Research Article
BibTex RIS Cite

Rumex Crispus L.’dan Sekonder Metabolitlerin Kromatografik Yöntemlerle İzolasyonu ve Tayini

Year 2024, Volume: 24 Issue: 6, 1305 - 1312, 02.12.2024
https://doi.org/10.35414/akufemubid.1483597

Abstract

İnsanlar binlerce yıldır bitkilerin sağlık açısından faydalı özelliklerinden yararlanmaktadır. Günümüzde, tıp biliminin yanı sıra başta kozmetik endüstrisinde olmak üzere birçok sektörde bitkiler kullanılmaktadır ve bitkilerin fitokimyasal içeriklerinin belirlenmesine ilişkin çalışmalar da hızla artmaktadır. Halk arasında çeşitli amaçlarla kullanılan Rumex crispus L. bitkisi özellikle fenolik bileşikler ve antrakinonlar olmak üzere zengin sekonder metabolit içeriğinden dolayı dikkat çekmektedir. Bu çalışmada Türkiye’de yetişen Rumex crispus L. bitkisinden katma değere sahip fenolik bileşik ve antrakinonların izolasyonu pratik ve ekonomik bir metot olan gravity kolon kromatografisi ile gerçekleştirilmiştir. Ekstrakt apolar çözücü sistemden polar çözücü sistemine doğru fraksiyonlara ayrılmış ve bu fraksiyonlardaki fenolik bileşik ve antrakinon miktarları ters faz sıvı kromatografi (RPLC) yöntemi ile belirlenmiştir. Protokateşik asit, gentisik asit, kafeik asit, p-kumarik asit, polydatin, kumarin, resveratrol ve ellajik asit izolasyonu için etil asetat-metanol (6:4) çözücü sisteminin uygun olduğuna karar verilmiştir. Sonuç olarak, bitkilerdeki sekonder metabolitlerin araştırılmasında maliyeti düşük olan gravity kolon kromatografisi kullanılarak fenolik bileşiklerin ve antrakinonların saflaştırılabileceği ortaya konulmuştur.

Ethical Statement

Yazarlar tüm etik standartlara uyduklarını beyan ederler.

Supporting Institution

İstanbul Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FLO-2023-40354

Thanks

Bu çalışma İstanbul Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir (Proje numarası: FLO-2023-40354). İstanbul Üniversitesi Fen Fakültesi Botanik Anabilim Dalından Doç. Dr. İbrahim Sırrı Yüzbaşıoğlu’na bitki tür tayinindeki katkılarından dolayı teşekkür ederiz.

References

  • Abdisa Z. ve Zelalem G. (2022). Phytochemical Investigation of Rumex Abyssinicus Root Barks and In Vitro Evaluation of Its Antibacterial Activities. Journal of the Turkish Chemical Society Section A Chemistry, 9(4), 1063-1072. https://doi.org/10.18596/jotcsa.1035039
  • Arora, M., Mahajan, A., ve Sembi, J. K. (2022). Extraction and characterization of secondary metabolites from Crepidium acuminatum (D. Don) Szlach: A miraculous orchid. South African Journal of Botany, 149, 693-700. https://doi.org/10.1016/j.sajb.2022.06.014
  • Akpınar, R., Yıldırım Baştemur, G., Bıçak, B., Sanli, N. O., Mertoğlu Kamalı, E., Pekmez, M., Kecel Gündüz, S., ve Perçin Özkorucuklu, S. (2024). Phytochemical profiling, in vitro biological activities, and in silico (molecular docking and absorption, distribution, metabolism, excretion, toxicity) studies of Polygonum cognatum Meissn. Journal of Separation Science, 47(1), 2300750. https://doi.org/10.1002/jssc.202300750
  • Amarowicz, R., Shahiiİ, F., ve Wiczkowski, W. (2003). Separation of indıvidual catechins from green tea using silica gel column chromatography and HPLC. Journal of Food Lipids, 10(2), 165–177. https://doi.org/10.1111/j.1745-4522.2003.tb00013.x
  • Aybastıer, Ö., (2021). Karaduttan (Morus Nigra L.) antioksidan bileşiklerin kromatografik yöntemlerle izolasyonu ve tayini. Gıda, 46 (1), 32-41. https://doi.org/10.15237/gida.GD20114
  • Bajpai, V. K., Majumder, R., ve Park, J. G. (2016). Isolation and purification of plant secondary metabolites using column-chromatographic technique. Bangladesh Journal of Pharmacology, 11(4), 844-848. https://doi.org/10.3329/bjp.v11i4.28185
  • Barba, F. J., Esteve, M. J., ve Frígola, A. (2014). Bioactive Components from Leaf VegetableProducts, Studies in Natural Products Chemistry, In: Atta ur, R. (ed.), Chapter 11, Elsevier, ISBN: 1572-5995, 321-346.
  • Başkan, S., Daut-Ozdemir, A., Günaydin, K., ve Erim, F. B. (2007). Analysis of anthraquinones in Rumex crispus by micellar electrokinetic chromatography. Talanta, 71(2), 747–750. https://doi.org/10.1016/j.talanta.2006.05.018
  • Bulduk İ. ve Gökçe S., (2021). Farmasötik Formülasyonlarda Levodopa ve Karbidopa Miktarının Belirlenmesi için Etkili ve Güvenilir bir HPLC Yönteminin Geliştirilmesi ve Validasyonu. Hacettepe Journal of Biology and Chemistry, 49 (4), 413-422. https://doi.org/10.15671/hjbc.773988
  • Çoruh, I., Gormez, A., Ercisli, S., ve Sengul, M. (2008). Total phenolic content, antioxidant, and antibacterial activity of Rumex crispus grown wild in Turkey. Pharmaceutical Biology, 46(9), 634-638. https://doi.org/10.1080/13880200802182240
  • Duval, J., Pecher, V., Poujol, M., ve Lesellier, E. (2016). Research advances for the extraction, analysis and uses of anthraquinones: A review. Industrial Crops and Products, 94, 812-833. https://doi.org/10.1016/j.indcrop.2016.09.056
  • Eom T, Kim E, ve Kim J.S. (2020), In vitro antioxidant, antiinflammation, and anticancer activities and anthraquinone content from Rumex crispus root extract and fractions. Antioxidants (Basel), 9(726), 1-13. https://doi.org/10.3390/antiox9080726
  • Fan, M., Ding, H., Zhang, G., Hu, X., ve Gong, D. (2019). Relationships of dietary flavonoid structure with its tyrosinase inhibitory activity and affinity. LWT - Food Science and Technology, 107, 25-34. https://doi.org/10.1016/j.lwt.2019.02.076
  • Fouillaud, M., Venkatachalam, M., Girard-Valenciennes,E., Caro, Y., ve Dufossé, L. (2016). Anthraquinones and derivatives from marine-derived fungi: Structural diversity and selected biological activities. Marine Drugs, 14(4), 64. https://doi.org/10.3390/md14040064
  • Guo, S., Feng, B., Zhu, R., Ma, J., ve Wang, W. (2011). Preparative isolation of three anthraquinones from Rumex japonicus by high-speed counter-current chromatography. Molecules, 16(2), 1201–1210. https://doi.org/10.3390/molecules16021201
  • Huang, P-H., Huang, C-Y., Chen, M-C., Lee, Y-T., Yue, C-H., Wang, H-Y., ve Lin, H. (2013). Emodin and aloe-emodin suppress breast cancer cell proliferation through ER alpha Inhibition. Evidence-based Complementary and Alternative Medicine, 376123. https://doi.org/10.1155/2013/376123
  • Idris, O. A., Wintola, O. A., ve Afolayan, A. J. (2017). Phytochemical and antioxidant activities of Rumex crispus L. in treatment of gastrointestinal helminths in Eastern Cape Province, South Africa. Asian Pacific Journal of Tropical Biomedicine, 7(12), 1071–1078. https://doi.org/10.1016/j.apjtb.2017.10.008
  • Larayetan, R., Ojemaye, M.O., Okoh, O.O., ve Okoh, A.I. (2019). Silver nanoparticles mediated by Callistemon citrinus extracts and their antimalaria, antitrypanosoma and antibacterial efficacy. Journal of Molecular Liquids, 273, 615-625. https://doi.org/10.1016/j.molliq.2018.10.020
  • Li-Weber, M. (2013). Targeting apoptosis pathways in cancer by Chinese medicine. Cancer Letters, 332(2), 304-312. https://doi.org/10.1016/j.canlet.2010.07.015
  • Minh, T. N., Van, T. M., Andriana, Y., Vinh, L. T., Hau, D. V., Duyen, D. H., ve Guzman-Gelani, C. D. (2019). Antioxidant, xanthine oxidase, α-amylase and α-glucosidase inhibitory activities of bioactive compounds from Rumex crispus L. root. Molecules, 24(21), 3899. https://doi.org/10.3390/molecules24213899
  • Nazeam, J. A., Al-Shareef, W. A., Helmy, M. W., & El-Haddad, A. E. (2020). Bioassay-guided isolation of potential bioactive constituents from pomegranate agrifood by-product. Food Chemistry, 326, 126993. https://doi.org/10.1016/j.foodchem.2020.126993
  • Nuzula, A. F., Kristanti, A. N., Aminah, N. S., Takaya, Y., Sahadatin, M. N., ve Wardana, A. P. (2023). Isolation and structure elucidation of secondary metabolite compounds from Curcuma aeruginosa. Jurnal Kimia Riset, 8(1), 81–91. https://doi.org/10.20473/jkr.v8i1.44073
  • Ntemafack, A., Sabeena, A., Aristide, D., Ravi, S., Serge, A., Jules-Roger, K., Alain, W., Asha, Chaubey. (2023). Chemical profile, biological potential, bioprospection and biotechnological application of endophytes of Rumex: A systematic review. Industrial Crops & Products, 195, 116474. https://doi.org/10.1016/j.indcrop.2023.116474
  • Orban-Gyapai, O., Liktor-Busa, E., Kusz, N., Stefko, D., Urban, E., Hohmann, J., ve Vasas, A. (2017). Antibacterial screening of Rumex species native to the Carpathian Basin and bioactivity-guided isolation of compounds from Rumex aquaticus. Fitoterapia, 118, 101-106. https://doi.org/10.1016/j.fitote.2017.03.009
  • Pham, D. Q., Han, J. W., Dao, N. T., Kim, J.-C., Pham, H. T., Nguyen, T. H., Choib G.J., Vu H.D., Le Dang, Q. (2020). In vitro and in vivo antimicrobial potential against various phytopathogens and chemical constituents of the aerial part of Rumex chinensis Campd. South African Journal of Botany, 133, 73–82. https://doi.org/10.1016/j.sajb.2020.07.006
  • Saoudi, M. M., Bouajila, J., Rahmani, R., ve Alouani, K. (2021). Phytochemical Composition, Antioxidant, Antiacetylcholinesterase, and Cytotoxic Activities of Rumex crispus L. International Journal of Analytical Chemistry, 6675436. https://doi.org/10.1155/2021/6675436
  • Sarikahya, N. B., Goren, A. C., ve Kirmizigul, S. (2019). Simultaneous determination of several flavonoids and phenolic compounds in nineteen different Cephalaria species by HPLC-MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 173, 120-125. https://doi.org/10.1016/j.jpba.2019.05.019
  • Seigler, D. S. (2012). Plant secondary metabolism. Springer Science & Business Media.
  • Simoes, C.M.O., Schenkel, E.P., Gosman, G., Mello, J.C.P., Mentz, L.A., ve Petrovick, P.R. (2007). Farmacognosia: da planta ao medicamento. Editora da UFSC, Floriano´polis, 1102.
  • Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2013). Fundamentals of Analytical Chemistry. Cengage learning.
  • Smolarz, H.D., Swatko-Ossor, M., Ginalska, G., ve Medynska, E. (2013). Antimycobacterial effect of extract and its components from Rheum rhaponticum. Journal of AOAC International, 96(1), 155-160. https://doi.org/10.5740/jaoacint.12-010
  • Tsamo, L. D. F., Yimgang, L. V., Wouamba, S. C. N., Mkounga, P., Nkengfack, A. E., Voutquenne-Nazabadioko, L., ve Sewald, N. (2021). A new ceramide (Rumexamide) and other chemical constituents from Rumex abyssinicus Jacq (Polygonaceae): isolation, characterization, antibacterial activities and chemophenetic significance. Advances in Biological Chemistry, 11(05), 266-282. https://doi.org/10.4236/abc.2021.115018
  • Vasas, A., Orbán-Gyapai, O., ve Hohmann, J. (2015). The genus Rumex: review of traditional uses, phytochemistry, and pharmacology. Journal of Ethnopharmacology, 175, 198-228. https://doi.org/10.1016/j.jep.2015.09.001
  • WHO. (1993) Summar WHO guidelines for the assessment of herbal medicines. Herbal Grom. 28:13–4.
  • Yıldırım Baştemur, G., Akpınar, R., Kır, E., ve Perçin Özkorucuklu, S., (2024). Development and Validation of the HPLC-DAD Method for the Simultaneous Determination of Anthraquinones in Rumex crispus L. and Rumex acetosella L. Plants and Evaluation of Their Antioxidant Capacities. Journal of Analytical Chemistry,79(2), 179-189. https://doi.org/10.1134/S1061934824020035
  • Yıldırım, A., Mavi, A., ve Kara, A.A. (2001). Determination of Antioxidant and Antimicrobial Activities of Rumex crispus L. Extracts. Journal of Agricultural and Food Chemistry, 49, 4083–4089. https://doi.org/10.1021/jf0103572

Isolation and Determination of Secondary Metabolites from Rumex Crispus L. by Chromatographic Methods

Year 2024, Volume: 24 Issue: 6, 1305 - 1312, 02.12.2024
https://doi.org/10.35414/akufemubid.1483597

Abstract

People have been benefiting from the health benefits of plants for thousands of years. Nowadays, plants are used in many sectors, especially in the cosmetic industry, as well as medical science, and studies on the determination of the phytochemical contents of plants are rapidly increasing. Rumex crispus L., a plant commonly used for various purposes by the public, attracts attention due to its rich secondary metabolite content, especially phenolic compounds and anthraquinones. In this study, the isolation of valuable phenolic compounds and anthraquinones from the Rumex crispus L. plant grown in Turkey was carried out by gravity column chromatography, which is a practical and economical method. The extract was divided into fractions from the nonpolar solvent system to the polar solvent system, and the amounts of phenolic compounds and anthraquinones in these fractions were determined by the reverse phase liquid chromatography (RPLC) method. It was decided that the ethyl acetate-methanol (6:4) solvent system was suitable for the isolation of protocatechuic acid, gentisic acid, caffeic acid, p-coumaric acid, polydatin, coumarin, resveratrol and ellagic acid. Consequently, it has been revealed that phenolic compounds and anthraquinones can be purified by using low-cost gravity column chromatography in the investigation of secondary metabolites in plants.

Project Number

FLO-2023-40354

References

  • Abdisa Z. ve Zelalem G. (2022). Phytochemical Investigation of Rumex Abyssinicus Root Barks and In Vitro Evaluation of Its Antibacterial Activities. Journal of the Turkish Chemical Society Section A Chemistry, 9(4), 1063-1072. https://doi.org/10.18596/jotcsa.1035039
  • Arora, M., Mahajan, A., ve Sembi, J. K. (2022). Extraction and characterization of secondary metabolites from Crepidium acuminatum (D. Don) Szlach: A miraculous orchid. South African Journal of Botany, 149, 693-700. https://doi.org/10.1016/j.sajb.2022.06.014
  • Akpınar, R., Yıldırım Baştemur, G., Bıçak, B., Sanli, N. O., Mertoğlu Kamalı, E., Pekmez, M., Kecel Gündüz, S., ve Perçin Özkorucuklu, S. (2024). Phytochemical profiling, in vitro biological activities, and in silico (molecular docking and absorption, distribution, metabolism, excretion, toxicity) studies of Polygonum cognatum Meissn. Journal of Separation Science, 47(1), 2300750. https://doi.org/10.1002/jssc.202300750
  • Amarowicz, R., Shahiiİ, F., ve Wiczkowski, W. (2003). Separation of indıvidual catechins from green tea using silica gel column chromatography and HPLC. Journal of Food Lipids, 10(2), 165–177. https://doi.org/10.1111/j.1745-4522.2003.tb00013.x
  • Aybastıer, Ö., (2021). Karaduttan (Morus Nigra L.) antioksidan bileşiklerin kromatografik yöntemlerle izolasyonu ve tayini. Gıda, 46 (1), 32-41. https://doi.org/10.15237/gida.GD20114
  • Bajpai, V. K., Majumder, R., ve Park, J. G. (2016). Isolation and purification of plant secondary metabolites using column-chromatographic technique. Bangladesh Journal of Pharmacology, 11(4), 844-848. https://doi.org/10.3329/bjp.v11i4.28185
  • Barba, F. J., Esteve, M. J., ve Frígola, A. (2014). Bioactive Components from Leaf VegetableProducts, Studies in Natural Products Chemistry, In: Atta ur, R. (ed.), Chapter 11, Elsevier, ISBN: 1572-5995, 321-346.
  • Başkan, S., Daut-Ozdemir, A., Günaydin, K., ve Erim, F. B. (2007). Analysis of anthraquinones in Rumex crispus by micellar electrokinetic chromatography. Talanta, 71(2), 747–750. https://doi.org/10.1016/j.talanta.2006.05.018
  • Bulduk İ. ve Gökçe S., (2021). Farmasötik Formülasyonlarda Levodopa ve Karbidopa Miktarının Belirlenmesi için Etkili ve Güvenilir bir HPLC Yönteminin Geliştirilmesi ve Validasyonu. Hacettepe Journal of Biology and Chemistry, 49 (4), 413-422. https://doi.org/10.15671/hjbc.773988
  • Çoruh, I., Gormez, A., Ercisli, S., ve Sengul, M. (2008). Total phenolic content, antioxidant, and antibacterial activity of Rumex crispus grown wild in Turkey. Pharmaceutical Biology, 46(9), 634-638. https://doi.org/10.1080/13880200802182240
  • Duval, J., Pecher, V., Poujol, M., ve Lesellier, E. (2016). Research advances for the extraction, analysis and uses of anthraquinones: A review. Industrial Crops and Products, 94, 812-833. https://doi.org/10.1016/j.indcrop.2016.09.056
  • Eom T, Kim E, ve Kim J.S. (2020), In vitro antioxidant, antiinflammation, and anticancer activities and anthraquinone content from Rumex crispus root extract and fractions. Antioxidants (Basel), 9(726), 1-13. https://doi.org/10.3390/antiox9080726
  • Fan, M., Ding, H., Zhang, G., Hu, X., ve Gong, D. (2019). Relationships of dietary flavonoid structure with its tyrosinase inhibitory activity and affinity. LWT - Food Science and Technology, 107, 25-34. https://doi.org/10.1016/j.lwt.2019.02.076
  • Fouillaud, M., Venkatachalam, M., Girard-Valenciennes,E., Caro, Y., ve Dufossé, L. (2016). Anthraquinones and derivatives from marine-derived fungi: Structural diversity and selected biological activities. Marine Drugs, 14(4), 64. https://doi.org/10.3390/md14040064
  • Guo, S., Feng, B., Zhu, R., Ma, J., ve Wang, W. (2011). Preparative isolation of three anthraquinones from Rumex japonicus by high-speed counter-current chromatography. Molecules, 16(2), 1201–1210. https://doi.org/10.3390/molecules16021201
  • Huang, P-H., Huang, C-Y., Chen, M-C., Lee, Y-T., Yue, C-H., Wang, H-Y., ve Lin, H. (2013). Emodin and aloe-emodin suppress breast cancer cell proliferation through ER alpha Inhibition. Evidence-based Complementary and Alternative Medicine, 376123. https://doi.org/10.1155/2013/376123
  • Idris, O. A., Wintola, O. A., ve Afolayan, A. J. (2017). Phytochemical and antioxidant activities of Rumex crispus L. in treatment of gastrointestinal helminths in Eastern Cape Province, South Africa. Asian Pacific Journal of Tropical Biomedicine, 7(12), 1071–1078. https://doi.org/10.1016/j.apjtb.2017.10.008
  • Larayetan, R., Ojemaye, M.O., Okoh, O.O., ve Okoh, A.I. (2019). Silver nanoparticles mediated by Callistemon citrinus extracts and their antimalaria, antitrypanosoma and antibacterial efficacy. Journal of Molecular Liquids, 273, 615-625. https://doi.org/10.1016/j.molliq.2018.10.020
  • Li-Weber, M. (2013). Targeting apoptosis pathways in cancer by Chinese medicine. Cancer Letters, 332(2), 304-312. https://doi.org/10.1016/j.canlet.2010.07.015
  • Minh, T. N., Van, T. M., Andriana, Y., Vinh, L. T., Hau, D. V., Duyen, D. H., ve Guzman-Gelani, C. D. (2019). Antioxidant, xanthine oxidase, α-amylase and α-glucosidase inhibitory activities of bioactive compounds from Rumex crispus L. root. Molecules, 24(21), 3899. https://doi.org/10.3390/molecules24213899
  • Nazeam, J. A., Al-Shareef, W. A., Helmy, M. W., & El-Haddad, A. E. (2020). Bioassay-guided isolation of potential bioactive constituents from pomegranate agrifood by-product. Food Chemistry, 326, 126993. https://doi.org/10.1016/j.foodchem.2020.126993
  • Nuzula, A. F., Kristanti, A. N., Aminah, N. S., Takaya, Y., Sahadatin, M. N., ve Wardana, A. P. (2023). Isolation and structure elucidation of secondary metabolite compounds from Curcuma aeruginosa. Jurnal Kimia Riset, 8(1), 81–91. https://doi.org/10.20473/jkr.v8i1.44073
  • Ntemafack, A., Sabeena, A., Aristide, D., Ravi, S., Serge, A., Jules-Roger, K., Alain, W., Asha, Chaubey. (2023). Chemical profile, biological potential, bioprospection and biotechnological application of endophytes of Rumex: A systematic review. Industrial Crops & Products, 195, 116474. https://doi.org/10.1016/j.indcrop.2023.116474
  • Orban-Gyapai, O., Liktor-Busa, E., Kusz, N., Stefko, D., Urban, E., Hohmann, J., ve Vasas, A. (2017). Antibacterial screening of Rumex species native to the Carpathian Basin and bioactivity-guided isolation of compounds from Rumex aquaticus. Fitoterapia, 118, 101-106. https://doi.org/10.1016/j.fitote.2017.03.009
  • Pham, D. Q., Han, J. W., Dao, N. T., Kim, J.-C., Pham, H. T., Nguyen, T. H., Choib G.J., Vu H.D., Le Dang, Q. (2020). In vitro and in vivo antimicrobial potential against various phytopathogens and chemical constituents of the aerial part of Rumex chinensis Campd. South African Journal of Botany, 133, 73–82. https://doi.org/10.1016/j.sajb.2020.07.006
  • Saoudi, M. M., Bouajila, J., Rahmani, R., ve Alouani, K. (2021). Phytochemical Composition, Antioxidant, Antiacetylcholinesterase, and Cytotoxic Activities of Rumex crispus L. International Journal of Analytical Chemistry, 6675436. https://doi.org/10.1155/2021/6675436
  • Sarikahya, N. B., Goren, A. C., ve Kirmizigul, S. (2019). Simultaneous determination of several flavonoids and phenolic compounds in nineteen different Cephalaria species by HPLC-MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 173, 120-125. https://doi.org/10.1016/j.jpba.2019.05.019
  • Seigler, D. S. (2012). Plant secondary metabolism. Springer Science & Business Media.
  • Simoes, C.M.O., Schenkel, E.P., Gosman, G., Mello, J.C.P., Mentz, L.A., ve Petrovick, P.R. (2007). Farmacognosia: da planta ao medicamento. Editora da UFSC, Floriano´polis, 1102.
  • Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2013). Fundamentals of Analytical Chemistry. Cengage learning.
  • Smolarz, H.D., Swatko-Ossor, M., Ginalska, G., ve Medynska, E. (2013). Antimycobacterial effect of extract and its components from Rheum rhaponticum. Journal of AOAC International, 96(1), 155-160. https://doi.org/10.5740/jaoacint.12-010
  • Tsamo, L. D. F., Yimgang, L. V., Wouamba, S. C. N., Mkounga, P., Nkengfack, A. E., Voutquenne-Nazabadioko, L., ve Sewald, N. (2021). A new ceramide (Rumexamide) and other chemical constituents from Rumex abyssinicus Jacq (Polygonaceae): isolation, characterization, antibacterial activities and chemophenetic significance. Advances in Biological Chemistry, 11(05), 266-282. https://doi.org/10.4236/abc.2021.115018
  • Vasas, A., Orbán-Gyapai, O., ve Hohmann, J. (2015). The genus Rumex: review of traditional uses, phytochemistry, and pharmacology. Journal of Ethnopharmacology, 175, 198-228. https://doi.org/10.1016/j.jep.2015.09.001
  • WHO. (1993) Summar WHO guidelines for the assessment of herbal medicines. Herbal Grom. 28:13–4.
  • Yıldırım Baştemur, G., Akpınar, R., Kır, E., ve Perçin Özkorucuklu, S., (2024). Development and Validation of the HPLC-DAD Method for the Simultaneous Determination of Anthraquinones in Rumex crispus L. and Rumex acetosella L. Plants and Evaluation of Their Antioxidant Capacities. Journal of Analytical Chemistry,79(2), 179-189. https://doi.org/10.1134/S1061934824020035
  • Yıldırım, A., Mavi, A., ve Kara, A.A. (2001). Determination of Antioxidant and Antimicrobial Activities of Rumex crispus L. Extracts. Journal of Agricultural and Food Chemistry, 49, 4083–4089. https://doi.org/10.1021/jf0103572
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Physical Chemistry (Other)
Journal Section Articles
Authors

Elif Günay 0000-0001-5889-1617

Dilek Mutlu 0009-0001-7368-1287

Deniz Küpçük 0009-0005-1417-6503

Gizem Yıldırım Baştemur 0000-0002-4634-4525

Sabriye Perçin Özkorucuklu 0000-0001-9778-2034

Project Number FLO-2023-40354
Early Pub Date November 11, 2024
Publication Date December 2, 2024
Submission Date May 14, 2024
Acceptance Date August 27, 2024
Published in Issue Year 2024 Volume: 24 Issue: 6

Cite

APA Günay, E., Mutlu, D., Küpçük, D., Yıldırım Baştemur, G., et al. (2024). Rumex Crispus L.’dan Sekonder Metabolitlerin Kromatografik Yöntemlerle İzolasyonu ve Tayini. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(6), 1305-1312. https://doi.org/10.35414/akufemubid.1483597
AMA Günay E, Mutlu D, Küpçük D, Yıldırım Baştemur G, Perçin Özkorucuklu S. Rumex Crispus L.’dan Sekonder Metabolitlerin Kromatografik Yöntemlerle İzolasyonu ve Tayini. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2024;24(6):1305-1312. doi:10.35414/akufemubid.1483597
Chicago Günay, Elif, Dilek Mutlu, Deniz Küpçük, Gizem Yıldırım Baştemur, and Sabriye Perçin Özkorucuklu. “Rumex Crispus L.’dan Sekonder Metabolitlerin Kromatografik Yöntemlerle İzolasyonu Ve Tayini”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 6 (December 2024): 1305-12. https://doi.org/10.35414/akufemubid.1483597.
EndNote Günay E, Mutlu D, Küpçük D, Yıldırım Baştemur G, Perçin Özkorucuklu S (December 1, 2024) Rumex Crispus L.’dan Sekonder Metabolitlerin Kromatografik Yöntemlerle İzolasyonu ve Tayini. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 6 1305–1312.
IEEE E. Günay, D. Mutlu, D. Küpçük, G. Yıldırım Baştemur, and S. Perçin Özkorucuklu, “Rumex Crispus L.’dan Sekonder Metabolitlerin Kromatografik Yöntemlerle İzolasyonu ve Tayini”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 6, pp. 1305–1312, 2024, doi: 10.35414/akufemubid.1483597.
ISNAD Günay, Elif et al. “Rumex Crispus L.’dan Sekonder Metabolitlerin Kromatografik Yöntemlerle İzolasyonu Ve Tayini”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/6 (December 2024), 1305-1312. https://doi.org/10.35414/akufemubid.1483597.
JAMA Günay E, Mutlu D, Küpçük D, Yıldırım Baştemur G, Perçin Özkorucuklu S. Rumex Crispus L.’dan Sekonder Metabolitlerin Kromatografik Yöntemlerle İzolasyonu ve Tayini. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:1305–1312.
MLA Günay, Elif et al. “Rumex Crispus L.’dan Sekonder Metabolitlerin Kromatografik Yöntemlerle İzolasyonu Ve Tayini”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 6, 2024, pp. 1305-12, doi:10.35414/akufemubid.1483597.
Vancouver Günay E, Mutlu D, Küpçük D, Yıldırım Baştemur G, Perçin Özkorucuklu S. Rumex Crispus L.’dan Sekonder Metabolitlerin Kromatografik Yöntemlerle İzolasyonu ve Tayini. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(6):1305-12.