Impregnation and Characterization of ZnO Nanoparticles on Hemp Woven Fabrics by Dip Coating Method
Year 2024,
Volume: 24 Issue: 4, 931 - 939, 20.08.2024
Abdullah Gül
Abstract
In this study, nano-sized zinc oxide coating was applied to woven fabrics made from 100% hemp yarns by dip-coating method. Obtained modified hemp woven fabrics; Some analyzes and tests were performed and compared with raw hemp fabric to determine its structural, morphological, physical, mechanical and thermal properties. As a result of Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray spectroscopy (EDS) analyses, the presence of zinc oxide in hemp fabrics modified with zinc oxide was detected. The morphological properties of zinc oxide coated fabrics were examined with scanning electron microscopy (SEM) and it was observed that there was a smooth coating on the fabric structure, although there were gaps in some places. With the thermogravimetric analysis (TGA) study, it was determined that the mass changes of the zinc oxide coated fabrics with temperature were higher than the raw sample. As a result of the breaking strength analysis performed for mechanical properties, a partial increase in the fabric strength and breaking elongation values of the zinc oxide coating was detected. Finally, it was understood from the tests that the contact angle properties of zinc oxide coated hemp fabrics were <90 and it was determined that it further increased the hydrophilicity. The results from this research confirm that ZnO is one of the most promising materials for the development of high-performance hemp textiles and will therefore be intensively investigated in the future.
References
- Acar, M. & Dönmez, A., 2016. Kenevire Farklı Bir Bakış. 2. Ulusal Biyoyakıtlar Sempozyumu Bildiriler Kitabı, 27-30 Eylül, Samsun, 265-270
- Aladpoosh, R., and Montazer, M., 2015. The role of cellulosic chains of cotton in biosynthesis of ZnO nanorods producing multifunctional properties: Mechanism, characterizations and features. Carbohydrate polymers, 126, 122-129.
https://doi.org/10.1016/j.carbpol.2015.03.036
- Alhalili, Z., Romdhani, C., Chemingui, H., and Smiri, M., 2021. Removal of dithioterethiol (DTT) from water by membranes of cellulose acetate (AC) and AC doped ZnO and TiO2 nanoparticles. Journal of Saudi Chemical Society, 25(8), 101282.
https://doi.org/10.1016/j.jscs.2021.101282
- Arik, B., Karaman Atmaca, O. D., 2020. The effects of sol–gel coatings doped with zinc salts and zinc oxide nanopowders on multifunctional performance of linen fabric. Cellulose, 27, 8385-8403.
https://doi.org/10.1007/s10570-020-03322-3
- Arnold, M.S.; Avouris, P.; Pan, Z.W.; Wang, Z.L., 2003. Field-effect transistors based on single semiconducting oxide nanobelts. The Journal of Physical Chemistry B 107(3), 659-663.
https://doi/10.1021/jp0271054
- Barani, H., 2014. Surface activation of cotton fiber by seeding silver nanoparticles and in situ synthesizing ZnO nanoparticles. New Journal of Chemistry, 38(9), 4365-4370.
https://doi.org/10.1039/C4NJ00547C
- Baltakesmez, A., Tekmen, S., & Tüzemen, S. 2011. ZnO homojunction white light-emitting diodes. Journal of Applied Physics, 110(5).
https://doi.org/10.1063/1.3627247
- Becheri, A., Dürr, M., Lo Nostro, P., and Baglioni, P., 2008. Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. Journal of Nanoparticle Research, 10, 679-689.
https://doi.org/10.1007/s11051-007-9318-3
- Bico, J., Thiele, U., and Quéré, D., 2002. Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206(1-3), 41-46.
https://doi.org/10.1016/S0927-7757(02)00061-4
- Dai, D. & Fan, M., 2010. Characteristic and Performance of Elementary Hemp Fibre. Materials Sciences and Applications, 1, 336-342.
https://doi:10.4236/msa.2010.16049
- Dastjerdi, R., & Montazer, M., 2010. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids and surfaces B: Biointerfaces, 79(1), 5-18.
https://doi.org/10.1016/j.colsurfb.2010.03.029
- Hajiha, H., Sain, M., & Mei, L. H., 2014. Modification and characterization of hemp and sisal fibers. Journal of Natural Fibers, 11(2), 144-168.
https://doi.org/10.1080/15440478.2013.861779
- Kathirvelu, S., D’souza, L., & Dhurai, B., 2009. UV protection finishing of textiles using ZnO nanoparticles. Indian Journal of Fiber & Textile Resarch 34: 267-273.
- Kataria, N., & Garg, V.K., 2017. Removal of Congo red and Brilliant green dye from aqueous solution using flower shaped ZnO nanoparticles. Journal of Environmental Chemical Engineering, 5(6), pp. 5420-5428.
https://doi.org/10.1016/j.jece.2017.10.035
- Li, Y., Zou, Y., & Hou, Y., 2011. Fabrication and UV-blocking property of nano-ZnO assembled cotton fibers via a two-step hydrothermal method. Cellulose, 18, 1643-1649.
https://doi.org/10.1007/s10570-011-9600-5
- Majumdar, A.; Singh Butola, B.; Awasthi, N., 2018. Chauhan, I.; Hatua, P. Improving the mechanical properties of p-aramid fabrics and composites by developing ZnO nanostructures. Polym. Compos., 39, 3300–3306.
https://doi.org/10.1002/pc.24346
- Mohammadipour-Nodoushan, R., Shekarriz, S., Shariatinia, Z., Heydari, A., & Montazer, M., 2023. Improved cotton fabrics properties using zinc oxide-based nanomaterials: A review. International Journal of Biological Macromolecules, 124916.
https://doi.org/10.1016/j.ijbiomac.2023.124916
- Pan, Z.W.; Wang, Z.L., 2001. Nanobelts of semiconducting oxides. Science, 291, 1947–1949.
https://doi.org/10.1126/science.1058120
- Pintarić, L.M.; Škoc, M.S.; Bilić, V.L.; Pokrovac, I.; Kosalec, I.; Rezić, I., 2020 Synthesis, Modification and Characterization of Antimicrobial Textile Surface Containing ZnO Nanoparticles. Polymers, 12, 1210.
https://doi.org/10.3390/polym12061210
- Qu, M., He, J., & Zhang, J., 2010. Superhydrophobicity, learn from the lotus leaf. In Biomimetics learning from nature. IntechOpen.
https://doi.org/10.5772/8789
- Şahinbaşkan, B. Y., 2019. Kenevir Dokuma Kumaşa Enzimatik Ön İşlemlerin Etkisi. International Journal of Advances in Engineering and Pure Sciences, 31(3), 208-213.
https://doi.org/10.7240/jeps.508952
- Saleem, H. Zaidi, S.J., 2020. Sustainable Use of Nanomaterials in Textiles and Their Environmental Impact. Materials, 13, 5134.
https://doi.org/10.3390/ma13225134
- Salari, M.A., Sağlam, M., Baltakesmez, A. et al. 2019. Effect of electron radiation on electrical parameters of Zn/n-Si/Au–Sb and Zn/ZnO/n-Si/Au–Sb diodes. J Radioanal Nucl Chem 319, 667–678.
https://doi.org/10.1007/s10967-018-06401-9
- Selvam, S.; Rajiv Gandhi, R.; Suresh, J.; Gowri, S.; Ravikumar, S.; Sundrarajan, M., 2012. Antibacterial effect of novel synthesized sulfated β-cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating. Int. J. Pharm., 434, 366–374.
https://doi.org/10.1016/j.ijpharm.2012.04.069
- Shaheen, T. I., El-Naggar, M. E., Abdelgawad, A. M., & Hebeish, A., 2016. Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics. International journal of biological macromolecules, 83, 426-432.
https://doi.org/10.1016/j.ijbiomac.2015.11.003
- Simoncic, B.; Tomsic, B. 2010. Structures of Novel Antimicrobial Agents for Textiles—A Review. Text. Res. J., 80, 1721–1737.
https://doi.org/10.1177/0040517510363193
- Tania, I.S.; Ali, M.; Azam, M.S., 2019. In-situ synthesis and characterization of silver nanoparticle decorated cotton knitted fabric for antibacterial activity and improved dyeing performance. SN Appl. Sci., 1, 64.
https://doi.org/10.1007/s42452-018-0068-x
- Tania, I.S.; Ali, M.; Azam, M.S., 2021. Mussel-Inspired Deposition of Ag Nanoparticles on Dopamine-Modified Cotton Fabric and Analysis of its Functional, Mechanical and Dyeing Properties. J. Inorg. Organomet. Polym. Mater., 1–12.
https://doi.org/10.1007/s10904-021-02034-w
- Tania, I.S.; Ali, M.; Islam, Z., 2019. Solaiman Development of antimicrobial activity and mechanical performances of cotton fabric treated with silver nano particles (AgNPs). AIP Conf. Proc., 2121, 15003.
https://doi.org/10.1063/1.5115968
- Thi, V. H. T., & Lee, B. K., 2017. Development of multifunctional self-cleaning and UV blocking cotton fabric with modification of photoactive ZnO coating via microwave method. Journal of Photochemistry and Photobiology A: Chemistry, 338, 13-22.
https://doi.org/10.1016/j.jphotochem.2017.01.020
- Uǧur, Ş.S.; Sariişik, M.; Aktaş, A.H.; Uçar, M.Ç.; Erden, E. 2010. Modifying of cotton fabric surface with Nano-ZnO multilayer films by Layer-by-Layer deposition method. Nanoscale Res. Lett., 5, 1204.
https://doi.org/10.1007/s11671-010-9627-9
- Yetisen, A.K.; Qu, H.; Manbachi, A.; Butt, H.; Dokmeci, M.R. 2016. Hinestroza, J.P.; Skorobogatiy, M.; Khademhosseini, A.; Yun, S.H. Nanotechnology in Textiles. ACS Nano, 10, 3042–3068.
https://doi.org/10.1021/acsnano.5b08176
- Zahran, M. K., Ahmed, H. B., and El-Rafie, M. H., 2014. Surface modification of cotton fabrics for antibacterial application by coating with AgNPs–alginate composite. Carbohydrate polymers, 108, 145-152.
https://doi.org/10.1016/j.carbpol.2014.03.005
Daldırmalı kaplama yöntemi ile ZnO Nanoparçacıkların Kenevir Dokuma Kumaşlara Emdirilmesi ve Karakterizasyonu
Year 2024,
Volume: 24 Issue: 4, 931 - 939, 20.08.2024
Abdullah Gül
Abstract
Bu çalışmada %100 kenevir ipliklerinden elde edilmiş dokuma kumaşlara daldırmalı kaplama (dip-coating) yöntemi ile çinko oksit (ZnO) nanoparçacıklar emdirilmiştir. Ham ve modifiyeli kenevir dokuma kumaşların yapısal, morfolojik, fiziksel, mekanik ve termal özellikleri karşılaştırılmıştır. Yapılan Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) ve enerji dağılımlı X-ışınları spektroskopisi (EDS) analizleri sonucunda modifiyeli kenevir dokuma kumaşlarında ZnO metal oksit varlığı tespit edilmiştir. ZnO nanoparçacık emdirilmiş kumaşların tarama elektron mikroskobu (SEM) ile morfolojik özellikleri incelenmiş ve kumaş yapısı üzerinde yer yer boşluklu olsa da homojen kaplama elde edildiği gözlemlenmiştir. Termogravimetrik analiz (TGA) sonuçları ZnO nanoparçacık ihtiva eden kumaşların sıcaklıkla kütle değişimlerinin ham kumaşa göre daha yüksek olduğunu göstermiştir. Kopma mukavemeti analizi ile ZnO nanoparçacık içeren kumaşın mukavemet ve kopma uzama değerlerinde belirgin bir değişim olmadığı tespit edilmiştir. ZnO nanoparçacık emdirilen kumaşların temas açısının (56.95o) ham kumaş temas açısından (62.83o) daha küçük olduğu, bunun sonucu olarak kumaş hidrofilik özelliğinin arttığı tespit edilmiştir. Bu çalışmada elde edilen sonuçlar, ZnO nanoparçacıkların daldırmalı kaplama ile kumaşa emdirilmesi yaklaşımının yüksek performanslı kenevir tekstil ürünlerinin geliştirilmesi için umut verici olduğunu göstermiştir.
Ethical Statement
Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz
ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun
davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak
gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir
değişiklik yapmadığımı kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim.
Thanks
Hayata geçirilen bu çalışmada, 1919B012200897 proje koduna sahip TÜBİTAK 2209/A projesi ile desteklenmiş yürütücülüğünü Fatma Nur KAÇAN, Danışmanlığı ise Doç. Dr. Nesrin KORKMAZ’ın yaptığı “Çevre Dostu Yeni Biyolojik Ajan; Çinko Oksit Nanopartikül” başlıklı proje çıktısı olan ZnO nanopartiküller kullanılmıştır. Bu kapsamda her iki araştırmacıya katkılarından dolayı teşekkür ederim.
References
- Acar, M. & Dönmez, A., 2016. Kenevire Farklı Bir Bakış. 2. Ulusal Biyoyakıtlar Sempozyumu Bildiriler Kitabı, 27-30 Eylül, Samsun, 265-270
- Aladpoosh, R., and Montazer, M., 2015. The role of cellulosic chains of cotton in biosynthesis of ZnO nanorods producing multifunctional properties: Mechanism, characterizations and features. Carbohydrate polymers, 126, 122-129.
https://doi.org/10.1016/j.carbpol.2015.03.036
- Alhalili, Z., Romdhani, C., Chemingui, H., and Smiri, M., 2021. Removal of dithioterethiol (DTT) from water by membranes of cellulose acetate (AC) and AC doped ZnO and TiO2 nanoparticles. Journal of Saudi Chemical Society, 25(8), 101282.
https://doi.org/10.1016/j.jscs.2021.101282
- Arik, B., Karaman Atmaca, O. D., 2020. The effects of sol–gel coatings doped with zinc salts and zinc oxide nanopowders on multifunctional performance of linen fabric. Cellulose, 27, 8385-8403.
https://doi.org/10.1007/s10570-020-03322-3
- Arnold, M.S.; Avouris, P.; Pan, Z.W.; Wang, Z.L., 2003. Field-effect transistors based on single semiconducting oxide nanobelts. The Journal of Physical Chemistry B 107(3), 659-663.
https://doi/10.1021/jp0271054
- Barani, H., 2014. Surface activation of cotton fiber by seeding silver nanoparticles and in situ synthesizing ZnO nanoparticles. New Journal of Chemistry, 38(9), 4365-4370.
https://doi.org/10.1039/C4NJ00547C
- Baltakesmez, A., Tekmen, S., & Tüzemen, S. 2011. ZnO homojunction white light-emitting diodes. Journal of Applied Physics, 110(5).
https://doi.org/10.1063/1.3627247
- Becheri, A., Dürr, M., Lo Nostro, P., and Baglioni, P., 2008. Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. Journal of Nanoparticle Research, 10, 679-689.
https://doi.org/10.1007/s11051-007-9318-3
- Bico, J., Thiele, U., and Quéré, D., 2002. Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206(1-3), 41-46.
https://doi.org/10.1016/S0927-7757(02)00061-4
- Dai, D. & Fan, M., 2010. Characteristic and Performance of Elementary Hemp Fibre. Materials Sciences and Applications, 1, 336-342.
https://doi:10.4236/msa.2010.16049
- Dastjerdi, R., & Montazer, M., 2010. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids and surfaces B: Biointerfaces, 79(1), 5-18.
https://doi.org/10.1016/j.colsurfb.2010.03.029
- Hajiha, H., Sain, M., & Mei, L. H., 2014. Modification and characterization of hemp and sisal fibers. Journal of Natural Fibers, 11(2), 144-168.
https://doi.org/10.1080/15440478.2013.861779
- Kathirvelu, S., D’souza, L., & Dhurai, B., 2009. UV protection finishing of textiles using ZnO nanoparticles. Indian Journal of Fiber & Textile Resarch 34: 267-273.
- Kataria, N., & Garg, V.K., 2017. Removal of Congo red and Brilliant green dye from aqueous solution using flower shaped ZnO nanoparticles. Journal of Environmental Chemical Engineering, 5(6), pp. 5420-5428.
https://doi.org/10.1016/j.jece.2017.10.035
- Li, Y., Zou, Y., & Hou, Y., 2011. Fabrication and UV-blocking property of nano-ZnO assembled cotton fibers via a two-step hydrothermal method. Cellulose, 18, 1643-1649.
https://doi.org/10.1007/s10570-011-9600-5
- Majumdar, A.; Singh Butola, B.; Awasthi, N., 2018. Chauhan, I.; Hatua, P. Improving the mechanical properties of p-aramid fabrics and composites by developing ZnO nanostructures. Polym. Compos., 39, 3300–3306.
https://doi.org/10.1002/pc.24346
- Mohammadipour-Nodoushan, R., Shekarriz, S., Shariatinia, Z., Heydari, A., & Montazer, M., 2023. Improved cotton fabrics properties using zinc oxide-based nanomaterials: A review. International Journal of Biological Macromolecules, 124916.
https://doi.org/10.1016/j.ijbiomac.2023.124916
- Pan, Z.W.; Wang, Z.L., 2001. Nanobelts of semiconducting oxides. Science, 291, 1947–1949.
https://doi.org/10.1126/science.1058120
- Pintarić, L.M.; Škoc, M.S.; Bilić, V.L.; Pokrovac, I.; Kosalec, I.; Rezić, I., 2020 Synthesis, Modification and Characterization of Antimicrobial Textile Surface Containing ZnO Nanoparticles. Polymers, 12, 1210.
https://doi.org/10.3390/polym12061210
- Qu, M., He, J., & Zhang, J., 2010. Superhydrophobicity, learn from the lotus leaf. In Biomimetics learning from nature. IntechOpen.
https://doi.org/10.5772/8789
- Şahinbaşkan, B. Y., 2019. Kenevir Dokuma Kumaşa Enzimatik Ön İşlemlerin Etkisi. International Journal of Advances in Engineering and Pure Sciences, 31(3), 208-213.
https://doi.org/10.7240/jeps.508952
- Saleem, H. Zaidi, S.J., 2020. Sustainable Use of Nanomaterials in Textiles and Their Environmental Impact. Materials, 13, 5134.
https://doi.org/10.3390/ma13225134
- Salari, M.A., Sağlam, M., Baltakesmez, A. et al. 2019. Effect of electron radiation on electrical parameters of Zn/n-Si/Au–Sb and Zn/ZnO/n-Si/Au–Sb diodes. J Radioanal Nucl Chem 319, 667–678.
https://doi.org/10.1007/s10967-018-06401-9
- Selvam, S.; Rajiv Gandhi, R.; Suresh, J.; Gowri, S.; Ravikumar, S.; Sundrarajan, M., 2012. Antibacterial effect of novel synthesized sulfated β-cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating. Int. J. Pharm., 434, 366–374.
https://doi.org/10.1016/j.ijpharm.2012.04.069
- Shaheen, T. I., El-Naggar, M. E., Abdelgawad, A. M., & Hebeish, A., 2016. Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics. International journal of biological macromolecules, 83, 426-432.
https://doi.org/10.1016/j.ijbiomac.2015.11.003
- Simoncic, B.; Tomsic, B. 2010. Structures of Novel Antimicrobial Agents for Textiles—A Review. Text. Res. J., 80, 1721–1737.
https://doi.org/10.1177/0040517510363193
- Tania, I.S.; Ali, M.; Azam, M.S., 2019. In-situ synthesis and characterization of silver nanoparticle decorated cotton knitted fabric for antibacterial activity and improved dyeing performance. SN Appl. Sci., 1, 64.
https://doi.org/10.1007/s42452-018-0068-x
- Tania, I.S.; Ali, M.; Azam, M.S., 2021. Mussel-Inspired Deposition of Ag Nanoparticles on Dopamine-Modified Cotton Fabric and Analysis of its Functional, Mechanical and Dyeing Properties. J. Inorg. Organomet. Polym. Mater., 1–12.
https://doi.org/10.1007/s10904-021-02034-w
- Tania, I.S.; Ali, M.; Islam, Z., 2019. Solaiman Development of antimicrobial activity and mechanical performances of cotton fabric treated with silver nano particles (AgNPs). AIP Conf. Proc., 2121, 15003.
https://doi.org/10.1063/1.5115968
- Thi, V. H. T., & Lee, B. K., 2017. Development of multifunctional self-cleaning and UV blocking cotton fabric with modification of photoactive ZnO coating via microwave method. Journal of Photochemistry and Photobiology A: Chemistry, 338, 13-22.
https://doi.org/10.1016/j.jphotochem.2017.01.020
- Uǧur, Ş.S.; Sariişik, M.; Aktaş, A.H.; Uçar, M.Ç.; Erden, E. 2010. Modifying of cotton fabric surface with Nano-ZnO multilayer films by Layer-by-Layer deposition method. Nanoscale Res. Lett., 5, 1204.
https://doi.org/10.1007/s11671-010-9627-9
- Yetisen, A.K.; Qu, H.; Manbachi, A.; Butt, H.; Dokmeci, M.R. 2016. Hinestroza, J.P.; Skorobogatiy, M.; Khademhosseini, A.; Yun, S.H. Nanotechnology in Textiles. ACS Nano, 10, 3042–3068.
https://doi.org/10.1021/acsnano.5b08176
- Zahran, M. K., Ahmed, H. B., and El-Rafie, M. H., 2014. Surface modification of cotton fabrics for antibacterial application by coating with AgNPs–alginate composite. Carbohydrate polymers, 108, 145-152.
https://doi.org/10.1016/j.carbpol.2014.03.005