Research Article
BibTex RIS Cite

Industrial Tea Waste Biomass Derived Carbonaceous Material as Filler in Electrical Conductive Ink

Year 2025, Volume: 25 Issue: 2, 388 - 394

Abstract

In the development of printable electrical and electronic devices, conductive polymers, electrically conductive carbon materials, and their hybrids are topical research topics. It is possible to produce electrical conductive ink with high-performance carbon materials and to develop flexible and printable technological electrical and electronic devices using various printing methods of this ink. On the other hand, technological applications have some limitations to the widespread use of high-performance carbon materials in the electronics field; mass production is expensive, and fossil resources are used for their production. There is a need to develop alternative, clean, renewable, sustainable, and economical resources for carbon and to make them applicable to technological devices. Biomass is the only source of carbon that is renewable, sustainable, and economical. This study examined whether the carbonized material, which was developed from the tea waste biomass from tea-producing factories, could be used as filler in the preparation of conductive ink. The carbonized material prepared by catalytic pyrolysis of tea waste has been determined to have an electrical conductivity of 3.58 S/cm in ink. Although the electrical conductivity value of this ink is lower than the graphite ink (13 S/cm) , it has been found that carbonized material derived from tea waste biomass could be used as filler for the development of electrically conductive carbon ink.

References

  • Ahammed S. R., Susila, P.A., 2022. Direct writing of electronic circuits using functionalised multi-walled carbon nanotubes and polyvinyl alcohol conductive ink. Advances in Materials and Processing Technologies, 8(3), 2496-2509. https://doi.org/10.1080/2374068X.2021.1913325
  • Akgül, G., Bıçakçı, S.N., 2020. Optical and electrical properties of refined carbon derived from industrial tea waste. Materials Research Express, 7 (4), 3–12. https://doi.org/10.1088/2053-1591/ab8995
  • Akgül, G., Maden, T.B., Diaz, E., Moreno Jiménez, E., 2019. Modification of tea biochar with Mg, Fe, Mn and Al salts for efficient sorption of PO43- and Cd2+ from aqueous solutions. Journal of Water Reuse and Desalination, 09.1, 57-66. https://doi.org/10.2166/wrd.2018.018
  • Akgül, G., Tomakin, M. ve Erkaya, H.H., 2024. Semi-conductive carbon from industrial tea waste biomass for a p-n junction. Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-024-05413-8
  • Bukhari, Q.U.A., Silveri, F., Pelle, F.D., Scroccarello, A., Zappi, D., Cozzoni, E., ve Compagnone, D., 2021. Water-phase exfoliated biochar nanofibers from eucalyptus scraps for electrode modification and conductive film fabrication. ACS Sustainable Chemical Engineering, 9, 13988−13998. https://doi.org/10.1021/acssuschemeng.1c05893
  • Chen, T., Yeh, Y., Liao, Y., Yeh, Y., and Liao, Y., 2018. Healable and foldable carbon nanotube/wax conductive composite. ACS Applied Materials & Interfaces, 10, 24217–24223. https://doi.org/10.1021/acsami.8b08310
  • Debnath, B., Haldar, D., Purkait, M.K., 2021. Potential and sustainable utilization of tea waste: A review on present status and future trends. Journal of Environmental Chemical Engineering, 9, 106179. https://doi.org/10.1016/j.jece.2021.106179
  • Deng, J., You, Y., Sahajwalla, V., ve Joshi, R.K., 2016. Transforming waste into carbon-based nanomaterials. Carbon, 105–115. https://doi.org/10.1016/j.carbon.2015.09.033
  • Destyorini, F., Irmawati, Y., Hardiansyah, A., Widodo, H., Yahya, I. N. D., Indayaningsih, N., Yudianti, R., Hsu, Y. I., ve Uyama, H., 2021. Formation of nanostructured graphitic carbon from coconut waste via low-temperature catalytic graphitization. Engineering Science and Technology, an International Journal, 24(2), 514–523. https://doi.org/10.1016/j.jestch.2020.06.011
  • Dong, X., He, L., Liu, Y., and Piao, Y., 2018. Preparation of highly conductive biochar nanoparticles for rapid and sensitive detection of 17β-estradiol in water. Electrochimica Acta, 292, 55–62. https://doi.org/10.1016/j.electacta.2018.09.129
  • Dou, J., Tang, L., Mou, L., Zhang, R., Jiang, X., 2020. Stretchable conductive adhesives for connection of electronics in wearable devices based on metal-polymer conductors and carbon nanotubes. Composites Science and Technology, 197, 108237. https://doi.org/10.1016/j.compscitech.2020.108237
  • Gomes, L., Branco, A., Moreira, T., Feliciano, F., Pinheiro, C., and Costa, C., 2016. Increasing the electrical conductivity of electrochromic PEDOT : PSS films – A comparative study. Solar Energy Materials & Solar Cells, 144, 631–640. http://dx.doi.org/10.1016/j.solmat.2015.10.001
  • Javey, A. ve Dai, H., 2006. Carbon Nanotube Electronics. 19th International Conference on VLSI Design held jointly with 5th International Conference on Embedded Systems Design (VLSID'06), Hyderabad, India, 6 pp https://doi.org/10.1109/VLSID.2006.57
  • Karamustafa, A., Sözer, S., Oskay, K.O., Buldu-Akturk, M., Erdem, E., and Akgül, G., 2022. Improving the electrochemical energy storage capacity of the renewable carbon derived from industrial tea waste. Russian Journal of Electrochemistry, 58 (9), 844–854. https://doi.org/10.1134/S1023193522090099
  • Marinovic, A., Kiat, L. S., Dunn, S., Titirici, M., ve Briscoe, J., 2017. Carbon-nanodot solar cells from renewable precursors. ChemSusChem, 10(5), 1004-1013. https://doi.org/10.1002/cssc.201601741
  • Mugadza, K., Stark, A., Ndungu, P.G., Nyamori, V.O., 2020. Synthesis of carbon nanomaterials from biomass utilizing ionic liquids for potential application in solar energy conversion and storage. Materials, 13(18), 3945. https://doi.org/10.3390/ma13183945
  • Osman, A.I., Farrell, C., Al-Muhtaseb, A.H., Harrison, J. ve Rooney, D.W., 2020. The production and application of carbon nanomaterials from high alkali silicate herbaceous biomass. Scientific Reports, 10, 2563. https://doi.org/10.1038/s41598-020-59481-7
  • Prekodravac, J.R., Kepić, D.P., Colmenares, J.C., Giannakoudakis, D.A., and Jovanović, S.P., 2021. A comprehensive review on selected graphene synthesis methods: from electrochemical exfoliation through rapid thermal annealing towards biomass pyrolysis. Journal of Materials Chemistry C, 9 (21), 6722–6748. https://doi.org/10.1039/D1TC01316E
  • Qin, Y., Ouyang, X., Lv, Y., Liu, W., Liu, Q., Wang, S., 2023. A review of carbon-based conductive inks and their printing technologies for integrated circuits. Coatings, 13, 1769. https://doi.org/10.3390/coatings13101769
  • Ouyang, D., Hu, L., Wang, G., Dai, B., Yu, F., ve Zhang, L., 2021. A review of biomass-derived graphene and graphene-like carbons for electrochemical energy storage and conversion. New Carbon Materials, 36(2), 350–372. https://doi.org/10.1016/s1872-5805(21)60024-0
  • Suganuma, K., 2014. Introduction to Printed Electronics. Springer Briefs in Electrical and Computer Engineering Series, Springer New York, NY https://doi.org/10.1007/978-1-4614-9625-0
  • Wang, Y., Zhang, D., Deng, J., Zhou, F., Duan, Z., Su, Q., ve Pang, S., 2019. Mosquito ’ s compound eyes as inspiration for fabrication of conductive superhydrophobic nanocarbon materials from waste wheat straw. ACS Sustainable Chemical Engineering, 7(4), 3883–3894. https://doi.org/10.1021/acssuschemeng.8b04906
  • Zhou, Z., Zhang, H., Liu, J., Huang, W., 2021. Flexible electronics from intrinsically soft materials. Giant, 6, 100051. https://doi.org/10.1016/j.giant.2021.100051

Endüstriyel Çay Atığı Biyokütlesinden Türetilen Karbonize Materyalin Elektriksel İletken Mürekkep Dolgu Maddesi Olarak İncelenmesi

Year 2025, Volume: 25 Issue: 2, 388 - 394

Abstract

Yazdırılabilir elektrik/elektronik aygıtların geliştirilmesinde; iletken polimerler, elektriksel iletken karbon materyaller ve bunların hibritleri güncel araştırma konularındandır. Yüksek performans karbon malzemeler ile elektriksel iletken mürekkep hazırlanması ve bu mürekkebin çeşitli yazdırma yöntemleri kullanılarak esnek ve yazdırılabilir teknolojik elektrik/elektronik aygıtların geliştirilmesi mümkündür. Diğer yandan teknolojik uygulamalarda yüksek performans karbon malzemelerin elektronik alanında kullanımının yaygınlaşmasında bazı sınırlamaları vardır; yığın üretimlerinin pahalı olması, üretimleri için fosil kaynakların kullanımı gibi. Alternatif, temiz, yenilenebilir, sürdürülebilir ve ekonomik karbon kaynaklarına ve bunların teknolojik cihazlarda uygulanabilir olarak geliştirilmesine gereksinim vardır. Biyokütle, yenilenebilir, sürdürülebilir ve ekonomik tek karbon kaynağıdır. Bu çalışmada çay üretimi yapılan fabrikalarda ortaya çıkan çay atıkları biyokütlesinden geliştirilmiş olan karbonize materyalin iletken mürekkep hazırlanmasında dolgu materyali olarak kullanılıp kullanılamayacağı incelenmiştir. Çay atıkları biyokütlesinin katalitik pirolizi ile türetilen karbonize materyalin kullanılması ile hazırlanan mürekkebin 3,58 S/cm elektriksel iletkenlik değeri gösterdiği belirlenmiştir. Grafit ile hazırlanan mürekkebe (13 S/cm) göre düşük bir elektriksel iletkenlik değeri olsa da çay atıkları biyokütlesinden türetilen karbonize materyalin elektriksel iletken karbon mürekkep geliştirilmesine doğru dolgu materyali olarak kullanılması potansiyeli olduğu görülmüştür.

References

  • Ahammed S. R., Susila, P.A., 2022. Direct writing of electronic circuits using functionalised multi-walled carbon nanotubes and polyvinyl alcohol conductive ink. Advances in Materials and Processing Technologies, 8(3), 2496-2509. https://doi.org/10.1080/2374068X.2021.1913325
  • Akgül, G., Bıçakçı, S.N., 2020. Optical and electrical properties of refined carbon derived from industrial tea waste. Materials Research Express, 7 (4), 3–12. https://doi.org/10.1088/2053-1591/ab8995
  • Akgül, G., Maden, T.B., Diaz, E., Moreno Jiménez, E., 2019. Modification of tea biochar with Mg, Fe, Mn and Al salts for efficient sorption of PO43- and Cd2+ from aqueous solutions. Journal of Water Reuse and Desalination, 09.1, 57-66. https://doi.org/10.2166/wrd.2018.018
  • Akgül, G., Tomakin, M. ve Erkaya, H.H., 2024. Semi-conductive carbon from industrial tea waste biomass for a p-n junction. Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-024-05413-8
  • Bukhari, Q.U.A., Silveri, F., Pelle, F.D., Scroccarello, A., Zappi, D., Cozzoni, E., ve Compagnone, D., 2021. Water-phase exfoliated biochar nanofibers from eucalyptus scraps for electrode modification and conductive film fabrication. ACS Sustainable Chemical Engineering, 9, 13988−13998. https://doi.org/10.1021/acssuschemeng.1c05893
  • Chen, T., Yeh, Y., Liao, Y., Yeh, Y., and Liao, Y., 2018. Healable and foldable carbon nanotube/wax conductive composite. ACS Applied Materials & Interfaces, 10, 24217–24223. https://doi.org/10.1021/acsami.8b08310
  • Debnath, B., Haldar, D., Purkait, M.K., 2021. Potential and sustainable utilization of tea waste: A review on present status and future trends. Journal of Environmental Chemical Engineering, 9, 106179. https://doi.org/10.1016/j.jece.2021.106179
  • Deng, J., You, Y., Sahajwalla, V., ve Joshi, R.K., 2016. Transforming waste into carbon-based nanomaterials. Carbon, 105–115. https://doi.org/10.1016/j.carbon.2015.09.033
  • Destyorini, F., Irmawati, Y., Hardiansyah, A., Widodo, H., Yahya, I. N. D., Indayaningsih, N., Yudianti, R., Hsu, Y. I., ve Uyama, H., 2021. Formation of nanostructured graphitic carbon from coconut waste via low-temperature catalytic graphitization. Engineering Science and Technology, an International Journal, 24(2), 514–523. https://doi.org/10.1016/j.jestch.2020.06.011
  • Dong, X., He, L., Liu, Y., and Piao, Y., 2018. Preparation of highly conductive biochar nanoparticles for rapid and sensitive detection of 17β-estradiol in water. Electrochimica Acta, 292, 55–62. https://doi.org/10.1016/j.electacta.2018.09.129
  • Dou, J., Tang, L., Mou, L., Zhang, R., Jiang, X., 2020. Stretchable conductive adhesives for connection of electronics in wearable devices based on metal-polymer conductors and carbon nanotubes. Composites Science and Technology, 197, 108237. https://doi.org/10.1016/j.compscitech.2020.108237
  • Gomes, L., Branco, A., Moreira, T., Feliciano, F., Pinheiro, C., and Costa, C., 2016. Increasing the electrical conductivity of electrochromic PEDOT : PSS films – A comparative study. Solar Energy Materials & Solar Cells, 144, 631–640. http://dx.doi.org/10.1016/j.solmat.2015.10.001
  • Javey, A. ve Dai, H., 2006. Carbon Nanotube Electronics. 19th International Conference on VLSI Design held jointly with 5th International Conference on Embedded Systems Design (VLSID'06), Hyderabad, India, 6 pp https://doi.org/10.1109/VLSID.2006.57
  • Karamustafa, A., Sözer, S., Oskay, K.O., Buldu-Akturk, M., Erdem, E., and Akgül, G., 2022. Improving the electrochemical energy storage capacity of the renewable carbon derived from industrial tea waste. Russian Journal of Electrochemistry, 58 (9), 844–854. https://doi.org/10.1134/S1023193522090099
  • Marinovic, A., Kiat, L. S., Dunn, S., Titirici, M., ve Briscoe, J., 2017. Carbon-nanodot solar cells from renewable precursors. ChemSusChem, 10(5), 1004-1013. https://doi.org/10.1002/cssc.201601741
  • Mugadza, K., Stark, A., Ndungu, P.G., Nyamori, V.O., 2020. Synthesis of carbon nanomaterials from biomass utilizing ionic liquids for potential application in solar energy conversion and storage. Materials, 13(18), 3945. https://doi.org/10.3390/ma13183945
  • Osman, A.I., Farrell, C., Al-Muhtaseb, A.H., Harrison, J. ve Rooney, D.W., 2020. The production and application of carbon nanomaterials from high alkali silicate herbaceous biomass. Scientific Reports, 10, 2563. https://doi.org/10.1038/s41598-020-59481-7
  • Prekodravac, J.R., Kepić, D.P., Colmenares, J.C., Giannakoudakis, D.A., and Jovanović, S.P., 2021. A comprehensive review on selected graphene synthesis methods: from electrochemical exfoliation through rapid thermal annealing towards biomass pyrolysis. Journal of Materials Chemistry C, 9 (21), 6722–6748. https://doi.org/10.1039/D1TC01316E
  • Qin, Y., Ouyang, X., Lv, Y., Liu, W., Liu, Q., Wang, S., 2023. A review of carbon-based conductive inks and their printing technologies for integrated circuits. Coatings, 13, 1769. https://doi.org/10.3390/coatings13101769
  • Ouyang, D., Hu, L., Wang, G., Dai, B., Yu, F., ve Zhang, L., 2021. A review of biomass-derived graphene and graphene-like carbons for electrochemical energy storage and conversion. New Carbon Materials, 36(2), 350–372. https://doi.org/10.1016/s1872-5805(21)60024-0
  • Suganuma, K., 2014. Introduction to Printed Electronics. Springer Briefs in Electrical and Computer Engineering Series, Springer New York, NY https://doi.org/10.1007/978-1-4614-9625-0
  • Wang, Y., Zhang, D., Deng, J., Zhou, F., Duan, Z., Su, Q., ve Pang, S., 2019. Mosquito ’ s compound eyes as inspiration for fabrication of conductive superhydrophobic nanocarbon materials from waste wheat straw. ACS Sustainable Chemical Engineering, 7(4), 3883–3894. https://doi.org/10.1021/acssuschemeng.8b04906
  • Zhou, Z., Zhang, H., Liu, J., Huang, W., 2021. Flexible electronics from intrinsically soft materials. Giant, 6, 100051. https://doi.org/10.1016/j.giant.2021.100051
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Energy Systems Engineering (Other), Material Production Technologies
Journal Section Articles
Authors

Gökçen Akgül 0000-0001-6101-7971

Early Pub Date March 28, 2025
Publication Date
Submission Date March 19, 2024
Acceptance Date October 16, 2024
Published in Issue Year 2025 Volume: 25 Issue: 2

Cite

APA Akgül, G. (2025). Endüstriyel Çay Atığı Biyokütlesinden Türetilen Karbonize Materyalin Elektriksel İletken Mürekkep Dolgu Maddesi Olarak İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(2), 388-394.
AMA Akgül G. Endüstriyel Çay Atığı Biyokütlesinden Türetilen Karbonize Materyalin Elektriksel İletken Mürekkep Dolgu Maddesi Olarak İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. March 2025;25(2):388-394.
Chicago Akgül, Gökçen. “Endüstriyel Çay Atığı Biyokütlesinden Türetilen Karbonize Materyalin Elektriksel İletken Mürekkep Dolgu Maddesi Olarak İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, no. 2 (March 2025): 388-94.
EndNote Akgül G (March 1, 2025) Endüstriyel Çay Atığı Biyokütlesinden Türetilen Karbonize Materyalin Elektriksel İletken Mürekkep Dolgu Maddesi Olarak İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 2 388–394.
IEEE G. Akgül, “Endüstriyel Çay Atığı Biyokütlesinden Türetilen Karbonize Materyalin Elektriksel İletken Mürekkep Dolgu Maddesi Olarak İncelenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 2, pp. 388–394, 2025.
ISNAD Akgül, Gökçen. “Endüstriyel Çay Atığı Biyokütlesinden Türetilen Karbonize Materyalin Elektriksel İletken Mürekkep Dolgu Maddesi Olarak İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/2 (March 2025), 388-394.
JAMA Akgül G. Endüstriyel Çay Atığı Biyokütlesinden Türetilen Karbonize Materyalin Elektriksel İletken Mürekkep Dolgu Maddesi Olarak İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:388–394.
MLA Akgül, Gökçen. “Endüstriyel Çay Atığı Biyokütlesinden Türetilen Karbonize Materyalin Elektriksel İletken Mürekkep Dolgu Maddesi Olarak İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 2, 2025, pp. 388-94.
Vancouver Akgül G. Endüstriyel Çay Atığı Biyokütlesinden Türetilen Karbonize Materyalin Elektriksel İletken Mürekkep Dolgu Maddesi Olarak İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(2):388-94.