Research Article
BibTex RIS Cite

Tunable ultra-wideband band-stop filters based on a metal-insulator-metal waveguide with triangle resonators

Year 2024, Volume: 24 Issue: 6, 1395 - 1402, 02.12.2024
https://doi.org/10.35414/akufemubid.1446467

Abstract

This study introduces the design and analysis of ultra-wideband band-stop filters based on a metal-insulator-metal (MIM) waveguide with triangle resonators. The optical features of the filters are determined numerically. Transmission values and field distributions have been obtained. To show the tunability of the resonances of the filters, parameter sweep analysis has been done. This feature provides the shifted wideband bandwidths from visible to mid-infrared regimes. The highest bandwidth is 859 nm for band-stop filtering in this work. Higher bandwidths can be achieved by increasing the number of resonators adjacent to the waveguide. This research offers the potential to improve the filtering capabilities of optical devices through the use of high-efficiency MIM waveguide-resonator systems.

References

  • Al Mahmud, R., Faruque, M. O. and Sagor, R. H., 2021. A highly sensitive plasmonic refractive index sensor based on triangular resonator. Optics Communications, 483, 126634. https://doi.org/10.1016/j.optcom.2020.126634
  • Chao, C. T. C., Chau, Y. F. C., Kooh, M. R. R., Lim, C. M., Thotagamuge, R. and Chiang, H. P., 2022. Ultrawide bandstop filter with high sensitivity using semi-circular-like resonators. Materials Science in Semiconductor Processing, 151, 106985. https://doi.org/10.1016/j.mssp.2022.106985.
  • Chen, Z., Li, H., Li, B., He, Z., Xu, H., Zheng, M. and Zhao, M., 2016. Tunable ultra-wide band-stop filter based on single-stub plasmonic-waveguide system. Applied Physics Express, 9(10), 102002. https://doi.org/10.7567/APEX.9.102002
  • Chou Chau, Y. F., Chou Chao, C. T., Huang, H. J., Kooh, M. R. R., Kumara, N. T. R. N., Lim, C. M. and Chiang, H. P., 2020. Ultrawide bandgap and high sensitivity of a plasmonic metal-insulator-metal waveguide filter with cavity and baffles. Nanomaterials, 10(10), 2030. https://doi.org/10.3390/nano10102030
  • Ebadi, S. M., Örtegren, J., Bayati, M. S. and Ram, S. B. 2020. A multipurpose and highly-compact plasmonic filter based on metal-insulator-metal waveguides. IEEE Photonics Journal, 12(3), 1-9. https://doi.org/10.1109/JPHOT.2020.2974959
  • Ebadi, S. M. and Khani, S., 2023. Design of a tetra-band MIM plasmonic absorber based on triangular arrays in an ultra-compact MIM waveguide. Optical and Quantum Electronics, 55(6), 482. https://doi.org/10.1007/s11082-023-04756-2.
  • Haque, M. A., Rahad, R., Faruque, M. O., Mobassir, M. S. and Sagor, R. H. 2024. Numerical analysis of a metal-insulator-metal waveguide-integrated magnetic field sensor operating at sub-wavelength scales. Sensing and Bio-Sensing Research, 43, 100618. https://doi.org/10.1016/j.sbsr.2023.100618.
  • Johnson, P. B. and Christy, R. W., 1972. Optical constants of the noble metals. Physical Review B, 6(12), 4370. https://doi.org/10.1103/PhysRevB.6.4370.
  • Kamari, M., Hayati, M. and Khosravi, S., 2021. Tunable infrared wide band-stop plasmonic filter using T-shaped resonators. Materials Science in Semiconductor Processing, 133, 105983. https://doi.org/10.1016/j.mssp.2021.105983.
  • Kamari, M., Hayati, M. and Khosravi, S. 2021. Design of dual-wideband bandstop MIM plasmonic filter using multi-circular ring resonators. Optical Materials, 122, 111678. https://doi.org/10.1016/j.optmat.2021.111678.
  • Korkmaz, S. 2024. Multiple ultra-narrow band-stop filters based on MIM plasmonic waveguide with nanoring cavities. Physica Scripta, 99(3), 035503. https://doi.org/10.1088/1402-4896/ad203d.
  • Li, H. and Jiao, R. Z., 2019. Plasmonic band-stop filters based on tooth structure. Optics Communications, 439, 201-205. https://doi.org/10.1016/j.optcom.2019.01.017.
  • Lin, J., Bo, F., Cheng, Y. and Xu, J., 2020. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Research, 8(12), 1910-1936. https://doi.org/10.1364/PRJ.395305.
  • Liu, Y., Tian, H., Zhang, X., Song, J. and Wang, B. 2024. Dual control all-optical switch based on MIM door-type waveguide. Optics Communications, 552, 130072. https://doi.org/10.1016/j.optcom.2023.130072.
  • Lu, H., Liu, X., Wang, G. and Mao, D., 2012. Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Nanotechnology, 23(44), 444003. https://doi.org/10.1088/0957-4484/23/44/444003.
  • Luo, W., Cao, L., Shi, Y., Wan, L., Zhang, H., Li, S., Wang Y., Sun S., Karim M. F., Cai H., Kwe L. C. and Liu, A. Q., 2023. Recent progress in quantum photonic chips for quantum communication and internet. Light: Science & Applications, 12(1), 175. https://doi.org/10.1038/s41377-023-01173-8.
  • Mariselvam, V., Preethi, A. A. P. and Akilarasu, G., 2022. Etched Triangle Resonator Dual Band Microstrip Band Pass Filter. Wireless Personal Communications, 125(2), 1537-1544. https://doi.org/10.1007/s11277-022-09620-2.
  • Mohammadi, G., Orouji, A. and Danaie, M. 2023. Highly compact tunable hourglass-shaped graphene band-stop filter at terahertz frequencies. Results in Optics, 13, 100575. https://doi.org/10.1016/j.rio.2023.100575.
  • Patel, S. K., Surve, J., Prajapati, P. and Taya, S. A., 2022. Design of an ultra-wideband solar energy absorber with wide-angle and polarization independent characteristics. Optical Materials, 131, 112683. https://doi.org/10.1016/j.optmat.2022.112683.
  • Tao, J., Huang, X. G., Lin, X., Chen, J., Zhang, Q. and Jin, X., 2010. Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters. Journal of the Optical Society of America B, 27(2), 323-327. https://doi.org/10.1364/JOSAB.27.000323.
  • Tan, D., Wang, Z., Xu, B. and Qiu, J., 2021. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Advanced Photonics, 3(2), 024002-024002. https://doi.org/10.1117/1.AP.3.2.024002.
  • Wang, H., Yang, J., Zhang, J., Huang, J., Wu, W., Chen, D. and Xiao, G., 2016. Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure. Optics letters, 41(6), 1233-1236. https://doi.org/10.1364/OL.41.001233.
  • Yu, S., Wang, S., Zhao, T. and Yu, J., 2020. Tunable ultra-width bandgap U-shaped band-stop filters of chip scale based on periodic staggered double-side trapezoidal resonators in a metallic nanowaveguide. Optics Communications, 463, 125439. https://doi.org/10.1016/j.optcom.2020.125439.
  • Zegaar, I., Hocini, A. and Khedrouche, D. 2022. Plasmonic stop-band filter based on an MIM waveguide coupled with cavity resonators. In Journal of Physics: Conference Series. Sozopol, Bulgaria, 012025.
  • Zegaar, I., Hocini, A., Harhouz, A., Khedrouche, D. and Salah, H. B., 2024. An ultra-wideband bandstop plasmonic filter in mid-infrared band based on metal-insulator-metal waveguide coupled with an hexagonal resonator. Journal of Optics, 53, 272–281. https://doi.org/10.1007/s12596-023-01138-5.
  • Zeng, L., Li, J., Cao, C., Li, X., Zeng, X., Yu, Q., Wen K., Yang J. and Qin, Y. 2022. An integrated-plasmonic chip of Bragg reflection and Mach-Zehnder interference based on metal-insulator-metal waveguide. Photonic Sensors, 12(3), 220303. https://doi.org/10.1007/s13320-022-0650-0.
  • Zhang, J., Feng, H., Ran, L., Gao, Y. 2022. Theoretical design and analysis of multichannel plasmonic switch based on triangle resonator combined with silver bar. Optics Communications, 520, 128437. https://doi.org/10.1016/j.optcom.2022.128437.

Üçgen rezonatörlü metal-yalıtkan-metal dalga kılavuzu temelli ayarlanabilir ultra-genişbant bant durdurma filtreleri

Year 2024, Volume: 24 Issue: 6, 1395 - 1402, 02.12.2024
https://doi.org/10.35414/akufemubid.1446467

Abstract

Bu çalışma, üçgen rezonatörlü metal-yalıtkan-metal (MIM) dalga kılavuzu temelli ultra-genişbant bant durdurma filtrelerinin tasarımını ve analizini tanıtmaktadır. Filtrelerin optik özellikleri nümerik olarak belirlendi. İletim değerleri ve alan dağılımları elde edildi. Filtrelerin rezonanslarının ayarlanabilirliğini göstermek için parametre tarama analizi yapılmıştır. Bu özellik, genişbant bant genişliklerinin görünürden orta kızılötesi bölgelere kaydırılmasını sağlar. Bu çalışmada, bant durdurma filtrelemesi için en yüksek bant genişliği 859 nm'dir. Dalga kılavuzuna bitişik bir şekilde rezonatörlerin sayısı artırılarak daha yüksek bant genişlikleri elde edilebilir. Bu araştırma, yüksek verimli MIM dalga kılavuzu-rezonatör sistemlerinin kullanımı yoluyla optik cihazların filtreleme yeteneklerini geliştirme potansiyeli sunmaktadır.

References

  • Al Mahmud, R., Faruque, M. O. and Sagor, R. H., 2021. A highly sensitive plasmonic refractive index sensor based on triangular resonator. Optics Communications, 483, 126634. https://doi.org/10.1016/j.optcom.2020.126634
  • Chao, C. T. C., Chau, Y. F. C., Kooh, M. R. R., Lim, C. M., Thotagamuge, R. and Chiang, H. P., 2022. Ultrawide bandstop filter with high sensitivity using semi-circular-like resonators. Materials Science in Semiconductor Processing, 151, 106985. https://doi.org/10.1016/j.mssp.2022.106985.
  • Chen, Z., Li, H., Li, B., He, Z., Xu, H., Zheng, M. and Zhao, M., 2016. Tunable ultra-wide band-stop filter based on single-stub plasmonic-waveguide system. Applied Physics Express, 9(10), 102002. https://doi.org/10.7567/APEX.9.102002
  • Chou Chau, Y. F., Chou Chao, C. T., Huang, H. J., Kooh, M. R. R., Kumara, N. T. R. N., Lim, C. M. and Chiang, H. P., 2020. Ultrawide bandgap and high sensitivity of a plasmonic metal-insulator-metal waveguide filter with cavity and baffles. Nanomaterials, 10(10), 2030. https://doi.org/10.3390/nano10102030
  • Ebadi, S. M., Örtegren, J., Bayati, M. S. and Ram, S. B. 2020. A multipurpose and highly-compact plasmonic filter based on metal-insulator-metal waveguides. IEEE Photonics Journal, 12(3), 1-9. https://doi.org/10.1109/JPHOT.2020.2974959
  • Ebadi, S. M. and Khani, S., 2023. Design of a tetra-band MIM plasmonic absorber based on triangular arrays in an ultra-compact MIM waveguide. Optical and Quantum Electronics, 55(6), 482. https://doi.org/10.1007/s11082-023-04756-2.
  • Haque, M. A., Rahad, R., Faruque, M. O., Mobassir, M. S. and Sagor, R. H. 2024. Numerical analysis of a metal-insulator-metal waveguide-integrated magnetic field sensor operating at sub-wavelength scales. Sensing and Bio-Sensing Research, 43, 100618. https://doi.org/10.1016/j.sbsr.2023.100618.
  • Johnson, P. B. and Christy, R. W., 1972. Optical constants of the noble metals. Physical Review B, 6(12), 4370. https://doi.org/10.1103/PhysRevB.6.4370.
  • Kamari, M., Hayati, M. and Khosravi, S., 2021. Tunable infrared wide band-stop plasmonic filter using T-shaped resonators. Materials Science in Semiconductor Processing, 133, 105983. https://doi.org/10.1016/j.mssp.2021.105983.
  • Kamari, M., Hayati, M. and Khosravi, S. 2021. Design of dual-wideband bandstop MIM plasmonic filter using multi-circular ring resonators. Optical Materials, 122, 111678. https://doi.org/10.1016/j.optmat.2021.111678.
  • Korkmaz, S. 2024. Multiple ultra-narrow band-stop filters based on MIM plasmonic waveguide with nanoring cavities. Physica Scripta, 99(3), 035503. https://doi.org/10.1088/1402-4896/ad203d.
  • Li, H. and Jiao, R. Z., 2019. Plasmonic band-stop filters based on tooth structure. Optics Communications, 439, 201-205. https://doi.org/10.1016/j.optcom.2019.01.017.
  • Lin, J., Bo, F., Cheng, Y. and Xu, J., 2020. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Research, 8(12), 1910-1936. https://doi.org/10.1364/PRJ.395305.
  • Liu, Y., Tian, H., Zhang, X., Song, J. and Wang, B. 2024. Dual control all-optical switch based on MIM door-type waveguide. Optics Communications, 552, 130072. https://doi.org/10.1016/j.optcom.2023.130072.
  • Lu, H., Liu, X., Wang, G. and Mao, D., 2012. Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Nanotechnology, 23(44), 444003. https://doi.org/10.1088/0957-4484/23/44/444003.
  • Luo, W., Cao, L., Shi, Y., Wan, L., Zhang, H., Li, S., Wang Y., Sun S., Karim M. F., Cai H., Kwe L. C. and Liu, A. Q., 2023. Recent progress in quantum photonic chips for quantum communication and internet. Light: Science & Applications, 12(1), 175. https://doi.org/10.1038/s41377-023-01173-8.
  • Mariselvam, V., Preethi, A. A. P. and Akilarasu, G., 2022. Etched Triangle Resonator Dual Band Microstrip Band Pass Filter. Wireless Personal Communications, 125(2), 1537-1544. https://doi.org/10.1007/s11277-022-09620-2.
  • Mohammadi, G., Orouji, A. and Danaie, M. 2023. Highly compact tunable hourglass-shaped graphene band-stop filter at terahertz frequencies. Results in Optics, 13, 100575. https://doi.org/10.1016/j.rio.2023.100575.
  • Patel, S. K., Surve, J., Prajapati, P. and Taya, S. A., 2022. Design of an ultra-wideband solar energy absorber with wide-angle and polarization independent characteristics. Optical Materials, 131, 112683. https://doi.org/10.1016/j.optmat.2022.112683.
  • Tao, J., Huang, X. G., Lin, X., Chen, J., Zhang, Q. and Jin, X., 2010. Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters. Journal of the Optical Society of America B, 27(2), 323-327. https://doi.org/10.1364/JOSAB.27.000323.
  • Tan, D., Wang, Z., Xu, B. and Qiu, J., 2021. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Advanced Photonics, 3(2), 024002-024002. https://doi.org/10.1117/1.AP.3.2.024002.
  • Wang, H., Yang, J., Zhang, J., Huang, J., Wu, W., Chen, D. and Xiao, G., 2016. Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure. Optics letters, 41(6), 1233-1236. https://doi.org/10.1364/OL.41.001233.
  • Yu, S., Wang, S., Zhao, T. and Yu, J., 2020. Tunable ultra-width bandgap U-shaped band-stop filters of chip scale based on periodic staggered double-side trapezoidal resonators in a metallic nanowaveguide. Optics Communications, 463, 125439. https://doi.org/10.1016/j.optcom.2020.125439.
  • Zegaar, I., Hocini, A. and Khedrouche, D. 2022. Plasmonic stop-band filter based on an MIM waveguide coupled with cavity resonators. In Journal of Physics: Conference Series. Sozopol, Bulgaria, 012025.
  • Zegaar, I., Hocini, A., Harhouz, A., Khedrouche, D. and Salah, H. B., 2024. An ultra-wideband bandstop plasmonic filter in mid-infrared band based on metal-insulator-metal waveguide coupled with an hexagonal resonator. Journal of Optics, 53, 272–281. https://doi.org/10.1007/s12596-023-01138-5.
  • Zeng, L., Li, J., Cao, C., Li, X., Zeng, X., Yu, Q., Wen K., Yang J. and Qin, Y. 2022. An integrated-plasmonic chip of Bragg reflection and Mach-Zehnder interference based on metal-insulator-metal waveguide. Photonic Sensors, 12(3), 220303. https://doi.org/10.1007/s13320-022-0650-0.
  • Zhang, J., Feng, H., Ran, L., Gao, Y. 2022. Theoretical design and analysis of multichannel plasmonic switch based on triangle resonator combined with silver bar. Optics Communications, 520, 128437. https://doi.org/10.1016/j.optcom.2022.128437.
There are 27 citations in total.

Details

Primary Language English
Subjects Photonics, Optoelectronics and Optical Communications
Journal Section Articles
Authors

Semih Korkmaz 0000-0001-5576-7653

Early Pub Date November 11, 2024
Publication Date December 2, 2024
Submission Date March 4, 2024
Acceptance Date August 5, 2024
Published in Issue Year 2024 Volume: 24 Issue: 6

Cite

APA Korkmaz, S. (2024). Tunable ultra-wideband band-stop filters based on a metal-insulator-metal waveguide with triangle resonators. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(6), 1395-1402. https://doi.org/10.35414/akufemubid.1446467
AMA Korkmaz S. Tunable ultra-wideband band-stop filters based on a metal-insulator-metal waveguide with triangle resonators. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2024;24(6):1395-1402. doi:10.35414/akufemubid.1446467
Chicago Korkmaz, Semih. “Tunable Ultra-Wideband Band-Stop Filters Based on a Metal-Insulator-Metal Waveguide With Triangle Resonators”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 6 (December 2024): 1395-1402. https://doi.org/10.35414/akufemubid.1446467.
EndNote Korkmaz S (December 1, 2024) Tunable ultra-wideband band-stop filters based on a metal-insulator-metal waveguide with triangle resonators. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 6 1395–1402.
IEEE S. Korkmaz, “Tunable ultra-wideband band-stop filters based on a metal-insulator-metal waveguide with triangle resonators”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 6, pp. 1395–1402, 2024, doi: 10.35414/akufemubid.1446467.
ISNAD Korkmaz, Semih. “Tunable Ultra-Wideband Band-Stop Filters Based on a Metal-Insulator-Metal Waveguide With Triangle Resonators”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/6 (December 2024), 1395-1402. https://doi.org/10.35414/akufemubid.1446467.
JAMA Korkmaz S. Tunable ultra-wideband band-stop filters based on a metal-insulator-metal waveguide with triangle resonators. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:1395–1402.
MLA Korkmaz, Semih. “Tunable Ultra-Wideband Band-Stop Filters Based on a Metal-Insulator-Metal Waveguide With Triangle Resonators”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 6, 2024, pp. 1395-02, doi:10.35414/akufemubid.1446467.
Vancouver Korkmaz S. Tunable ultra-wideband band-stop filters based on a metal-insulator-metal waveguide with triangle resonators. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(6):1395-402.