, F., Archibald J. 1998. Mine backfill. In: Canadian Institute of Mine, Metallurgy and Petroleum, Published on CD-ROM Proceedings, Canada, 263p.
  • Karadeniz, M. 2008. Sülfürlü Madenlerin Sorunu Asit Maden Drenajı ve Çözümü. Fersa Matbaacılık. Ankara: TMMOB Maden Mühendisleri Odası, 231.
  • Koc, E., Cihangir F. and Ercikdi B. 2023. Chapter 3 - Geochemical evaluation of sulfidic tailings and cemented paste backfill with respect to environmental impacts. Managing Mining and Minerals Processing Wastes. Qi C. and Benson C.H. (editors), Elsevier, 47–70. https://doi.org/10.1016/B978-0-323-91283-9.00003-1
  • Kuyucak, N. 2002. Acid mine drainage prevention and control options. CIM Bulletin, 95,96–102.
  • Lawrence, R.W. 1990. Prediction of the behaviour of mining and processing wastes in the environment,. F. Doyle (ed.), Proceedings Western Regional Symposium on Mining and Mineral Processing Wastes, Society for Mining, Metallurgy, and Exploration, Inc., Littleton, CO, 115-121.
  • Lawrence, R.W., Poling G.W., Ritcey G.M., Merchant P.B. 1989. Assessment of Predictive Methods for the Determination of AMD Potential in Mine Tailings and Waste Rock. Tailings and Effluent Management, 317–331.
  • Lei, L.Q., Song C.A., Xie X.L., Li, Y.H, and Wang, F. 2010. Acid mine drainage and heavy metal contamination in groundwater of metal sulfide mine at arid territory (BS mine, Western Australia). Transactions of Nonferrous Metals Society of China (English Edition), 20, 1488–1493. https://doi.org/10.1016/S1003-6326(09)60326-5
  • Li, T., Singh U., Coxon J., Grice T.G., Sainsbury D. 2002. Development and application of paste fill using dry tailings. First International Seminar on Deep and High Stress Mining, Perth, 10 pp
  • Moodley, I., Sheridan C.M., Kappelmeyer U. and Akcil A. 2018. Environmentally sustainable acid mine drainage remediation: Research developments with a focus on waste/by-products. Minerals Engineering, 126, 207–220. https://doi.org/10.1016/j.mineng.2017.08.008
  • Morin, K. and Hutt N.M. 2001. Environmental geochemistry of minesite drainage: practical theory and case studies. Environmental Geochemistry of Minesite Drainage. Vancouver, 19. ISBN 0-9682039-1-4
  • Park, I., Tabelin C.B., Jeon S., Li X., Seno K., Ito M. and Hiroyoshi N. 2019. A review of recent strategies for acid mine drainage prevention and mine tailings recycling, Chemosphere. 219, 588–606. https://doi.org/10.1016/j.chemosphere.2018.11.053
  • Plante, B., Bussière B. and Benzaazoua M. 2012. Static tests response on 5 Canadian hard rock mine tailings with low net acid-generating potentials. Journal of Geochemical Exploration, 114, 57–69. https://doi.org/10.1016/j.gexplo.2011.12.003
  • Rodríguez-Galán, M., Baena-Moreno F.M., Vázquez S., Vázquez S., Arroyo-Torralvo F., Vilches L.F. and Zhang Z. 2019. Remediation of acid mine drainage. Environmental Chemistry Letters, 17, 1529–1538. https://doi.org/10.1007/s10311-019-00894-w
  • Sheshpari, M. 2015. A Review on Influential Parameters on the Strength of Cemented Paste Backfill (CPB)-Part II. Electronic Journal of Geotechnical Engineering, 20(22), 12467- 12491
  • Skousen, J.G., Ziemkiewicz P.F. and McDonald L.M. 2019. Acid mine drainage formation, control and treatment: Approaches and strategies. Extractive Industries and Society, 6, 241–249. https://doi.org/10.1016/j.exis.2018.09.008
  • Sobek, A.A., Schuller W.A., Freeman J.R. and Smith R.M. 1978. Field and Laboratory Methods Applicable to Overburdens and Minesoils. U.S. Environmental Protection Agency. Cincinnati, 218.
  • Strömberg, B. and Banwart S.A. 1999. Experimental study of acidity-consuming processes in mining waste rock: Some influences of mineralogy and particle size. Applied Geochemistry, 14, 1–16.
  • T.C. Resmî Gazete. 2015. Maden Atıkları Yönetmeliği. 15 Temmuz 2015 Tarihli ve 29417 Sayılı Resmî Gazete. https://www.resmigazete.gov.tr/eskiler/2015/07/20150715-3.html
  • Tomiyama, S., Igarashi T., Tabelin C.B., Tangviroon P. and Ii, H. 2019. Acid mine drainage sources and hydrogeochemistry at the Yatani mine, Yamagata, Japan: A geochemical and isotopic study. Journal of Contaminant Hydrology, 225. https://doi.org/10.1016/j.jconhyd.2019.103502
  • U.S. EPA. 2009. National Primary Drinking Water Guidelines. Epa 816-F-09-004. U.S. Environmental Protection Agency. 1, 7. Xu, R., Li B., Xiao E., Young L.Y., Sun X., Kong T., Dong Y., Wang Q., Yang Z., Chen L. And Sun W. 2020. Uncovering microbial responses to sharp geochemical gradients in a terrace contaminated by acid mine drainage. Environmental Pollution, 261. 114226 https://doi.org/10.1016/j.envpol.2020.114226
  • Yilmaz, T. and Ercikdi B. 2021. Effect of construction and demolition waste on the long-term geo-environmental behaviour of cemented paste backfill. International Journal of Environmental Science and Technology, 19, 3701-3714. https://doi.org/10.1007/s13762-021-03359-2
  • Yılmaz, T., and Ercikdi, B. 2022. Effect of construction and demolition waste on the long-term geo-environmental behaviour of cemented paste backfill. International Journal of Environmental Science and Technology, 19(5), 3701–3714. https://doi.org/10.1007/s13762-021-03359-2
  • Yılmaz, T., Ercikdi, B. 2022b. Kalsitik ve dolomitik kireçtaşlarının çimentolu macun dolgunun çevresel davranışına etkisi. Bilimsel Madencilik Dergisi. 61(1), 31-40. https://doi.org/10.30797/madencilik.967090
  • Yılmaz, T., Ercikdi, B., and Cihangir, F. 2020. Evaluation of the neutralization performances of the industrial waste products (IWPs) in sulphide-rich environment of cemented paste backfill. Journal of Environmental Management, 258, 110037. https://doi.org/10.1016/j.jenvman.2019.110037
  • Yılmaz, T., Ercikdi B. and Deveci H. 2021. Evaluation of geochemical behaviour of flooded cemented paste backfill of sulphide-rich tailings by dynamic-tank leaching test. International Journal of Mining, Reclamation and Environment, 35, 336–355. https://doi.org/10.1080/17480930.2020.1829778
  • İnternet Kaynakları 1. INAP: The International Network for Acid Prevention. http://www.gardguide.com, (11.11.2023) 2. T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı. Maden atıkları yönetmeliğinin uygulanmasına ilişkin açıklamalar. 01 Haziran 2018. https://webdosya.csb.gov.tr/db/cygm/duyurular/may-ac-klama201805-20180601164229.pdf, (11.03.2024)
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Geology (Other)
Journal Section Articles
Authors

Ercüment Koç 0000-0002-9804-4620

Ferdi Cihangir 0000-0003-3945-1055

Bayram Erçıkdı 0000-0003-4900-5382

Project Number 118M505 nolu 1001 Tübitak Projesi
Early Pub Date July 23, 2024
Publication Date August 20, 2024
Submission Date November 12, 2023
Acceptance Date June 9, 2024
Published in Issue Year 2024 Volume: 24 Issue: 4

Cite

APA Koç, E., Cihangir, F., & Erçıkdı, B. (2024). Statik Testlerin Çimentolu Macun Dolguda Asit Maden Drenajı (AMD) Özelliklerinin Belirlenmesinde Kullanımı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(4), 964-972. https://doi.org/10.35414/akufemubid.1389872
AMA Koç E, Cihangir F, Erçıkdı B. Statik Testlerin Çimentolu Macun Dolguda Asit Maden Drenajı (AMD) Özelliklerinin Belirlenmesinde Kullanımı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. August 2024;24(4):964-972. doi:10.35414/akufemubid.1389872
Chicago Koç, Ercüment, Ferdi Cihangir, and Bayram Erçıkdı. “Statik Testlerin Çimentolu Macun Dolguda Asit Maden Drenajı (AMD) Özelliklerinin Belirlenmesinde Kullanımı”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 4 (August 2024): 964-72. https://doi.org/10.35414/akufemubid.1389872.
EndNote Koç E, Cihangir F, Erçıkdı B (August 1, 2024) Statik Testlerin Çimentolu Macun Dolguda Asit Maden Drenajı (AMD) Özelliklerinin Belirlenmesinde Kullanımı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 4 964–972.
IEEE E. Koç, F. Cihangir, and B. Erçıkdı, “Statik Testlerin Çimentolu Macun Dolguda Asit Maden Drenajı (AMD) Özelliklerinin Belirlenmesinde Kullanımı”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 4, pp. 964–972, 2024, doi: 10.35414/akufemubid.1389872.
ISNAD Koç, Ercüment et al. “Statik Testlerin Çimentolu Macun Dolguda Asit Maden Drenajı (AMD) Özelliklerinin Belirlenmesinde Kullanımı”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/4 (August 2024), 964-972. https://doi.org/10.35414/akufemubid.1389872.
JAMA Koç E, Cihangir F, Erçıkdı B. Statik Testlerin Çimentolu Macun Dolguda Asit Maden Drenajı (AMD) Özelliklerinin Belirlenmesinde Kullanımı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:964–972.
MLA Koç, Ercüment et al. “Statik Testlerin Çimentolu Macun Dolguda Asit Maden Drenajı (AMD) Özelliklerinin Belirlenmesinde Kullanımı”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 4, 2024, pp. 964-72, doi:10.35414/akufemubid.1389872.
Vancouver Koç E, Cihangir F, Erçıkdı B. Statik Testlerin Çimentolu Macun Dolguda Asit Maden Drenajı (AMD) Özelliklerinin Belirlenmesinde Kullanımı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(4):964-72.