Research Article
BibTex RIS Cite

Effects of Intermittent Fasting Combined With Young Blood Plasma Administration on Aged Gut Microbiota

Year 2025, Volume: 25 Issue: 1, 1 - 9

Abstract

The aging process leads to dysbiosis of the gut microbiota, which is associated with various diseases. In this context, the effects of intermittent fasting and young blood plasma transfusion on the renewal of senescent cells hold significant importance in the literature. The current study aims to evaluate the cumulative effects of these two interventions on the gut microbiota within the context of aging. The research was conducted on 24-month-old male Sprague-Dawley rats, examining the effects of a 30-day intermittent fasting protocol coupled with young blood plasma transfusion on the microbiota. Four distinct groups were defined: control (Cnt, n=7), those only undergoing intermittent fasting (Fst, n=7), those receiving only young plasma transfusion (Pls, n=7), and those undergoing both intermittent fasting and young plasma transfusion (FstPls, n=7). In the intermittent fasting regimen, rats were restricted from accessing food for 18 hours a day, followed by a 6-hour feeding window. For groups receiving young plasma transfusion, each animal was administered 0.5 ml of plasma daily. Metagenomic analysis results have shown significant inter-group differences in Shannon and Simpson alpha diversity indexes and the Firmicutes/Bacteroidetes ratio. However, no significant increase in species diversity was observed. Notably, the decrease in the F/B ratio following young plasma transfusion indicates a positive restructuring of the microbiota composition. These results contribute significantly to understanding the potential effects of interventions on the health of the aging gut microbiota, suggesting that optimizing the timing of these two approaches could offer synergistic benefits.

References

  • Aleman, F.D.D. and Valenzano, D.R., 2019. Microbiome evolution during host aging. PLoS Pathogens, 15, e1007727. https://doi.org/10.1371/journal.ppat.1007727
  • Allen-Vercoe, E., Daigneault, M., White, A., et al., 2012. Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota; reclassification of Eubacterium hadrum Moore et al. 1976. Anaerobe, 18, 523-529. https://doi.org/10.1016/j.anaerobe.2012.09.002
  • Bagherniya, M., Butler, A.E., Barreto, G.E., Sahebkar, A., 2018. The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Ageing Research Reviews, 47, 183-197. https://doi.org/10.1016/j.arr.2018.08.004
  • Ceylani, T., Allahverdi, H., Teker, H.T., 2023. Role of age-related plasma in the diversity of gut bacteria. Archives of Gerontology and Geriatrics, 111, 105003. https://doi.org/10.1016/j.archger.2023.105003
  • Ceylani, T., Teker, H.T., 2022. The effect of young blood plasma administration on gut microbiota in middle-aged rats. Archives of Microbiology, 204, 541. https://doi.org/10.1007/s00203-022-03154-8
  • Chassard, C., Delmas, E., Robert, C., et al., 2011. Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. International Journal of Systematic and Evolutionary Microbiology, 62, 138-143. https://doi.org/10.1099/ijs.0.027375-0
  • de Cabo, R., Mattson, M.P., 2019. Effects of Intermittent Fasting on Health, Aging, and Disease. New England Journal of Medicine, 381, 2541-2551. https://doi.org/10.1056/NEJMra1905136
  • DeJong, E.N., Surette, M.G., Bowdish, D.M.E., 2020. The Gut Microbiota and Unhealthy Aging: Disentangling Cause from Consequence. Cell Host & Microbe, 28, 180-189. https://doi.org/10.1016/j.chom.2020.07.013
  • Falalyeyeva, T., Chornenka, N., Cherkasova, L., et al., 2022. Gut Microbiota Interactions With Obesity. In: Glibetic, M. (ed) Comprehensive Gut Microbiota. Elsevier, Oxford, pp. 201-219.
  • Fan, Y., Pedersen, O., 2021. Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology, 19, 55-71. https://doi.org/10.1038/s41579-020-0433-9
  • Gurbanov, R., Kabaoğlu, U., Yağcı, T., 2022. Metagenomic analysis of intestinal microbiota in wild rats living in urban and rural habitats. Folia Microbiologica (Praha), 67, 469-477. https://doi.org/10.1007/s12223-022-00951-y
  • Hanske, L., Bui, N., Blaut, M., et al., 2013. Intestinimonas butyriciproducens gen. nov., sp. nov., a butyrate-producing bacterium from the mouse intestine. International Journal of Systematic and Evolutionary Microbiology, 4606-4612. https://doi.org/10.1099/ijs.0.051441-0
  • Hernáez, J.R., Cucchi, M.E.C., Cravero, S., et al., 2018. The first complete genomic structure of butyrivibrio fibrisolvens and its chromid. Microbial Genomics, 4, e000216. https://doi.org/10.1099/mgen.0.000216
  • Indiani, C.M.D.S.P., Rizzardi, K.F., Castelo, P.M., et al., 2018. Childhood Obesity and Firmicutes/Bacteroidetes Ratio in the Gut Microbiota: A Systematic Review. Childhood Obesity, 14, 501-509. https://doi.org/10.1089/chi.2018.0040
  • Karpat, I., Karolyi, M., Pawelka, E., et al., 2021. Flavonifractor plautii bloodstream infection in an asplenic patient with infectious colitis. Wiener Klinische Wochenschrift, 133, 724-726. https://doi.org/10.1007/s00508-021-01877-0
  • Lagkouvardos, I., Pukall, R., Abt, B., et al., 2016. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nature Microbiology, 1, 16131. https://doi.org/10.1038/nmicrobiol.2016.131
  • Li, D., Chen, H., Mao, B., et al., 2017. Microbial Biogeography and Core Microbiota of the Rat Digestive Tract. Scientific Reports, 8, 1-16. https://doi.org/10.1038/srep45840
  • Li, Q., Hu, W., Liu, W.-X., et al., 2021. Streptococcus thermophilus Inhibits Colorectal Tumorigenesis Through Secreting β-Galactosidase. Gastroenterology, 160, 1179-1193.e14. https://doi.org/10.1053/j.gastro.2020.09.003
  • Matthews, J.A., 2014. Diversity Indices. Encyclopedia of Environmental Change, 1-7. https://doi.org/10.4135/9781446247501.n1100
  • Meehan, C.J., Beiko, R.G., 2014. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biology and Evolution, 6, 703-713. https://doi.org/10.1093/gbe/evu050
  • Montalban-Arques, A., Katkeviciute, E., Busenhart, P., et al., 2021. Commensal Clostridiales strains mediate effective anti-cancer immune response against solid tumors. Cell Host & Microbe, 29, 1573-1588.e7. https://doi.org/10.1016/j.chom.2021.08.001
  • Nagpal, R., Mainali, R., Ahmadi, S., et al., 2018. Gut microbiome and aging: Physiological and mechanistic insights. Nutrition and Healthy Aging, 4, 267-285. https://doi.org/10.3233/NHA-170030
  • Silva, Y.P., Bernardi, A., Frozza, R.L., 2020. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Frontiers in Endocrinology (Lausanne), 11, 25. https://doi.org/10.3389/fendo.2020.00025
  • Teker, H.T., Ceylani, T., 2022. Intermittent fasting supports the balance of the gut microbiota composition. International Microbiology. 26, 51-57. https://doi.org/10.1007/s10123-022-00272-7
  • Tripathi, S.S., Kumar, R., Arya, J.K., Rizvi, S.I., 2021. Plasma from Young Rats Injected into Old Rats Induce Antiaging Effects. Rejuvenation Research, 24, 206-212. https://doi.org/10.1089/rej.2020.2354
  • Villeda, S.A., Luo, J., Mosher, K.I., et al., 2011. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature, 477, 90-94. https://doi.org/10.1038/nature10357
  • Villeda, S.A., Plambeck, K.E., Middeldorp, J., et al., 2014. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nature Medicine, 20, 659-663. https://doi.org/10.1038/nm.3569
  • Wolf, P.G., Devendran, S., Doden, H.L., et al., 2021. Berberine alters gut microbial function through modulation of bile acids. BMC Microbiology, 21, 1-15. https://doi.org/10.1186/s12866-020-02020-1
  • Wood, D.E., Salzberg, S.L., 2014. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biology, 15, 2-12. https://doi.org/10.1186/gb-2014-15-3-r46
  • Zagato, E., Pozzi, C., Bertocchi, A., et al., 2020. Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth. Nature Microbiology, 5, 511-524. https://doi.org/10.1038/s41564-019-0649-5
  • Zhao, Y., Qian, R., Zhang, J., et al., 2020. Young blood plasma reduces Alzheimer’s disease-like brain pathologies and ameliorates cognitive impairment in 3×Tg-AD mice. Alzheimer’s Research & Therapy, 12, 70. https://doi.org/10.1186/s13195-020-00639-w

Aralıklı Oruç ile Birlikte Genç Kan Plazma Uygulamasının Yaşlı Bağırsak Mikrobiyotası Üzerindeki Etkileri

Year 2025, Volume: 25 Issue: 1, 1 - 9

Abstract

Yaşlanma süreci, bağırsak mikrobiyotasının disbiyozisine ve bu durumun çeşitli hastalıklarla ilişkilendirilmesine neden olmaktadır. Bu kontekste, aralıklı oruç ve genç kan plazması transfüzyonunun, senesans hücrelerinin yenilenmesi üzerindeki etkileri literatürde önem arz etmektedir. Mevcut çalışma, yaşlanma bağlamında bu iki müdahalenin bağırsak mikrobiyotası üzerindeki kumulatif etkilerini değerlendirmeyi amaçlamaktadır. Araştırma, 24 aylık erkek Sprague-Dawley ratlar üzerinde gerçekleştirilmiş olup, 30 günlük bir aralıklı oruç protokolü esnasında genç kan plazması transfüzyonunun mikrobiyota üzerindeki etkilerini incelemiştir. Dört farklı grup tanımlanmıştır: kontrol (Cnt, n=7), yalnızca aralıklı oruç tutanlar (Fst, n=7), sadece genç plazma transfüzyonu alanlar (Pls, n=7), ve hem aralıklı oruç tutan hem de genç plazma transfüzyonu alanlar (FstPls, n=7). Aralıklı oruç rejiminde, ratlara günde 18 saat boyunca yiyecek erişimi kısıtlanmış, ardından 6 saatlik bir beslenme penceresi tanımlanmıştır. Genç plazma transfüzyonu uygulanan gruplarda, her bir hayvana günlük 0,5 ml plazma verilmiştir. Metagenomik analiz sonuçları, Shannon ve Simpson alfa çeşitlilik indeksleri ile Firmikutes/Bakterioidetes oranında anlamlı gruplar arası farklılıklar ortaya koymuştur. Ancak, tür çeşitliliği açısından anlamlı bir artış gözlemlenmemiştir. Özellikle, genç plazma transfüzyonu sonrası F/B oranındaki düşüş, mikrobiyota yapısında olumlu bir yeniden düzenlenmeye işaret etmektedir. Bu sonuçlar, yaşlanan bağırsak mikrobiyotasının sağlığı üzerindeki müdahalelerin potansiyel etkilerini derinlemesine anlamak için önemli bir katkı sağlamakta olup, bu iki yaklaşımın zamanlamasının optimizasyonunun, sinerjik faydalar sunabileceğini öne sürmektedir

Ethical Statement

Çalışmamız Saki Yenilli Deney Hayvanı Üretim ve Uygulama Laboratuvarından Etik Kurul onayı (onay numarası: 2022/10) ile gerçekleştirilmiştir.

References

  • Aleman, F.D.D. and Valenzano, D.R., 2019. Microbiome evolution during host aging. PLoS Pathogens, 15, e1007727. https://doi.org/10.1371/journal.ppat.1007727
  • Allen-Vercoe, E., Daigneault, M., White, A., et al., 2012. Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota; reclassification of Eubacterium hadrum Moore et al. 1976. Anaerobe, 18, 523-529. https://doi.org/10.1016/j.anaerobe.2012.09.002
  • Bagherniya, M., Butler, A.E., Barreto, G.E., Sahebkar, A., 2018. The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Ageing Research Reviews, 47, 183-197. https://doi.org/10.1016/j.arr.2018.08.004
  • Ceylani, T., Allahverdi, H., Teker, H.T., 2023. Role of age-related plasma in the diversity of gut bacteria. Archives of Gerontology and Geriatrics, 111, 105003. https://doi.org/10.1016/j.archger.2023.105003
  • Ceylani, T., Teker, H.T., 2022. The effect of young blood plasma administration on gut microbiota in middle-aged rats. Archives of Microbiology, 204, 541. https://doi.org/10.1007/s00203-022-03154-8
  • Chassard, C., Delmas, E., Robert, C., et al., 2011. Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. International Journal of Systematic and Evolutionary Microbiology, 62, 138-143. https://doi.org/10.1099/ijs.0.027375-0
  • de Cabo, R., Mattson, M.P., 2019. Effects of Intermittent Fasting on Health, Aging, and Disease. New England Journal of Medicine, 381, 2541-2551. https://doi.org/10.1056/NEJMra1905136
  • DeJong, E.N., Surette, M.G., Bowdish, D.M.E., 2020. The Gut Microbiota and Unhealthy Aging: Disentangling Cause from Consequence. Cell Host & Microbe, 28, 180-189. https://doi.org/10.1016/j.chom.2020.07.013
  • Falalyeyeva, T., Chornenka, N., Cherkasova, L., et al., 2022. Gut Microbiota Interactions With Obesity. In: Glibetic, M. (ed) Comprehensive Gut Microbiota. Elsevier, Oxford, pp. 201-219.
  • Fan, Y., Pedersen, O., 2021. Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology, 19, 55-71. https://doi.org/10.1038/s41579-020-0433-9
  • Gurbanov, R., Kabaoğlu, U., Yağcı, T., 2022. Metagenomic analysis of intestinal microbiota in wild rats living in urban and rural habitats. Folia Microbiologica (Praha), 67, 469-477. https://doi.org/10.1007/s12223-022-00951-y
  • Hanske, L., Bui, N., Blaut, M., et al., 2013. Intestinimonas butyriciproducens gen. nov., sp. nov., a butyrate-producing bacterium from the mouse intestine. International Journal of Systematic and Evolutionary Microbiology, 4606-4612. https://doi.org/10.1099/ijs.0.051441-0
  • Hernáez, J.R., Cucchi, M.E.C., Cravero, S., et al., 2018. The first complete genomic structure of butyrivibrio fibrisolvens and its chromid. Microbial Genomics, 4, e000216. https://doi.org/10.1099/mgen.0.000216
  • Indiani, C.M.D.S.P., Rizzardi, K.F., Castelo, P.M., et al., 2018. Childhood Obesity and Firmicutes/Bacteroidetes Ratio in the Gut Microbiota: A Systematic Review. Childhood Obesity, 14, 501-509. https://doi.org/10.1089/chi.2018.0040
  • Karpat, I., Karolyi, M., Pawelka, E., et al., 2021. Flavonifractor plautii bloodstream infection in an asplenic patient with infectious colitis. Wiener Klinische Wochenschrift, 133, 724-726. https://doi.org/10.1007/s00508-021-01877-0
  • Lagkouvardos, I., Pukall, R., Abt, B., et al., 2016. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nature Microbiology, 1, 16131. https://doi.org/10.1038/nmicrobiol.2016.131
  • Li, D., Chen, H., Mao, B., et al., 2017. Microbial Biogeography and Core Microbiota of the Rat Digestive Tract. Scientific Reports, 8, 1-16. https://doi.org/10.1038/srep45840
  • Li, Q., Hu, W., Liu, W.-X., et al., 2021. Streptococcus thermophilus Inhibits Colorectal Tumorigenesis Through Secreting β-Galactosidase. Gastroenterology, 160, 1179-1193.e14. https://doi.org/10.1053/j.gastro.2020.09.003
  • Matthews, J.A., 2014. Diversity Indices. Encyclopedia of Environmental Change, 1-7. https://doi.org/10.4135/9781446247501.n1100
  • Meehan, C.J., Beiko, R.G., 2014. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biology and Evolution, 6, 703-713. https://doi.org/10.1093/gbe/evu050
  • Montalban-Arques, A., Katkeviciute, E., Busenhart, P., et al., 2021. Commensal Clostridiales strains mediate effective anti-cancer immune response against solid tumors. Cell Host & Microbe, 29, 1573-1588.e7. https://doi.org/10.1016/j.chom.2021.08.001
  • Nagpal, R., Mainali, R., Ahmadi, S., et al., 2018. Gut microbiome and aging: Physiological and mechanistic insights. Nutrition and Healthy Aging, 4, 267-285. https://doi.org/10.3233/NHA-170030
  • Silva, Y.P., Bernardi, A., Frozza, R.L., 2020. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Frontiers in Endocrinology (Lausanne), 11, 25. https://doi.org/10.3389/fendo.2020.00025
  • Teker, H.T., Ceylani, T., 2022. Intermittent fasting supports the balance of the gut microbiota composition. International Microbiology. 26, 51-57. https://doi.org/10.1007/s10123-022-00272-7
  • Tripathi, S.S., Kumar, R., Arya, J.K., Rizvi, S.I., 2021. Plasma from Young Rats Injected into Old Rats Induce Antiaging Effects. Rejuvenation Research, 24, 206-212. https://doi.org/10.1089/rej.2020.2354
  • Villeda, S.A., Luo, J., Mosher, K.I., et al., 2011. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature, 477, 90-94. https://doi.org/10.1038/nature10357
  • Villeda, S.A., Plambeck, K.E., Middeldorp, J., et al., 2014. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nature Medicine, 20, 659-663. https://doi.org/10.1038/nm.3569
  • Wolf, P.G., Devendran, S., Doden, H.L., et al., 2021. Berberine alters gut microbial function through modulation of bile acids. BMC Microbiology, 21, 1-15. https://doi.org/10.1186/s12866-020-02020-1
  • Wood, D.E., Salzberg, S.L., 2014. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biology, 15, 2-12. https://doi.org/10.1186/gb-2014-15-3-r46
  • Zagato, E., Pozzi, C., Bertocchi, A., et al., 2020. Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth. Nature Microbiology, 5, 511-524. https://doi.org/10.1038/s41564-019-0649-5
  • Zhao, Y., Qian, R., Zhang, J., et al., 2020. Young blood plasma reduces Alzheimer’s disease-like brain pathologies and ameliorates cognitive impairment in 3×Tg-AD mice. Alzheimer’s Research & Therapy, 12, 70. https://doi.org/10.1186/s13195-020-00639-w
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Biochemistry and Cell Biology (Other), Ecology (Other)
Journal Section Articles
Authors

Hüseyin Allahverdi 0000-0001-7192-6669

Burcu Baba 0000-0003-0994-3577

Early Pub Date January 28, 2025
Publication Date
Submission Date March 6, 2024
Acceptance Date September 3, 2024
Published in Issue Year 2025 Volume: 25 Issue: 1

Cite

APA Allahverdi, H., & Baba, B. (2025). Aralıklı Oruç ile Birlikte Genç Kan Plazma Uygulamasının Yaşlı Bağırsak Mikrobiyotası Üzerindeki Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(1), 1-9.
AMA Allahverdi H, Baba B. Aralıklı Oruç ile Birlikte Genç Kan Plazma Uygulamasının Yaşlı Bağırsak Mikrobiyotası Üzerindeki Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. January 2025;25(1):1-9.
Chicago Allahverdi, Hüseyin, and Burcu Baba. “Aralıklı Oruç Ile Birlikte Genç Kan Plazma Uygulamasının Yaşlı Bağırsak Mikrobiyotası Üzerindeki Etkileri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, no. 1 (January 2025): 1-9.
EndNote Allahverdi H, Baba B (January 1, 2025) Aralıklı Oruç ile Birlikte Genç Kan Plazma Uygulamasının Yaşlı Bağırsak Mikrobiyotası Üzerindeki Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 1 1–9.
IEEE H. Allahverdi and B. Baba, “Aralıklı Oruç ile Birlikte Genç Kan Plazma Uygulamasının Yaşlı Bağırsak Mikrobiyotası Üzerindeki Etkileri”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 1, pp. 1–9, 2025.
ISNAD Allahverdi, Hüseyin - Baba, Burcu. “Aralıklı Oruç Ile Birlikte Genç Kan Plazma Uygulamasının Yaşlı Bağırsak Mikrobiyotası Üzerindeki Etkileri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/1 (January 2025), 1-9.
JAMA Allahverdi H, Baba B. Aralıklı Oruç ile Birlikte Genç Kan Plazma Uygulamasının Yaşlı Bağırsak Mikrobiyotası Üzerindeki Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:1–9.
MLA Allahverdi, Hüseyin and Burcu Baba. “Aralıklı Oruç Ile Birlikte Genç Kan Plazma Uygulamasının Yaşlı Bağırsak Mikrobiyotası Üzerindeki Etkileri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 1, 2025, pp. 1-9.
Vancouver Allahverdi H, Baba B. Aralıklı Oruç ile Birlikte Genç Kan Plazma Uygulamasının Yaşlı Bağırsak Mikrobiyotası Üzerindeki Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(1):1-9.