Değerli bir enerji taşıyıcısı olan hidrojen, yenilenebilir enerji teknolojilerinde atmosfere sera gazı emisyonunun azaltılmasında önemli bir rol oynamaktadır. Ancak hidrojen gazı doğada mevcut olmayıp hidrojen içeren bileşiklerden elde edilmesi gerekmektedir. Metal hidrürler hidrojen gazı üretimi için mükemmel adaylardır. Karmaşık metal hidrürler arasında sodyum borhidrür (NaBH4), gelişmiş hidrojen depolama kapasitesi ve düşük maliyeti gibi çeşitli avantajlara sahiptir. Bu çalışmada katalitik hidroliz yoluyla NaBH4’ten hidrojen gazı üretilmektedir. Bu amaçla yıkayarak kaplama yöntemi ile yüksek yüzey alanına sahip alümina destekli Ni/Al2O3, NiCo/Al2O3 ve Ru-NiCo/Al2O3 yapılı katalizörler hazırlanmış olup bu katalizörler sürekli akışlı reaktörde test edilmiştir. Elde edilen sonuçlara göre Ru-NiCo/Al2O3 yapılı katalizör başlangıçta en yüksek katalitik aktiviteye sahip olup reaksiyon boyunca aktivitesinde hızlı bir azalma gözlemlenmiştir. NiCo/Al2O3 yapılı katalizörün varlığında ise başlangıçta daha düşük bir katalitik aktivitesi görülmesine rağmen reaksiyon boyunca hidrojen üretimi hızla artmaya devam etmiştir. Bu nedenle NiCo/Al2O3 yapılı katalizör, Ru-NiCo/Al2O3 yapısına göre daha verimli bir katalizör olarak önerilebilir.
Arzac, G. M., Hufschmidt, D., Jimenes De Haro, M. C., Fernandez, A., Sarmento, B., Jimenez, M. A., Jimenez, M. M., 2012. Deactivation, reactivation and memory effect on Co-B catalyst for sodium borohydride hydrolysis operating in high conversion conditions. International Journal of Hydrogen, 37, 14373-14381.
https://doi.org/10.1016/j.ijhydene.2012.06.117
Balkanli, E. and Figen, H. E., 2019. Sodium borohydride hydrolysis by using ceramic foam supported bimetallic and trimetallic catalysts. International Journal of Hydrogen, 44, 9959-9969.
https://doi.org/10.1016/j.ijhydene.2018.12.010
Baykara S., 2018. Hydrogen: A brief overview on its sources, production and environmental impact. International Journal of Hydrogen, 43, 10605-10614.
https://doi.org/10.1016/j.ijhydene.2018.02.022
Baykara, Z. S., Figen, H. E., Karaismailoğlu, M., (2022). Environmental issues with hydrogen production. Comprehensive Renewable Energy, Second Edition, Amsterdam: Elsevier Science, Oxford/Amsterdam, 107-126.
https://doi.org/10.1016/B978-0-12-819727-1.00025-X
Bozkurt, G., Özer, A., Yurtcan, A. B., 2019. Development of effective catalysts for hydrogen generation from sodium borohydride: Ru, Pt, Pd nanoparticles supported on Co3O4. Energy, 180, 702-713.
https://doi.org/10.1016/j.energy.2019.04.196
Fernandes, R, Patel, N., Miotello, A., 2009. Hydrogen generation by hydrolysis of alkaline NaBH4 solution with Cr-promoted Co–B amorphous catalyst. Applied Catalysis B: Environmental, 92, 68-74.
https://doi.org/10.1016/j.apcatb.2009.07.019
Filiz, B. C. and Figen, A. K., 2019. Hydrogen production from sodium borohydride originated compounds: Fabrication of electrospun nano-crystalline Co3O4 catalyst and its activity. International Journal of Hydrogen, 20, 9883-9895.
https://doi.org/10.1016/j.ijhydene.2019.02.111
Laversenne, L., Goutaudier, C., Chiriac, R., Sigala, C., Bonnetot, B., 2008. Hydrogen storage in borohydrides Comparison of hydrolysis conditions of LiBH4, NaBH4 and KBH4. Journal of Thermal Analysis and Calorimetry, 94, 785-790.
https://doi.org/10.1007/s10973-008-9073-4
Liu, B. H. and Li, Z. P., 2009. A review: hydrogen generation from borohydride hydrolysis reaction. Journal of Power Sources, 187, 527-534.
https://doi.org/10.1016/j.jpowsour.2008.11.032
Luo, Y., Wang, Q., Li, J., Xu, F., Sun, L., Zou, Y., Chu, H., Li, B., Zhang, K., 2020. Enhanced hydrogen storage/sensing of metal hydrides by nano-modification. Materials Today Nano, 9, 10071-10100.
https://doi.org/10.1016/j.mtnano.2019.100071.
Patel, N. and Miotello, A., 2015. Progress in Co–B related catalyst for hydrogen production by hydrolysis of boron-hydrides: A review and the perspectives to substitute noble metals. International Journal of Hydrogen, 40, 1429-1464.
https://doi.org/10.1016/j.ijhydene.2014.11.052
Özkar, S. and Zahmakiran M., 2005. Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst. Journal of Alloys and Compounds, 404-406, 728-731.
https://doi.org/10.1016/j.jallcom.2004.10.084
Schlesinger, H. I., Brown, H. C., Finholt, A. E., Gilbreath, J. R., Hoekstra, H. R., & Hyde, E. K. (1953). Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen1. Journal of the American Chemical Society, 75, 215-219.
https://doi.org/10.1021/ja01097a057
Schneemann, A., White, J. L., Kang, S., Jeong, S., Wan, L. F., Cho, E. S., Heo, T. W., Prendergast, D., Urban, J. J., Wood, B. C., Allendorf, M. D., Stavila, V., 2018. Nanostructured metal hydrides for hydrogen storage. Chemical Reviews, 118, 10775-10839.
https://doi.org/10.1021/acs.chemrev.8b00313
Solovev, M. V., Chashchikhin, O. V., Dorovatovski, P. V., Khrustalev, V. N., Zyubin, A. S., Zyubina, T. S., Kravchenko, O. V., Zaytsev, A. A., Dobrovosky, Y. A., 2018. Hydrolysis of Mg(BH4)2 and its coordination compounds as a way to obtain hydrogen. Journal of Power Sources, 377, 93-102.
https://doi.org/10.1016/j.jpowsour.2017.11.090
Su, C-C., Lu, M-C., Wang, S-L., Huang, Y-H. (2012). Ruthenium immobilized on Al2O3 pellets as a catalyst for hydrogen generation from hydrolysis and methanolysis of sodium borohydride. RSC Advances, 2, 2073-2079.
https://doi.org/10.1039/c2ra01233b
Uzundurukan, A. and Devrim., Y., 2019. Hydrogen generation from sodium borohydride hydrolysis by multi-walled carbon nanotube supported platinum catalyst: A kinetic study. International Journal of Hydrogen, 44, 17586-17594.
https://doi.org/10.1016/j.ijhydene.2019.04.188
Xu, D., Zhang, H. Ye, W. (2007). Hydrogen generation from hydrolysis of alkaline sodium borohydride solution using Pt/C catalyst. Catalysis Communications, 8, 1767-1771.
https://doi:10.1016/j.catcom.2007.02.028
Xu, F., Ren, J., Ma, J., Wang, Y., Zhang, K., Cao, Z., Sun, Q., Wu, S., Li, G., Bai, S., 2024. A review of hydrogen production kinetics from the hydrolysis of NaBH4 solution catalyzed by Co-based catalysts. International Journal of Hydrogen, 50, 827-844.
https://doi.org/10.1016/j.ijhydene.2023.08.142
Wang, Y., Hu, Z., Chen, W., Wu, S., Li, G., Chou, S., 2021. Non-noble metal-based catalysts applied to hydrogen evolution from hydrolysis of boron hydrides. Small, 2, 2000135-2000161.
https://doi.org/10.1002/sstr.202000135
Yang, C. C., Chen, M. S., Chen, Y. W., 2011. Hydrogen generation by hydrolysis of sodium borohydride on CoB/SiO2 catalyst. International Journal of Hydrogen, 36, 1418-1423.
https://doi.org/10.1016/j.ijhydene.2010.11.006
Zhang H., Zhang, L., Rodriguez-Perez, I. A., Miao, W., Chen, K., Wang, W., Li, Y., Han, S., 2021. Carbon nanospheres supported bimetallic Pt-Co as an efficient catalyst for NaBH4 hydrolysis. Applied Surface Science, 540, 148296-148304.
https://doi.org/10.1016/j.apsusc.2020.148296
Zhu, Y., Li, J., Yang, L., Huang, Z. , Yang X-S., Zhou, Q., Tang, R., Shen, S. and Ouyang, L., 2023. Closed loops for hydrogen storage: Hydrolysis and regeneration of metal borohydrides. Journal of Power Sources, 563, 232833-232847.
https://doi.org/10.1016/jpowsour.2023.232833
Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4
Year 2025,
Volume: 25 Issue: 1, 53 - 58, 07.02.2025
Hydrogen as a valuable energy carrier plays a significant role in renewable energy technologies to reduce the greenhouse gas emission into the atmosphere. However, natural hydrogen gas does not exist in the universe and should be gained from hydrogen-containing compounds. In this regard, metal hydrides are excellent candidates for producing hydrogen gas. Among complex metal hydrides, sodium borohydride (NaBH4) possesses its advantages due to its enhanced hydrogen storage capacity and low cost. In the present study, hydrogen gas was generated through the catalytic hydrolysis of NaBH4. In this regard, high-surface-area alumina-supported Ni/Al2O3, NiCo/Al2O3, and Ru-NiCo/Al2O3 catalysts have been prepared via wash coating method and tested in a continuous flow reactor. The results indicate that the Ru-NiCo/Al2O3 catalyst showed the highest initial catalytic activity but with a rapid loss in its avtivity. Compared to that, despite a lower initial catalytic activity in the presence of the NiCo/Al2O3 catalyst, the hydrogen generation kept rising during the reaction. Therefore, the NiCo/Al2O3 catalyst can be proposed much efficient catalyst compared to the Ru-NiCo/Al2O3.
Arzac, G. M., Hufschmidt, D., Jimenes De Haro, M. C., Fernandez, A., Sarmento, B., Jimenez, M. A., Jimenez, M. M., 2012. Deactivation, reactivation and memory effect on Co-B catalyst for sodium borohydride hydrolysis operating in high conversion conditions. International Journal of Hydrogen, 37, 14373-14381.
https://doi.org/10.1016/j.ijhydene.2012.06.117
Balkanli, E. and Figen, H. E., 2019. Sodium borohydride hydrolysis by using ceramic foam supported bimetallic and trimetallic catalysts. International Journal of Hydrogen, 44, 9959-9969.
https://doi.org/10.1016/j.ijhydene.2018.12.010
Baykara S., 2018. Hydrogen: A brief overview on its sources, production and environmental impact. International Journal of Hydrogen, 43, 10605-10614.
https://doi.org/10.1016/j.ijhydene.2018.02.022
Baykara, Z. S., Figen, H. E., Karaismailoğlu, M., (2022). Environmental issues with hydrogen production. Comprehensive Renewable Energy, Second Edition, Amsterdam: Elsevier Science, Oxford/Amsterdam, 107-126.
https://doi.org/10.1016/B978-0-12-819727-1.00025-X
Bozkurt, G., Özer, A., Yurtcan, A. B., 2019. Development of effective catalysts for hydrogen generation from sodium borohydride: Ru, Pt, Pd nanoparticles supported on Co3O4. Energy, 180, 702-713.
https://doi.org/10.1016/j.energy.2019.04.196
Fernandes, R, Patel, N., Miotello, A., 2009. Hydrogen generation by hydrolysis of alkaline NaBH4 solution with Cr-promoted Co–B amorphous catalyst. Applied Catalysis B: Environmental, 92, 68-74.
https://doi.org/10.1016/j.apcatb.2009.07.019
Filiz, B. C. and Figen, A. K., 2019. Hydrogen production from sodium borohydride originated compounds: Fabrication of electrospun nano-crystalline Co3O4 catalyst and its activity. International Journal of Hydrogen, 20, 9883-9895.
https://doi.org/10.1016/j.ijhydene.2019.02.111
Laversenne, L., Goutaudier, C., Chiriac, R., Sigala, C., Bonnetot, B., 2008. Hydrogen storage in borohydrides Comparison of hydrolysis conditions of LiBH4, NaBH4 and KBH4. Journal of Thermal Analysis and Calorimetry, 94, 785-790.
https://doi.org/10.1007/s10973-008-9073-4
Liu, B. H. and Li, Z. P., 2009. A review: hydrogen generation from borohydride hydrolysis reaction. Journal of Power Sources, 187, 527-534.
https://doi.org/10.1016/j.jpowsour.2008.11.032
Luo, Y., Wang, Q., Li, J., Xu, F., Sun, L., Zou, Y., Chu, H., Li, B., Zhang, K., 2020. Enhanced hydrogen storage/sensing of metal hydrides by nano-modification. Materials Today Nano, 9, 10071-10100.
https://doi.org/10.1016/j.mtnano.2019.100071.
Patel, N. and Miotello, A., 2015. Progress in Co–B related catalyst for hydrogen production by hydrolysis of boron-hydrides: A review and the perspectives to substitute noble metals. International Journal of Hydrogen, 40, 1429-1464.
https://doi.org/10.1016/j.ijhydene.2014.11.052
Özkar, S. and Zahmakiran M., 2005. Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst. Journal of Alloys and Compounds, 404-406, 728-731.
https://doi.org/10.1016/j.jallcom.2004.10.084
Schlesinger, H. I., Brown, H. C., Finholt, A. E., Gilbreath, J. R., Hoekstra, H. R., & Hyde, E. K. (1953). Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen1. Journal of the American Chemical Society, 75, 215-219.
https://doi.org/10.1021/ja01097a057
Schneemann, A., White, J. L., Kang, S., Jeong, S., Wan, L. F., Cho, E. S., Heo, T. W., Prendergast, D., Urban, J. J., Wood, B. C., Allendorf, M. D., Stavila, V., 2018. Nanostructured metal hydrides for hydrogen storage. Chemical Reviews, 118, 10775-10839.
https://doi.org/10.1021/acs.chemrev.8b00313
Solovev, M. V., Chashchikhin, O. V., Dorovatovski, P. V., Khrustalev, V. N., Zyubin, A. S., Zyubina, T. S., Kravchenko, O. V., Zaytsev, A. A., Dobrovosky, Y. A., 2018. Hydrolysis of Mg(BH4)2 and its coordination compounds as a way to obtain hydrogen. Journal of Power Sources, 377, 93-102.
https://doi.org/10.1016/j.jpowsour.2017.11.090
Su, C-C., Lu, M-C., Wang, S-L., Huang, Y-H. (2012). Ruthenium immobilized on Al2O3 pellets as a catalyst for hydrogen generation from hydrolysis and methanolysis of sodium borohydride. RSC Advances, 2, 2073-2079.
https://doi.org/10.1039/c2ra01233b
Uzundurukan, A. and Devrim., Y., 2019. Hydrogen generation from sodium borohydride hydrolysis by multi-walled carbon nanotube supported platinum catalyst: A kinetic study. International Journal of Hydrogen, 44, 17586-17594.
https://doi.org/10.1016/j.ijhydene.2019.04.188
Xu, D., Zhang, H. Ye, W. (2007). Hydrogen generation from hydrolysis of alkaline sodium borohydride solution using Pt/C catalyst. Catalysis Communications, 8, 1767-1771.
https://doi:10.1016/j.catcom.2007.02.028
Xu, F., Ren, J., Ma, J., Wang, Y., Zhang, K., Cao, Z., Sun, Q., Wu, S., Li, G., Bai, S., 2024. A review of hydrogen production kinetics from the hydrolysis of NaBH4 solution catalyzed by Co-based catalysts. International Journal of Hydrogen, 50, 827-844.
https://doi.org/10.1016/j.ijhydene.2023.08.142
Wang, Y., Hu, Z., Chen, W., Wu, S., Li, G., Chou, S., 2021. Non-noble metal-based catalysts applied to hydrogen evolution from hydrolysis of boron hydrides. Small, 2, 2000135-2000161.
https://doi.org/10.1002/sstr.202000135
Yang, C. C., Chen, M. S., Chen, Y. W., 2011. Hydrogen generation by hydrolysis of sodium borohydride on CoB/SiO2 catalyst. International Journal of Hydrogen, 36, 1418-1423.
https://doi.org/10.1016/j.ijhydene.2010.11.006
Zhang H., Zhang, L., Rodriguez-Perez, I. A., Miao, W., Chen, K., Wang, W., Li, Y., Han, S., 2021. Carbon nanospheres supported bimetallic Pt-Co as an efficient catalyst for NaBH4 hydrolysis. Applied Surface Science, 540, 148296-148304.
https://doi.org/10.1016/j.apsusc.2020.148296
Zhu, Y., Li, J., Yang, L., Huang, Z. , Yang X-S., Zhou, Q., Tang, R., Shen, S. and Ouyang, L., 2023. Closed loops for hydrogen storage: Hydrolysis and regeneration of metal borohydrides. Journal of Power Sources, 563, 232833-232847.
https://doi.org/10.1016/jpowsour.2023.232833
Karaismailoğlu Elibol, M. (2025). Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(1), 53-58. https://doi.org/10.35414/akufemubid.1515815
AMA
Karaismailoğlu Elibol M. Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. February 2025;25(1):53-58. doi:10.35414/akufemubid.1515815
Chicago
Karaismailoğlu Elibol, Meltem. “Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, no. 1 (February 2025): 53-58. https://doi.org/10.35414/akufemubid.1515815.
EndNote
Karaismailoğlu Elibol M (February 1, 2025) Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 1 53–58.
IEEE
M. Karaismailoğlu Elibol, “Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 1, pp. 53–58, 2025, doi: 10.35414/akufemubid.1515815.
ISNAD
Karaismailoğlu Elibol, Meltem. “Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/1 (February 2025), 53-58. https://doi.org/10.35414/akufemubid.1515815.
JAMA
Karaismailoğlu Elibol M. Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:53–58.
MLA
Karaismailoğlu Elibol, Meltem. “Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 1, 2025, pp. 53-58, doi:10.35414/akufemubid.1515815.
Vancouver
Karaismailoğlu Elibol M. Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(1):53-8.