Research Article
BibTex RIS Cite

Study of the Sodium Borohydride Hydrolysis Reaction's Performance via a Kaolin-Supported Co-Cr Bimetallic Catalyst

Year 2024, Volume: 24 Issue: 05, 1061 - 1070

Abstract

Hydrogen is an attractive source of energy because of its properties, which include superior quality, effectiveness, pureness, dependability, and sustainability. Technologies for producing and storing hydrogen are being developed in parallel with fuel cell development. Chemical storage of hydrogen in a metal hydride containing boron eliminates the problem of hydrogen transportation and storage. Through catalytic reactions, hydrogen stored in solid form in boron hydrides can be recovered. In this study, a nowel developed Co-Cr bimetallic catalyst supported by kaolin, a natural mineral, was synthesized to be used for hydrogen production by hydrolysis of sodium boron hydride. The structural characteristics of the produced Co-Cr@Kaolin catalyst were ascertained by EDX, FTIR, and SEM analyses. Next, the ideal conditions for the hydrolysis reaction of sodium borohydride (NaBH4) catalyzed by Co-Cr@Kaolin were examined. These included the concentration of the catalyst, the amount of support material (kaolin), the amount of catalyst, and the concentration of NaBH4. The optimal hydrolysis conditions were found to be 2.5% NaOH concentration, 40 mg of catalyst, and 2% NaBH4 concentration at 303 K. The maximum rate of hydrogen production was determined as 5007 ml g-1 min-1 under optimal conditions. After conducting hydrolysis operations at different temperatures to elucidate the reaction kinetics, it was found that the catalytic hydrolysis reaction was of the 0th order and that the reaction activation energy was 19.36 kJ mol-1. The hydrogen production rate obtained as a result of the hydrolysis reaction accompanied by a Co-Cr catalyst was determined as 3166 ml g-1 min-1. It is therefore established that supporting kaolin to Co-Cr catalyst enhances its efficacy.

References

  • Abdalla M, Abdalla, Shahzad Hossain, Ozzan B. Nisfindy, Atia T. Azad, Mohamed Dawood, and Abul K. Azad. 2018. “Hydrogen production, storage, transportation and key challenges with applications: A Review.” Energy Conversion and Management 165:602-627. https://doi.org/10.1016/j.enconman.2018.03.088
  • Acar, Canan, and İbrahim Dinçer. 2019. “Review and evaluation of hydrogen production options for better environment.” Journal of Cleaner Production 218:835-849. https://doi.org/10.1016/j.jclepro.2019.02.046
  • Arzac, G. M, A. Fernández, A. Justo, B. Sarmiento, M. A, Jiménez, and M. M. Jiménez. 2011. “Optimized hydrogen generation in a semicontinuous sodium borohydride hydrolysis reactor for a 60 W-scale fuel cell stack.” Journal of Power Sources 196:4388-4395. https://doi.org/10.1016/j.jpowsour.2010.10.073
  • Bai, Ying, Chuan Wu, Feng Wu, and Baolian Yi. 2006. “Carbon-supported platinum catalysts for on-site hydrogen generation from NaBH4 solution.” Materials Matters 60:2236-2239. https://doi.org/10.1016/j.matlet.2005.12.119
  • Bektaş, Hatice, Erhan Onat, Ömer Şahin, Sevilay Demirci, Orhan Baytar, and M. Sait Izgi. 2023. “Aktif karbon destekli ucuz ve kullanışlı katalizörün amonyak bor hidrolizinde incelenmesi.” Journal of Boron 8(2):59-65. https://doi.org/10.30728/boron.1179156
  • Birry, L, and A. Lasia. 2004. “Studies of the hydrogen evolution reaction on raney nickel- molybdenum electrodes.” Journal of Applied Electrochemistry 34: 735–749. http://dx.doi.org/10.1023/B:JACH.0000031161.26544.6a
  • Boran, Aslı, Serdar Erkan, Saim Ozkar, and İnci Eroglu. 2013. “Kinetics of hydrogen generation from hydrolysis of sodium borohydride on Pt/C catalyst in a flow reactor.” International Journal of Energy Research 37:443-448. https://doi.org/10.1002/er.3007
  • Chen, Chen, Binxu Lan, Kang Liu, Hongbo Wang, Xu Guan, Shijie Dong, and Ping Luo. 1997. “A novel aluminum/bismuth subcarbonate/salt composite for hydrogen generation from tap water.” Journal of Alloys and Compounds 46: 695-701. https://doi.org/10.1016/j.jallcom.2019.151733
  • Chen, W. F, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhub and R. R. Adzic. 2013. “Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production.” Energy & Environmental Science 6:943-951. https://doi.org/10.1039/C2EE23891H
  • Demirci, Ümit, O. Akdim, J. Andrieux, J. Hannauer, R. Chamoun, and P. Miele. 2010. “Sodium borohydride hydrolysis as hydrogen generator: Issues, state of the art and applicability upstream from a fuel cell.” Fuel Cells From Fundamentals to Systems 10:335-350. https://doi.org/10.1002/fuce.200800171
  • Durst, Julien, Christoph Simon, Frédéric Hasché and Hubert A. Gasteiger. 2014. “Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media.” Journal of The Electrochemical Society 162:190-203. https://iopscience.iop.org/article/10.1149/2.0981501jes
  • Ekinci, Arzu, 2020. “Hydrogen generation by hydrolysis of NaBH4 with efficient Co–La–Mo–B catalyst for PEM fuel cells.” Kinetics and Catalysis 61: 589-594. http://dx.doi.org/10.1134/S0023158420040047
  • Fernandes R, N. Patel, and A. Miotello. 2009. “Hydrogen generation by hydrolysis of alkaline NaBH4 solution with Cr-promoted Co–B amorphous catalyst.” Applied Catalysis B: Environmental 92:68-74. https://doi.org/10.1016/j.apcatb.2009.07.019
  • Han, Ali, Song Jin, Huanlin Chen, Hengxing Ji, Zijun Sun, and Pingwu Du. 2015. “A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: high performance for electrocatalytic hydrogen production from pH 0–14.” Journal of Materials Chemistry A 3:1941-1946. https://doi.org/10.1039/C4TA06071G
  • He, Jinfeng, Xin Zhang, Qiang Bai, Shibo Huang, Hao Chen, Chengjing Guo, Lingtao Zhu, and Bin Yang. 2023. “Surface modification to enhance the decarbonization performance of coal-series kaolin by triboelectric separation.” Applied Clay Science 235:106857. https://doi.org/10.1016/j.clay.2023.106857
  • Huang, Teng, Shaomin Lei, Yuanyuan Liu, Mengjiao Ji, and Yanming Fan. 2017. “Beneficiation and influencing factors of coal-series kaolin for the reduction of COD.” Applied Clay Science 138:4-39. https://doi.org/10.1016/j.clay.2016.12.032
  • Huang, Wenkai, Fuhua Xu, and Xiang Liu. 2021. “Superior hydrogen generation from sodium borohydride hydrolysis catalyzed by the bimetallic Co–Ru/C nanocomposite.” International Journal of Hydrogen Energy 46: 25376-25384. https://doi.org/10.1016/j.ijhydene.2021.05.083
  • Hubadillah, Siti Khadijah, M. H. D. Othman, Takeshi Matsuura, A. F. Ismail, M. A. Rahman, Zawati Harun, Juhana Jaafar, and Mikihiro Nomura. 2018. “Fabrications and applications of low cost ceramic membrane from kaolin: A comprehensive review.” Ceramics International 44: 4538-4560. https://doi.org/10.1016/j.ceramint.2017.12.215
  • Huynh, Keith, Krizia Napolitano, Ruiyao Wang, Philip G. Jessop, and Boyd R. Davis. 2013. “Indirect hydrolysis of sodium borohydride: Isolation and crystallographic characterization of methanolysis and hydrolysis by-products.” International Journal of Hydrogen Energy 38: 5775-5782. https://doi.org/10.1016/j.ijhydene.2013.03.011
  • İzgi, M.Sait, Orhan Baytar, Ömer Şahin, and Sabit Horoz. 2019. “Studies on catalytic behavior of Co–Cr–B/Al2O3 in hydrogen generation by hydrolysis of NaBH4.” Digest Journal of Nanomaterials and Biostructures 14: 1005-1012. İzgi, M. Sait, Ömer Şahin, Erhan Onat, and Cafer Saka. 2020. “Epoxy-activated acrylic particulate polymer-supported Co–Fe–Ru–B catalyst to produce H2 from hydrolysis of NH3BH3.” International Journal of Hydrogen Energy, 45:22638-22648. https://doi.org/10.1016/j.ijhydene.2020.06.048
  • İzgi, M. Sait, Erhan Onat, Hilal Çelik Kazici, and Ömer Şahin. 2023. “Hydrogen production through the cooperation of a catalyst synthesized in ethanol medium and the effect of the plasma.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45: 8271-8284. https://doi.org/10.1080/15567036.2019.1677814
  • İzgi̇, M. Sait, Erhan Onat, Ömer Şahi̇n, and Cafer Saka. 2024. “Green and active hydrogen production from hydrolysis of ammonia borane by using caffeine carbon quantum dot-supported ruthenium catalyst in methanol solvent by hydrothermal treatment.” International Journal of Hydrogen Energy 51: 180-192. https://doi.org/10.1016/j.ijhydene.2023.08.119
  • İzgi, M. Sait, Ömer Şahin, Erhan Onat, and Sabit Horoz. 2017. “Effect of Co-B catalyst synthesized in methanol on the hydrolysis of sodium borohydride.” Iğdır University Journal of Science and Technology 7: 151-160. Kibsgaard, Jakob, and Thomas F. Jaramillo. 2014. “Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction.” Angewandte Chemie 53:14433-14437. https://doi.org/10.1002/anie.201408222
  • Koh, Jae Seon, Do Hoon Kim, Se Hyeok Lee, and Min Soo Kim. 2023. “Hydrogen generation system for fuel cells based on high pressure hydrolysis of solid-state sodium borohydride.” Energy Conversion and Management 281: 116850. https://doi.org/10.1016/j.enconman.2023.116850
  • Kojima, Yoshitsugu, Ken-ichirou Suzuki, Kazuhiro Fukumoto, Megumi Sasaki, Toshio Yamamoto, Yasuaki Kawai, and Hiroaki Hayashi. 2011. “Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide.” International Journal of Hydrogen Energy 27: 1029-1034. https://doi.org/10.1016/S0360-3199(02)00014-9
  • Kumar Mamleshwar, and Taraknath Das. 2023. “Hydrogen generation from metal chloride doped sodium-borohydride by thermolysis at low temperature: The effect of material preparation methods.” Journal of Alloys and Compounds 944:169173. https://doi.org/10.1016/j.jallcom.2023.169173
  • Lang, Chengguang, Yi Jia, and Xiangdong Yao. 2020. “Recent advances in liquid-phase chemical hydrogen storage.” Energy Storage Materials 26:290-312. https://doi.org/10.1016/j.ensm.2020.01.010
  • Li, Xiaobin, Hong-yang Wang, Qiu-sheng Zhou, Tian-gui Qi, Gui-hua Liu, Zhi-hong Peng, Yi-lin Wang. 2019. “Efficient separation of alumina and silica in reduction-roasted kaolin by alkali leaching.” Transactions of Nonferrous Metals Society of China 29: 416-423. https://doi.org/10.1016/S1003-6326(19)64951-4
  • Linden D., and Reddy, T.B., 2001. Handbook of Batteries and Fuel Cells, Kiehne H.A. (editor), Marcel Dekker Incorporation, 226-229. Mitić, Žarko, Goran M. Nikolić, Milorad Cakić, Goran S. Nikolić, Slavoljub Živanović, Sanja Mitić, and Stevo Najman, 2018. “Synthesis, spectroscopic and structural characterization of Co(II)-pullulan complexes by UV-Vis, ATR-FTIR, MALDI-TOF/TOF MS and XRD.” Carbohydrate Polymers 200: 25-34. https://doi.org/10.1016/j.carbpol.2018.07.032
  • Nakamoto, Kazuo. 1963. Infrared spectra of Inorganic and Coordination Compounds. 2nd ed. New York: John Wiley and Sons.
  • Netskina, Olga V, Alena A. Pochtar, Oxana V. Komova, and Valentina I. Simagina. 2020. “Solid-State NaBH4 composites as hydrogen generation material: Effect of thermal treatment of a catalyst precursor on the hydrogen generation rate.” Catalysts 10: 201-213. http://dx.doi.org/10.3390/catal10020201
  • Onat, Erhan, 2024. “Synthesis of a cobalt catalyst supported by graphene oxide modified perlite and its application on the hydrolysis of sodium borohydride.” Synthetic Metals 306: 117621. https://doi.org/10.1016/j.synthmet.2024.117621
  • Onat, Erhan, Sabri Cevik, Ömer Şahin, Sabit Horoz, and M. Sait Izgi. 2021. “Investigation of high catalytic activity catalyst for high hydrogen production rate: Co-Ru@ MOF.” Journal of the Australian Ceramic Society 57:1389-1395. http://dx.doi.org/10.1007/s41779-021-00643-9
  • Onat, Erhan, and Selma Ekinci. 2024. “A new material fabricated by the combination of natural mineral perlite and graphene oxide: Synthesis, characterization, and methylene blue removal.” Diamond and Related Materials 143:110848. https://doi.org/10.1016/j.diamond.2024.110848
  • Onat, Erhan, and M. Sait Izgi, 2021. “Hydrogen generation by hydrolysis of ammonia borohydride using the Nano-Bimetallic catalyst.” International Journal of Chemistry and Technology 5(1): 1-5. http://dx.doi.org/10.32571/ijct.785497
  • Onat, Erhan, M. Sait İzgi, Ömer Şahin, and Cafer Saka. 2024a. “Nickel/nickel oxide nanocomposite particles dispersed on carbon quantum dot from caffeine for hydrogen release by sodium borohydride hydrolysis: Performance and mechanism.” Diamond and Related Materials 141:110704. https://doi.org/10.1016/j.diamond.2023.110704
  • Onat, Erhan, M. Sait İzgi, Ömer Şahin, and Cafer Saka. 2024b. “Highly active hydrogen production from hydrolysis of potassium borohydride by caffeine carbon quantum dot-supported cobalt catalyst in ethanol solvent by hydrothermal treatment.” International Journal of Hydrogen Energy 51: 362-375. https://doi.org/10.1016/j.ijhydene.2023.08.176
  • Özkar, Saim, and Mehmet Zahmakıran. 2005. “Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst.” Journal of Alloys and Compounds 404-406: 728-731. https://doi.org/10.1016/j.jallcom.2004.10.084
  • Patel Nainesh, and Antonio Miotello. 2015. “Progress in Co–B related catalyst for hydrogen production by hydrolysis of boron-hydrides: A review and the perspectives to substitute noble metals.” International Journal of Hydrogen Energy 40(3): 1429-1464. https://doi.org/10.1016/j.ijhydene.2014.11.052
  • Retnamma, Rajasree, Augusto Q. Novais, and C.M. Rangel. 2011. “Kinetics of hydrolysis of sodium borohydride for hydrogen production in fuel cell applications: A review.” International Journal of Hydrogen Energy 36(16): 9772-9790. https://doi.org/10.1016/j.ijhydene.2011.04.223
  • Sartbaeva, Asel, Vladimir L. Kuznetsov, Stephen Wells, and Peter Edwards. 2008. “Hydrogen nexus in a sustainable energy future.” Energy & Environmental Science 1: 79-85. http://dx.doi.org/10.1039/b810104n
  • Sing, Rasmeet. 2022. “Reversible chemical hydrogen storage in borohydrides via thermolysis and hydrolysis: recent advances, challenges, and perspectives.” International Journal of Hydrogen Energy 47:26549-26573. https://doi.org/10.1016/j.ijhydene.2021.10.022
  • Strmcnik, Dusan, , Pietro Papa Lopes, Bostjan Genorio, Vojislav R. Stamenkovic, and Nenad M. Markovic. 2016. “Design principles for hydrogen evolution reaction catalyst materials.” Nano Energy 29: 29-36. https://doi.org/10.1016/j.nanoen.2016.04.017
  • Sotiles, Anne Raquel, Fernando Massarotti, J. C.O. Pires, M. E. F. Ciceri, and C.R.B. Parabocz, 2019. “Cobalt complexes: Introduction and spectra analysis.” Orbital - The Electronic Journal of Chemistry 11: 349-354. http://dx.doi.org/10.17807/orbital.v11i6.1242
  • Su, Chia Chi, Ming Chun Lu, Shu Ling Wang, and Yao-Hui Huang. 2012. “Ruthenium immobilized on Al2O3 pellets as a catalyst for hydrogen generation from hydrolysis and methanolysis of sodium borohydride.” RSC Advances 2: 2073-2079. https://doi.org/10.1039/c2ra01233b
  • Şahin, Ömer, Orhan Baytar, Fevzi Hansu, and Cafer Saka. 2014a. “Hydrogen generation from hydrolysis of sodium borohydride with Ni (0) catalyst in dielectric barrier discharge method. Energy Sources, Part A: Recovery.” Utilization, and Environmental Effects 36(17): 1886-1894. http://dx.doi.org/10.1080/15567036.2011.555442
  • Şahin, Ömer, Fevzi Hansu, Cafer Saka, and Orhan Baytar. 2014b. “Hydrogen generation from NaBH4 solution with the high-performance Co (0) catalyst using a cold plasma method. Energy Sources, Part A: Recovery.” Utilization, and Environmental Effects 36(14):1578-1587. http://dx.doi.org/10.1080/15567036.2011.555443
  • Şahiner, Nurettin, and Şahin Demirci. 2017. “Natural microgranular cellulose as alternative catalyst to metal nanoparticles for H2 production from NaBH4 methanolysis.” Applied Catalysis B: Environmental 202: 199-206. https://doi.org/10.1016/j.apcatb.2016.09.028
  • Tarasova, Nataliia, Anzhelika Bedarkova, Irina Animitsa, Ekaterina Abakumova, Ksenia Belova, and Hala Kreimesh. 2022. “Novel high conductive ceramic materials based on two-layer perovskite BaLa2In2O7.” International Journal of Hydrogen Energy 47:17285-17312. https://doi.org/10.3390/ijms232112813
  • Tian, Hongjing, Qingjie Guo, and Dongyan Xu, D. 2010. “Hydrogen generation from catalytic hydrolysis of alkaline sodium borohydride solution using attapulgite clay-supported Co-B catalyst.” Journal of Power Sources 195: 2136-2141. http://dx.doi.org/10.1016/j.jpowsour.2009.10.006
  • Tironia, Alejandra, M. A. Trezzaa, E. F. Irassara, and A. N. Scian. 2012. “Thermal treatment of kaolin: effect on the pozzolanic activity.” Procedia Material Science 1:, 343-350. http://dx.doi.org/10.1016/j.mspro.2012.06.046
  • Trivedi, Mahendra Kumar, R. M. R. Tallapragada, A. Branton, D. Trivedi, G. Nayak, O. Latiyal, and S. Jana. 2015. “Characterization of physical, thermal and structural properties of chromium (VI) oxide powder: Impact of biofield treatment.” Powder Metallurgy & Mining 4: 1000128. http://dx.doi.org/10.4172/2168-9806.1000128
  • Tomasso, Camille Jubert, Anne L. Pham, Tracy M. Mattox, and Jeffrey J. Urban. 2020. “Using additives to control the decomposition temperature of sodium borohydride.” Journal of Energy and Power Technology 2: 009. http://dx.doi.org/10.21926/jept.2002009
  • Tutar, Filiz, and Mehmet Eren. 2011. “Energy of the future: Hydrogen economy and Turkey.” International Journal of Economic and Administrative Studies 6:1-26. https://doi.org/10.18092/ijeas.38647
  • Weckhuysen, Bert M, Israel E. Wachs, and Robert A. Schoonheydt. 1996. “Surface chemistry and spectroscopy of chromium in inorganic oxides.” Chemical Reviews 96: 3327-3339. https://doi.org/10.1021/cr940044o
  • Wee, Jung-Ho, Kwan-Young Lee, and Sung Hyun Kim. 2006. “Sodium borohydride as the hydrogen supplier for proton exchange membrane fuel cell systems.” Fuel Process Technology 87: 811-819. http://dx.doi.org/10.1016/j.fuproc.2006.05.001
  • Xie, Xiaokang, Niu Sanxin, Miao Yang, Gao Xiang, Cheng Longsheng, Gao Feng. 2019. “Preparation and properties of resin coated ceramic proppants with ultralight weight and high strength from coal-series kaolin.” Applied Clay Science 183: 105364. https://doi.org/10.1016/j.clay.2019.105364
  • Vračar, L. J. and B. E. Conway, 1990. “Temperature dependence of electrocatalytic behaviour of some glassy transition metal alloys for cathodic hydrogen evolution in water electrolysis.” International Journal of Hydrogen Energy 15: 701-713. https://doi.org/10.1016/0360-3199(90)90001-F
  • Vesborg, Peter C. K. Brian Seger, and Ib Chorkendorff. 2015. “Recent development in hydrogen evolution reaction catalysts and their practical implementation.” Journal of Physical Chemistry Letters 6:951-957. http://dx.doi.org/10.1021/acs.jpclett.5b00306
  • Zhang, Xiuli, Yuan Cheng, Chunhu Li, Qingjie Guo, and Xiangchao Meng. 2020. “Catalytic hydrolysis of alkaline sodium borohydride solution for hydrogen evolution in a micro-scale fluidized bed reactor.” International Journal of Energy Research 44: 6758-6766. http://dx.doi.org/10.1002/er.5412

Kaolin Destekli Co-Cr Bimetalik Katalizör Yoluyla Sodyum Borohidrit Hidroliz Reaksiyonunun Performansının İncelenmesi

Year 2024, Volume: 24 Issue: 05, 1061 - 1070

Abstract

Hidrojen, üstün kalite, etkinlik, saflık, güvenilirlik ve sürdürülebilirlik gibi özellikleri nedeniyle cazip bir enerji kaynağıdır. Hidrojenin üretilmesi ve depolanmasına yönelik teknolojiler yakıt hücresi gelişimine paralel olarak geliştirilmektedir. Hidrojenin bor içeren bir metal hidrit içerisinde kimyasal olarak depolanması, hidrojenin taşınması ve depolanması sorununu ortadan kaldırır. Katalitik reaksiyonlar yoluyla bor hidritlerde katı halde depolanan hidrojen geri kazanılabilir. Bu çalışmada, sodyum bor hidrürün hidrolizi ile hidrojen üretiminde kullanılmak üzere doğal bir mineral olan kaolin ile desteklenen yeni geliştirilmiş Co-Cr bimetalik katalizörü sentezlendi. Üretilen Co-Cr@Kaolin katalizörünün yapısal özellikleri EDX, FTIR ve SEM analizleri ile belirlendi. Daha sonra Co-Cr@Kaolin tarafından katalize edilen sodyum borohidrürün (NaBH4) hidroliz reaksiyonu için ideal koşullar incelendi. Bunlar, katalizörün konsantrasyonunu, destek malzemesinin (kaolin) miktarını, katalizörün miktarını ve NaBH4 konsantrasyonunu içermektedir. Optimum hidroliz koşullarının 303 K'de, %2,5 NaOH konsantrasyonu, 40 mg katalizör ve %2 NaBH4 konsantrasyonu olduğu sonucuna varılmıştır. Optimum koşullar altında hidrojenin maksimum üretim hızının 5007 ml g-1 dk-1 olduğu belirlenmiştir. Reaksiyon kinetiğini aydınlatmak için farklı sıcaklıklarda hidroliz işlemleri yapıldıktan sonra katalitik hidroliz reaksiyonunun 0. mertebeden olduğu ve reaksiyonun aktivasyon enerjisinin 19.36 kJ mol-1 olduğu bulunmuştur. Co-Cr katalizörü eşliğinde yapılan hidroliz reaksiyonu sonucunda elde edilen hidrojen üretim hızı ise 3166 ml g-1 dk-1 olarak belirlenmiştir. Bu nedenle, Co-Cr katalizörünün kaolin ile desteklenmesinin katalizörün etkinliğini arttırdığı tespit edilmiştir.

References

  • Abdalla M, Abdalla, Shahzad Hossain, Ozzan B. Nisfindy, Atia T. Azad, Mohamed Dawood, and Abul K. Azad. 2018. “Hydrogen production, storage, transportation and key challenges with applications: A Review.” Energy Conversion and Management 165:602-627. https://doi.org/10.1016/j.enconman.2018.03.088
  • Acar, Canan, and İbrahim Dinçer. 2019. “Review and evaluation of hydrogen production options for better environment.” Journal of Cleaner Production 218:835-849. https://doi.org/10.1016/j.jclepro.2019.02.046
  • Arzac, G. M, A. Fernández, A. Justo, B. Sarmiento, M. A, Jiménez, and M. M. Jiménez. 2011. “Optimized hydrogen generation in a semicontinuous sodium borohydride hydrolysis reactor for a 60 W-scale fuel cell stack.” Journal of Power Sources 196:4388-4395. https://doi.org/10.1016/j.jpowsour.2010.10.073
  • Bai, Ying, Chuan Wu, Feng Wu, and Baolian Yi. 2006. “Carbon-supported platinum catalysts for on-site hydrogen generation from NaBH4 solution.” Materials Matters 60:2236-2239. https://doi.org/10.1016/j.matlet.2005.12.119
  • Bektaş, Hatice, Erhan Onat, Ömer Şahin, Sevilay Demirci, Orhan Baytar, and M. Sait Izgi. 2023. “Aktif karbon destekli ucuz ve kullanışlı katalizörün amonyak bor hidrolizinde incelenmesi.” Journal of Boron 8(2):59-65. https://doi.org/10.30728/boron.1179156
  • Birry, L, and A. Lasia. 2004. “Studies of the hydrogen evolution reaction on raney nickel- molybdenum electrodes.” Journal of Applied Electrochemistry 34: 735–749. http://dx.doi.org/10.1023/B:JACH.0000031161.26544.6a
  • Boran, Aslı, Serdar Erkan, Saim Ozkar, and İnci Eroglu. 2013. “Kinetics of hydrogen generation from hydrolysis of sodium borohydride on Pt/C catalyst in a flow reactor.” International Journal of Energy Research 37:443-448. https://doi.org/10.1002/er.3007
  • Chen, Chen, Binxu Lan, Kang Liu, Hongbo Wang, Xu Guan, Shijie Dong, and Ping Luo. 1997. “A novel aluminum/bismuth subcarbonate/salt composite for hydrogen generation from tap water.” Journal of Alloys and Compounds 46: 695-701. https://doi.org/10.1016/j.jallcom.2019.151733
  • Chen, W. F, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhub and R. R. Adzic. 2013. “Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production.” Energy & Environmental Science 6:943-951. https://doi.org/10.1039/C2EE23891H
  • Demirci, Ümit, O. Akdim, J. Andrieux, J. Hannauer, R. Chamoun, and P. Miele. 2010. “Sodium borohydride hydrolysis as hydrogen generator: Issues, state of the art and applicability upstream from a fuel cell.” Fuel Cells From Fundamentals to Systems 10:335-350. https://doi.org/10.1002/fuce.200800171
  • Durst, Julien, Christoph Simon, Frédéric Hasché and Hubert A. Gasteiger. 2014. “Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media.” Journal of The Electrochemical Society 162:190-203. https://iopscience.iop.org/article/10.1149/2.0981501jes
  • Ekinci, Arzu, 2020. “Hydrogen generation by hydrolysis of NaBH4 with efficient Co–La–Mo–B catalyst for PEM fuel cells.” Kinetics and Catalysis 61: 589-594. http://dx.doi.org/10.1134/S0023158420040047
  • Fernandes R, N. Patel, and A. Miotello. 2009. “Hydrogen generation by hydrolysis of alkaline NaBH4 solution with Cr-promoted Co–B amorphous catalyst.” Applied Catalysis B: Environmental 92:68-74. https://doi.org/10.1016/j.apcatb.2009.07.019
  • Han, Ali, Song Jin, Huanlin Chen, Hengxing Ji, Zijun Sun, and Pingwu Du. 2015. “A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: high performance for electrocatalytic hydrogen production from pH 0–14.” Journal of Materials Chemistry A 3:1941-1946. https://doi.org/10.1039/C4TA06071G
  • He, Jinfeng, Xin Zhang, Qiang Bai, Shibo Huang, Hao Chen, Chengjing Guo, Lingtao Zhu, and Bin Yang. 2023. “Surface modification to enhance the decarbonization performance of coal-series kaolin by triboelectric separation.” Applied Clay Science 235:106857. https://doi.org/10.1016/j.clay.2023.106857
  • Huang, Teng, Shaomin Lei, Yuanyuan Liu, Mengjiao Ji, and Yanming Fan. 2017. “Beneficiation and influencing factors of coal-series kaolin for the reduction of COD.” Applied Clay Science 138:4-39. https://doi.org/10.1016/j.clay.2016.12.032
  • Huang, Wenkai, Fuhua Xu, and Xiang Liu. 2021. “Superior hydrogen generation from sodium borohydride hydrolysis catalyzed by the bimetallic Co–Ru/C nanocomposite.” International Journal of Hydrogen Energy 46: 25376-25384. https://doi.org/10.1016/j.ijhydene.2021.05.083
  • Hubadillah, Siti Khadijah, M. H. D. Othman, Takeshi Matsuura, A. F. Ismail, M. A. Rahman, Zawati Harun, Juhana Jaafar, and Mikihiro Nomura. 2018. “Fabrications and applications of low cost ceramic membrane from kaolin: A comprehensive review.” Ceramics International 44: 4538-4560. https://doi.org/10.1016/j.ceramint.2017.12.215
  • Huynh, Keith, Krizia Napolitano, Ruiyao Wang, Philip G. Jessop, and Boyd R. Davis. 2013. “Indirect hydrolysis of sodium borohydride: Isolation and crystallographic characterization of methanolysis and hydrolysis by-products.” International Journal of Hydrogen Energy 38: 5775-5782. https://doi.org/10.1016/j.ijhydene.2013.03.011
  • İzgi, M.Sait, Orhan Baytar, Ömer Şahin, and Sabit Horoz. 2019. “Studies on catalytic behavior of Co–Cr–B/Al2O3 in hydrogen generation by hydrolysis of NaBH4.” Digest Journal of Nanomaterials and Biostructures 14: 1005-1012. İzgi, M. Sait, Ömer Şahin, Erhan Onat, and Cafer Saka. 2020. “Epoxy-activated acrylic particulate polymer-supported Co–Fe–Ru–B catalyst to produce H2 from hydrolysis of NH3BH3.” International Journal of Hydrogen Energy, 45:22638-22648. https://doi.org/10.1016/j.ijhydene.2020.06.048
  • İzgi, M. Sait, Erhan Onat, Hilal Çelik Kazici, and Ömer Şahin. 2023. “Hydrogen production through the cooperation of a catalyst synthesized in ethanol medium and the effect of the plasma.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45: 8271-8284. https://doi.org/10.1080/15567036.2019.1677814
  • İzgi̇, M. Sait, Erhan Onat, Ömer Şahi̇n, and Cafer Saka. 2024. “Green and active hydrogen production from hydrolysis of ammonia borane by using caffeine carbon quantum dot-supported ruthenium catalyst in methanol solvent by hydrothermal treatment.” International Journal of Hydrogen Energy 51: 180-192. https://doi.org/10.1016/j.ijhydene.2023.08.119
  • İzgi, M. Sait, Ömer Şahin, Erhan Onat, and Sabit Horoz. 2017. “Effect of Co-B catalyst synthesized in methanol on the hydrolysis of sodium borohydride.” Iğdır University Journal of Science and Technology 7: 151-160. Kibsgaard, Jakob, and Thomas F. Jaramillo. 2014. “Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction.” Angewandte Chemie 53:14433-14437. https://doi.org/10.1002/anie.201408222
  • Koh, Jae Seon, Do Hoon Kim, Se Hyeok Lee, and Min Soo Kim. 2023. “Hydrogen generation system for fuel cells based on high pressure hydrolysis of solid-state sodium borohydride.” Energy Conversion and Management 281: 116850. https://doi.org/10.1016/j.enconman.2023.116850
  • Kojima, Yoshitsugu, Ken-ichirou Suzuki, Kazuhiro Fukumoto, Megumi Sasaki, Toshio Yamamoto, Yasuaki Kawai, and Hiroaki Hayashi. 2011. “Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide.” International Journal of Hydrogen Energy 27: 1029-1034. https://doi.org/10.1016/S0360-3199(02)00014-9
  • Kumar Mamleshwar, and Taraknath Das. 2023. “Hydrogen generation from metal chloride doped sodium-borohydride by thermolysis at low temperature: The effect of material preparation methods.” Journal of Alloys and Compounds 944:169173. https://doi.org/10.1016/j.jallcom.2023.169173
  • Lang, Chengguang, Yi Jia, and Xiangdong Yao. 2020. “Recent advances in liquid-phase chemical hydrogen storage.” Energy Storage Materials 26:290-312. https://doi.org/10.1016/j.ensm.2020.01.010
  • Li, Xiaobin, Hong-yang Wang, Qiu-sheng Zhou, Tian-gui Qi, Gui-hua Liu, Zhi-hong Peng, Yi-lin Wang. 2019. “Efficient separation of alumina and silica in reduction-roasted kaolin by alkali leaching.” Transactions of Nonferrous Metals Society of China 29: 416-423. https://doi.org/10.1016/S1003-6326(19)64951-4
  • Linden D., and Reddy, T.B., 2001. Handbook of Batteries and Fuel Cells, Kiehne H.A. (editor), Marcel Dekker Incorporation, 226-229. Mitić, Žarko, Goran M. Nikolić, Milorad Cakić, Goran S. Nikolić, Slavoljub Živanović, Sanja Mitić, and Stevo Najman, 2018. “Synthesis, spectroscopic and structural characterization of Co(II)-pullulan complexes by UV-Vis, ATR-FTIR, MALDI-TOF/TOF MS and XRD.” Carbohydrate Polymers 200: 25-34. https://doi.org/10.1016/j.carbpol.2018.07.032
  • Nakamoto, Kazuo. 1963. Infrared spectra of Inorganic and Coordination Compounds. 2nd ed. New York: John Wiley and Sons.
  • Netskina, Olga V, Alena A. Pochtar, Oxana V. Komova, and Valentina I. Simagina. 2020. “Solid-State NaBH4 composites as hydrogen generation material: Effect of thermal treatment of a catalyst precursor on the hydrogen generation rate.” Catalysts 10: 201-213. http://dx.doi.org/10.3390/catal10020201
  • Onat, Erhan, 2024. “Synthesis of a cobalt catalyst supported by graphene oxide modified perlite and its application on the hydrolysis of sodium borohydride.” Synthetic Metals 306: 117621. https://doi.org/10.1016/j.synthmet.2024.117621
  • Onat, Erhan, Sabri Cevik, Ömer Şahin, Sabit Horoz, and M. Sait Izgi. 2021. “Investigation of high catalytic activity catalyst for high hydrogen production rate: Co-Ru@ MOF.” Journal of the Australian Ceramic Society 57:1389-1395. http://dx.doi.org/10.1007/s41779-021-00643-9
  • Onat, Erhan, and Selma Ekinci. 2024. “A new material fabricated by the combination of natural mineral perlite and graphene oxide: Synthesis, characterization, and methylene blue removal.” Diamond and Related Materials 143:110848. https://doi.org/10.1016/j.diamond.2024.110848
  • Onat, Erhan, and M. Sait Izgi, 2021. “Hydrogen generation by hydrolysis of ammonia borohydride using the Nano-Bimetallic catalyst.” International Journal of Chemistry and Technology 5(1): 1-5. http://dx.doi.org/10.32571/ijct.785497
  • Onat, Erhan, M. Sait İzgi, Ömer Şahin, and Cafer Saka. 2024a. “Nickel/nickel oxide nanocomposite particles dispersed on carbon quantum dot from caffeine for hydrogen release by sodium borohydride hydrolysis: Performance and mechanism.” Diamond and Related Materials 141:110704. https://doi.org/10.1016/j.diamond.2023.110704
  • Onat, Erhan, M. Sait İzgi, Ömer Şahin, and Cafer Saka. 2024b. “Highly active hydrogen production from hydrolysis of potassium borohydride by caffeine carbon quantum dot-supported cobalt catalyst in ethanol solvent by hydrothermal treatment.” International Journal of Hydrogen Energy 51: 362-375. https://doi.org/10.1016/j.ijhydene.2023.08.176
  • Özkar, Saim, and Mehmet Zahmakıran. 2005. “Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst.” Journal of Alloys and Compounds 404-406: 728-731. https://doi.org/10.1016/j.jallcom.2004.10.084
  • Patel Nainesh, and Antonio Miotello. 2015. “Progress in Co–B related catalyst for hydrogen production by hydrolysis of boron-hydrides: A review and the perspectives to substitute noble metals.” International Journal of Hydrogen Energy 40(3): 1429-1464. https://doi.org/10.1016/j.ijhydene.2014.11.052
  • Retnamma, Rajasree, Augusto Q. Novais, and C.M. Rangel. 2011. “Kinetics of hydrolysis of sodium borohydride for hydrogen production in fuel cell applications: A review.” International Journal of Hydrogen Energy 36(16): 9772-9790. https://doi.org/10.1016/j.ijhydene.2011.04.223
  • Sartbaeva, Asel, Vladimir L. Kuznetsov, Stephen Wells, and Peter Edwards. 2008. “Hydrogen nexus in a sustainable energy future.” Energy & Environmental Science 1: 79-85. http://dx.doi.org/10.1039/b810104n
  • Sing, Rasmeet. 2022. “Reversible chemical hydrogen storage in borohydrides via thermolysis and hydrolysis: recent advances, challenges, and perspectives.” International Journal of Hydrogen Energy 47:26549-26573. https://doi.org/10.1016/j.ijhydene.2021.10.022
  • Strmcnik, Dusan, , Pietro Papa Lopes, Bostjan Genorio, Vojislav R. Stamenkovic, and Nenad M. Markovic. 2016. “Design principles for hydrogen evolution reaction catalyst materials.” Nano Energy 29: 29-36. https://doi.org/10.1016/j.nanoen.2016.04.017
  • Sotiles, Anne Raquel, Fernando Massarotti, J. C.O. Pires, M. E. F. Ciceri, and C.R.B. Parabocz, 2019. “Cobalt complexes: Introduction and spectra analysis.” Orbital - The Electronic Journal of Chemistry 11: 349-354. http://dx.doi.org/10.17807/orbital.v11i6.1242
  • Su, Chia Chi, Ming Chun Lu, Shu Ling Wang, and Yao-Hui Huang. 2012. “Ruthenium immobilized on Al2O3 pellets as a catalyst for hydrogen generation from hydrolysis and methanolysis of sodium borohydride.” RSC Advances 2: 2073-2079. https://doi.org/10.1039/c2ra01233b
  • Şahin, Ömer, Orhan Baytar, Fevzi Hansu, and Cafer Saka. 2014a. “Hydrogen generation from hydrolysis of sodium borohydride with Ni (0) catalyst in dielectric barrier discharge method. Energy Sources, Part A: Recovery.” Utilization, and Environmental Effects 36(17): 1886-1894. http://dx.doi.org/10.1080/15567036.2011.555442
  • Şahin, Ömer, Fevzi Hansu, Cafer Saka, and Orhan Baytar. 2014b. “Hydrogen generation from NaBH4 solution with the high-performance Co (0) catalyst using a cold plasma method. Energy Sources, Part A: Recovery.” Utilization, and Environmental Effects 36(14):1578-1587. http://dx.doi.org/10.1080/15567036.2011.555443
  • Şahiner, Nurettin, and Şahin Demirci. 2017. “Natural microgranular cellulose as alternative catalyst to metal nanoparticles for H2 production from NaBH4 methanolysis.” Applied Catalysis B: Environmental 202: 199-206. https://doi.org/10.1016/j.apcatb.2016.09.028
  • Tarasova, Nataliia, Anzhelika Bedarkova, Irina Animitsa, Ekaterina Abakumova, Ksenia Belova, and Hala Kreimesh. 2022. “Novel high conductive ceramic materials based on two-layer perovskite BaLa2In2O7.” International Journal of Hydrogen Energy 47:17285-17312. https://doi.org/10.3390/ijms232112813
  • Tian, Hongjing, Qingjie Guo, and Dongyan Xu, D. 2010. “Hydrogen generation from catalytic hydrolysis of alkaline sodium borohydride solution using attapulgite clay-supported Co-B catalyst.” Journal of Power Sources 195: 2136-2141. http://dx.doi.org/10.1016/j.jpowsour.2009.10.006
  • Tironia, Alejandra, M. A. Trezzaa, E. F. Irassara, and A. N. Scian. 2012. “Thermal treatment of kaolin: effect on the pozzolanic activity.” Procedia Material Science 1:, 343-350. http://dx.doi.org/10.1016/j.mspro.2012.06.046
  • Trivedi, Mahendra Kumar, R. M. R. Tallapragada, A. Branton, D. Trivedi, G. Nayak, O. Latiyal, and S. Jana. 2015. “Characterization of physical, thermal and structural properties of chromium (VI) oxide powder: Impact of biofield treatment.” Powder Metallurgy & Mining 4: 1000128. http://dx.doi.org/10.4172/2168-9806.1000128
  • Tomasso, Camille Jubert, Anne L. Pham, Tracy M. Mattox, and Jeffrey J. Urban. 2020. “Using additives to control the decomposition temperature of sodium borohydride.” Journal of Energy and Power Technology 2: 009. http://dx.doi.org/10.21926/jept.2002009
  • Tutar, Filiz, and Mehmet Eren. 2011. “Energy of the future: Hydrogen economy and Turkey.” International Journal of Economic and Administrative Studies 6:1-26. https://doi.org/10.18092/ijeas.38647
  • Weckhuysen, Bert M, Israel E. Wachs, and Robert A. Schoonheydt. 1996. “Surface chemistry and spectroscopy of chromium in inorganic oxides.” Chemical Reviews 96: 3327-3339. https://doi.org/10.1021/cr940044o
  • Wee, Jung-Ho, Kwan-Young Lee, and Sung Hyun Kim. 2006. “Sodium borohydride as the hydrogen supplier for proton exchange membrane fuel cell systems.” Fuel Process Technology 87: 811-819. http://dx.doi.org/10.1016/j.fuproc.2006.05.001
  • Xie, Xiaokang, Niu Sanxin, Miao Yang, Gao Xiang, Cheng Longsheng, Gao Feng. 2019. “Preparation and properties of resin coated ceramic proppants with ultralight weight and high strength from coal-series kaolin.” Applied Clay Science 183: 105364. https://doi.org/10.1016/j.clay.2019.105364
  • Vračar, L. J. and B. E. Conway, 1990. “Temperature dependence of electrocatalytic behaviour of some glassy transition metal alloys for cathodic hydrogen evolution in water electrolysis.” International Journal of Hydrogen Energy 15: 701-713. https://doi.org/10.1016/0360-3199(90)90001-F
  • Vesborg, Peter C. K. Brian Seger, and Ib Chorkendorff. 2015. “Recent development in hydrogen evolution reaction catalysts and their practical implementation.” Journal of Physical Chemistry Letters 6:951-957. http://dx.doi.org/10.1021/acs.jpclett.5b00306
  • Zhang, Xiuli, Yuan Cheng, Chunhu Li, Qingjie Guo, and Xiangchao Meng. 2020. “Catalytic hydrolysis of alkaline sodium borohydride solution for hydrogen evolution in a micro-scale fluidized bed reactor.” International Journal of Energy Research 44: 6758-6766. http://dx.doi.org/10.1002/er.5412
There are 60 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other)
Journal Section Articles
Authors

Erhan Onat 0000-0003-1638-0151

Selma Ekinci 0000-0002-7835-4832

Early Pub Date September 10, 2024
Publication Date
Submission Date November 30, 2023
Acceptance Date June 27, 2024
Published in Issue Year 2024 Volume: 24 Issue: 05

Cite

APA Onat, E., & Ekinci, S. (2024). Study of the Sodium Borohydride Hydrolysis Reaction’s Performance via a Kaolin-Supported Co-Cr Bimetallic Catalyst. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(05), 1061-1070.
AMA Onat E, Ekinci S. Study of the Sodium Borohydride Hydrolysis Reaction’s Performance via a Kaolin-Supported Co-Cr Bimetallic Catalyst. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. September 2024;24(05):1061-1070.
Chicago Onat, Erhan, and Selma Ekinci. “Study of the Sodium Borohydride Hydrolysis Reaction’s Performance via a Kaolin-Supported Co-Cr Bimetallic Catalyst”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 05 (September 2024): 1061-70.
EndNote Onat E, Ekinci S (September 1, 2024) Study of the Sodium Borohydride Hydrolysis Reaction’s Performance via a Kaolin-Supported Co-Cr Bimetallic Catalyst. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 05 1061–1070.
IEEE E. Onat and S. Ekinci, “Study of the Sodium Borohydride Hydrolysis Reaction’s Performance via a Kaolin-Supported Co-Cr Bimetallic Catalyst”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 05, pp. 1061–1070, 2024.
ISNAD Onat, Erhan - Ekinci, Selma. “Study of the Sodium Borohydride Hydrolysis Reaction’s Performance via a Kaolin-Supported Co-Cr Bimetallic Catalyst”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/05 (September 2024), 1061-1070.
JAMA Onat E, Ekinci S. Study of the Sodium Borohydride Hydrolysis Reaction’s Performance via a Kaolin-Supported Co-Cr Bimetallic Catalyst. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:1061–1070.
MLA Onat, Erhan and Selma Ekinci. “Study of the Sodium Borohydride Hydrolysis Reaction’s Performance via a Kaolin-Supported Co-Cr Bimetallic Catalyst”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 05, 2024, pp. 1061-70.
Vancouver Onat E, Ekinci S. Study of the Sodium Borohydride Hydrolysis Reaction’s Performance via a Kaolin-Supported Co-Cr Bimetallic Catalyst. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(05):1061-70.