Research Article
BibTex RIS Cite

Cu2ZnSnS4 ve Cu2MnSnS4 İnce Filmlerin Sentez ve Karakterizasyonu

Year 2025, Volume: 25 Issue: 2, 269 - 278

Abstract

Farklı metallerin ikamesi ile düşük maliyetli ve kolay kontrollü biriktirme sistemlerinin kullanılması avantaj sağlamaktadır. Bu çalışmada Cu2ZnSnS4 filmleri ve alternatif bir soğurucu katman olarak Cu2MnSnS4 ince filmleri dönel kaplama yöntemiyle 240◦C alttaş sıcaklığı altında 30 ve 40 ccm Ar:H2S akış altında tavlanarak başarıyla biriktirildi. CZTS tabanlı ince film güneş pillerinin geliştirilmesinde, antisit kusurlarının katyon ikamesi yoluyla azaltılması büyük ilgi görmüştür. Bu incelemede, Zn yerine Mn metalin kullanılmasının etkisi tartışıldı. Teorik olarak Shockley-Queisser sınır değerlerine göre CZTS 1,52-1.54 eV bant aralığına, Cu2MnSnS4 (CMTS) ise 1.37-1,48 eV bant aralığına ve her iki malzemede (104cm-1) üzerinde büyük bir soğurma katsayısına sahiptir. Bu durum CMTS ince filmini de olası bir fotovoltaik malzeme haline getirir. Filmler doğrudan optik bant aralıklarına sahiptir. Yapısal analiz sonucunda örneklerin mikro yapı, gerinim değeri, kristal büyüklüğü ve dislokasyon yoğunluğu hesaplandı. Filmler (112) tercihli büyüme düzlemine sahip olup yapısı CZTS kesterite, CMTS ise stannite yapıda olduğu görüldü. Hazırlanan Cu2ZnSnS4 ve Cu2MnSnS4 filmlerinin yapıları, morfolojileri ve optik özellikleri XRD, SEM, EDS ve UV-Vis, ölçümleri kullanılarak karakterizasyonu ayrıntılı olarak incelenmiştir.

Thanks

Dicle Üniversitesi Bilim ve Teknoloji Uygulama ve Araştırma Merkezi'ne katkılarından dolayı teşekkür ederim.

References

  • Aditha, S.K., Kurdekar, A.D., Chunduri, L.A., Patnaik, S., Kamisetti, V., 2016. Aqueous based reflux method for green synthesis of nanostructures: application in CZTS synthesis, MethodsX, 3, 35-42. https://doi.org/10.1016/j.mex.2015.12.003
  • Aytug Ava, C., Ocak, Y.S., Celik, O., Asubay, S., 2023. Deposition and Characterization of Si Substituted Cu2ZnSnS4 Thin Films. Silicon 15:451–458 https://doi.org/10.1007/s12633-022-02018-6
  • Aytug Ava, C., Ocak, Y.S., Asubay, S., Celik, O., 2021. The influence of Ge substitution and H2S annealing on Cu2ZnSnS4 thin films. Opt Mater 37 121:111565. https://doi.org/10.1016/j.optmat.2021.111565
  • Bob B., Lei, B., Chung, C.H., Yang, W., Hsu, W.C., Duan, H.S., Hou, W.W.J., Li, S.H., Yang, Y, 2012. The Development ofHydrazine-Processed Cu(In,Ga)(Se,S)2 Solar Cells Adv. Energy Mater. 2 504–522. https://doi.org/10.1002/aenm.201100578
  • Chen, L., Deng, H., Cui, J., Tao, J., Zhou, W., Cao, H., Sun, L., Yang, P., Chu, J., 2015. Composition dependence of the structure and optical properties of Cu2MnxZn1xSnS4 thin films, J. Alloy. Compd. 627 388–392. https://doi.org/10.1016/j.jallcom.2014.12.047
  • Chen, L., Deng, H., Tao, J., Zhou, W., Sun, L., Yue, F., Yang, P., Chu, J., 2015. Influence of annealing temperature on structural and optical properties of Cu2MnSnS4 thin-films fabricated by sol–gel technique,J.Alloy. Compd. 640, 23–28. https://doi.org/10.1016/j.jallcom.2015.03.225
  • Chen, L.L., Deng, H.M., Tao, J.H., Cao, H.Y., Huang, L., Sun, L., Yue, F.Y., Yang, P.X., Chu, J.H., 2015. Synthesis and characterization of earth-abundant Cu2MnSnS4 thin films using a non-toxic solution-based technique. RSC Adv. 5 84295–84302. https://doi.org/10.1039/C5RA14595C
  • Chen, L.L., Deng, H.M., Zhang, K.Z., Huang, L., Liu, J., Sun, L., Yang, P.X., Chu, J.H., 2015. Structural and optical properties of Cu2MnSnS4 thin film fabricated by sol-gel technique, in: Materials Science Forum, Trans Tech Publ, 39–43. https://doi.org/10.4028/www.scientific.net/MSF.814.39
  • Contreras, M.A., Ramanathan, K., AbuShama, J., Hasoon, F., Young, D.L., Egaas, B., Noufi, R., 2005. Prog. Photovolt: Res. Appl. 13 209–216. https://doi.org/10.1002/pip.626
  • Cui, Y., Deng, R., Wang, G., Pan, D. 2012. A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M = Co2+, Fe2+, Ni2+, Mn2+) nanocrystals Journal of Mater. Chem. 22, 23136-23140. https://doi.org/10.1039/C2JM33574C
  • Dhakal, T.P., Peng, C., Reid Tobias, R., Dasharathy, R., Westgate, C.R., 2014. Characterization of a CZTS thin film solar cell grown by sputtering method, Sol. Energy 100 23–30. https://doi.org/10.1016/j.solener.2013.11.035
  • Gonce MK, Aslan E, Ozel F, Hatay Patir I. 2016. Dye-Sensitized Cu2 XSnS 4 (X¼Zn, Ni, Fe, Co, and Mn) nanofibers for efficient photocatalytic hydrogen evolution. Chem. Sus. Chem; 9:600e5. https://doi.org/10.1002/cssc.201501661
  • Gurav, K.V., Shin, S.W., Patil, U.M., Suryawanshi, M.P., Pawar, S.M., Gang, M.G., Vanalakar, S.A., Yun, J.H., Kim, J.H., 2015. Improvement in the properties of CZTSSe thin films by selenizing single-step electrodeposited CZTS thin films J. Alloys Comp. 631 178–182. https://doi.org/10.1016/j.jallcom.2014.12.253
  • Huang, C., Chan, Y., Liu, F., Tang, D., Yang, J., Lai, Y., Liu, Y. 2013. Synthesis and characterization of multicomponent Cu2 (FexZn1 x) SnS4 nanocrystals with tunable band gap and structure, J. Mater. Chem. 15402 5407. https://doi.org/10.1039/C3TA00191A
  • Indubala, E., Sarveshvaran, S., Sudha, V., Mamajiwala, A.Y., Harinipriya, S., 2018. Secondary phases and temperature effect on the synthesis and sulfurization of CZTS, Sol. Energy 173 215–224. https://doi.org/10.1016/j.solener.2018.07.085
  • Liang, X., Guo, P., Wang, G., Deng, R., Pan, D., Wei, X., 2012. Dilute magnetic semiconductor Cu2MnSnS4 nanocrystals with a novel zinc-blende structure, J. Nanomater. 2 5044–5046. https://doi.org/10.1039/C2RA20198D
  • Liu, F., Sun, K., Li, W., Yan, C., Cui, H., Jiang, L., Hao, X., Green, M.A., 2014. Enhancing the Cu2ZnSnS4 solar cell efficiency by back contact modification: Inserting a thin TiB2 intermediate layer at Cu2ZnSnS4/Mo interface. Appl. Phys. Lett. 104 051105. https://doi.org/10.1063/1.4863736
  • Liu, M.L., Chen, I.W., Huang, F.Q., Chen, L.D., 2009. Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4. Adv. Mater. 21 3808–3812. https://doi.org/10.1002/adma.200900409
  • Mitzi, D.B. 1999. Synthesis, structure, and properties of organic-inorganic perovskites and related materials, Prog. Inorg. Chem. 1–121, https://doi.org/10.1002/9780470166499.ch1.
  • Saleem, M., Fang, L., Wakeel, A., Rashad, M., Kong, C., 2012. Simple preparation and characterization of nano-crystalline zinc oxide thin films by sol-gel method on glass substrate, World J. Condens. Matter Phys. 2 (1), 17630. https://doi.org/10.4236/wjcmp.2012.21002
  • Sanad, M. M. S., Elseman, A. M., Elsenety, M. M., Rashad, M. M., Elsayed BA. 2019. Facile synthesis of sulfide-based chalcogenide as hole-transporting materials for cost-effective efficient perovskite solar cells. J. Mat. Sci.: Mat. Electronics. 30, 6868–6875. https://doi.org/10.1007/s10854-019-01001-z
  • Seol, J.-S., Lee, S.-Y., Lee, J.-C., Nam, H.-D., Kim, K.-H., 2003. Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process. Solar energy materials and solar cells, 75(1-2), 155-162. https://doi.org/10.1016/S0927-0248(02)00127-7
  • Shadrokh, Z., Yazdani, A., Eshghi, H. 2016. Solvothermal synthesis of Cu2Zn1-xFexSnS4 nanoparticles and the influence of annealing conditions on drop-casted thin films, Semicond. Sci. Technol. 31 (4). https://doi.org/10.1088/0268-1242/31/4/045004
  • Shi, C., Shi, G., Chen, Z., Yang, P., Yao, M., 2012. Deposition of Cu2ZnSnS4 thin films by vacuum thermal evaporation from single quaternary compound source, Mater. Lett. 73 89–91. https://doi.org/10.1016/j.matlet.2012.01.018
  • Shin, B., Gunawan, O., Zhu, Y., Bojarczuk, N.A., Chey, S.J., Guha, S., 2013. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Progress in Photovoltaics: Research and Applications, 21 72–76. https://doi.org/10.1002/pip.1174
  • Shockley, W., Queisser, H.J., 1961. Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys. 32 (1961) 510–519. https://doi.org/10.1063/1.1736034.
  • Song, T.B., Chen, Q., Zhou, H., Jiang, C., Wang, H.H., Yang, Y.M., Yang, Y. 2015. Perovskitesolar cells: film formation and properties, J. Mater. Chem. 3, 9032–9050. https://doi.org/10.1039/C4TA05246C.
  • Swami, S.K., Chaturvedi, N., Kumar, A., Dutta, V., 2015. Effect of deposition temperature on the structural and electrical properties of spray deposited kesterite (Cu2ZnSnS4) films, Sol. Energy 122, 508–516. https://doi.org/10.1016/j.solener.2015.09.027
  • Tanaka, K., Moritake, N., Uchiki, H., 2007. Preparation of Cu2ZnSnS4 thin films by sulfurizing sol–gel deposited precursors, Sol. Energy Mater. Sol. Cells 91 1199–1201. https://doi.org/10.1016/j.solmat.2007.04.012
  • Tiong, V.T., Zhang, Y., Bell, J., Wang, H., 2014. Phase-selective hydrothermal synthesis of Cu2ZnSnS4 nanocrystals: the effect of the sulphur precursor, CrystEngComm 16 (20) 4306–4313. https://doi.org/10.1039/C3CE42606H
  • Tress, W., Marinova, N., Inganas, O., Nazeeruddin, M.K., Zakeeruddin, S.M.,Graetzel, M. 2015. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination. Adv. Energy Mater., 5 (3), 1400812, https://doi.org/10.1002/aenm.20140081
  • Tunuguntla, V., Chen, W.-C., Shih, P.-H., Shown, I., Lin, Y.-R., Hwang, J.-S., Lee, C.-H., Chen, L.-C., Chen, K.-H., 2015. A nontoxic solvent based sol–gel Cu2ZnSnS4 thin film for high efficiency and scalable low-cost photovoltaic cells, J. Mater. Chem. A 3 15324–15330. https://doi.org/10.1039/C5TA02833G
  • Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y., Mitzi, D.B., 2013. Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Adv. Energy Mater. 4, 1301465. https://doi.org/10.1002/aenm.201301465
  • Weber, A., Krauth, H., Perlt, S., Schubert, B., Kötschau, I., Schorr, S., Schock, H.W., 2009. Multi-stage evaporation of Cu2ZnSnS4 thin films, Thin Solid Films, 517, 2524–2526. https://doi.org/10.1016/j.tsf.2008.11.033
  • Woo, K., Kim, K., Zhong, Z., Kim, I., Oh, Y., Jeong, S., Moon, J., 2014. Non-toxic ethanol based particulate inks for low temperature processed Cu2ZnSn(S,Se)4 solar cells without S/Se treatment. Sol. Energy Mater. Sol. Cells, 128, 362–368. https://doi.org/10.1016/j.solmat.2014.06.013
  • Wu, S.H., Chang, C.W., Chen, H.J., Shih, C.F., Wang, Y.Y., Li, C.C., Chan, S.W., 2017. Highefficiency Cu2ZnSn(S,Se)4 solar cells fabricated through a low-cost solution process and a two-step heat treatment, Prog. Photovolt: Research and Applications, 25 (1), 58–66. https://doi.org/10.1002/pip.2810
  • Yu, J., Deng, H., Tao, J., Chen, L., Cao, H., Sun, L., Yang, P., Chu, J., 2017. Synthesis of Cu2MnSnS4 thin film deposited on seeded fluorine doped tin oxide substrate via a green and low-cost electrodeposition method, Mater. Lett. 191 186–188. https://doi.org/10.1016/j.matchemphys.2018.03.009
  • Yu, J.J., Deng, H.M., Chen, L.L., Tao, J.H., Zhang, Q., Guo, B.L., Sun, L., Yang, P.X., Zheng, X.P., Chu, J.H., 2018. Improvement performance of two-step electrodepositing Cu 2 MnSnS 4 thin film solar cells by tuning Cu-Sn alloy layer deposition time. Mater. Chem. Phys. 211 382–388. https://doi.org/10.1016/j.matchemphys.2018.03.009
  • Yuan, T., Li, Y., Jia, M., Lai, Y., Li, J., Liu, F., Liu, Y., 2015. Fabrication of Cu2ZnSnS4 thin film solar cells by sulfurization of electrodeposited stacked binary Cu–Zn and Cu–Sn alloy layers, Mater. Lett. 155 44–47. https://doi.org/10.1016/j.matlet.2015.04.101

Synthesis and Characterization of Cu2ZnSnS4 and Cu2MnSnS4 Thin Films

Year 2025, Volume: 25 Issue: 2, 269 - 278

Abstract

It is advantageous to use low-cost and easily controlled deposition systems by substituting different metals. In this study, Cu2ZnSnS4 films and Cu2MnSnS4 thin films as an alternative absorber layer were successfully deposited by spin coating method under 240◦C substrate temperature and annealed under 30 and 40 ccm Ar:H2S flow. In the development of CZTS-based thin-film solar cells, the reduction of antisite defects through cation substitution has attracted great attention. In this review, the effect of using Mn metal instead of Zn is discussed. Theoretically, according to Shockley-Queisser limit values, CZTS has a band gap of 1.52-1.54 eV, while Cu2MnSnS4 (CMTS) has a band gap of 1.37-1.48 eV and a large absorption coefficient above (104cm-1) in both materials. This makes the CMTS thin film a possible photovoltaic material. Films have direct optical bandgaps. As a result of the structural analysis, the microstructure, strain value, crystal size and dislocation density of the samples were calculated. The films (112) have a preferential growth plane and their structure was observed to be CZTS kesterite and CMTS stannite. The structures, morphologies and optical properties of the prepared Cu2ZnSnS4 and Cu2MnSnS4 films were characterized in detail using XRD, SEM, EDS and UV-Vis measurements.

References

  • Aditha, S.K., Kurdekar, A.D., Chunduri, L.A., Patnaik, S., Kamisetti, V., 2016. Aqueous based reflux method for green synthesis of nanostructures: application in CZTS synthesis, MethodsX, 3, 35-42. https://doi.org/10.1016/j.mex.2015.12.003
  • Aytug Ava, C., Ocak, Y.S., Celik, O., Asubay, S., 2023. Deposition and Characterization of Si Substituted Cu2ZnSnS4 Thin Films. Silicon 15:451–458 https://doi.org/10.1007/s12633-022-02018-6
  • Aytug Ava, C., Ocak, Y.S., Asubay, S., Celik, O., 2021. The influence of Ge substitution and H2S annealing on Cu2ZnSnS4 thin films. Opt Mater 37 121:111565. https://doi.org/10.1016/j.optmat.2021.111565
  • Bob B., Lei, B., Chung, C.H., Yang, W., Hsu, W.C., Duan, H.S., Hou, W.W.J., Li, S.H., Yang, Y, 2012. The Development ofHydrazine-Processed Cu(In,Ga)(Se,S)2 Solar Cells Adv. Energy Mater. 2 504–522. https://doi.org/10.1002/aenm.201100578
  • Chen, L., Deng, H., Cui, J., Tao, J., Zhou, W., Cao, H., Sun, L., Yang, P., Chu, J., 2015. Composition dependence of the structure and optical properties of Cu2MnxZn1xSnS4 thin films, J. Alloy. Compd. 627 388–392. https://doi.org/10.1016/j.jallcom.2014.12.047
  • Chen, L., Deng, H., Tao, J., Zhou, W., Sun, L., Yue, F., Yang, P., Chu, J., 2015. Influence of annealing temperature on structural and optical properties of Cu2MnSnS4 thin-films fabricated by sol–gel technique,J.Alloy. Compd. 640, 23–28. https://doi.org/10.1016/j.jallcom.2015.03.225
  • Chen, L.L., Deng, H.M., Tao, J.H., Cao, H.Y., Huang, L., Sun, L., Yue, F.Y., Yang, P.X., Chu, J.H., 2015. Synthesis and characterization of earth-abundant Cu2MnSnS4 thin films using a non-toxic solution-based technique. RSC Adv. 5 84295–84302. https://doi.org/10.1039/C5RA14595C
  • Chen, L.L., Deng, H.M., Zhang, K.Z., Huang, L., Liu, J., Sun, L., Yang, P.X., Chu, J.H., 2015. Structural and optical properties of Cu2MnSnS4 thin film fabricated by sol-gel technique, in: Materials Science Forum, Trans Tech Publ, 39–43. https://doi.org/10.4028/www.scientific.net/MSF.814.39
  • Contreras, M.A., Ramanathan, K., AbuShama, J., Hasoon, F., Young, D.L., Egaas, B., Noufi, R., 2005. Prog. Photovolt: Res. Appl. 13 209–216. https://doi.org/10.1002/pip.626
  • Cui, Y., Deng, R., Wang, G., Pan, D. 2012. A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M = Co2+, Fe2+, Ni2+, Mn2+) nanocrystals Journal of Mater. Chem. 22, 23136-23140. https://doi.org/10.1039/C2JM33574C
  • Dhakal, T.P., Peng, C., Reid Tobias, R., Dasharathy, R., Westgate, C.R., 2014. Characterization of a CZTS thin film solar cell grown by sputtering method, Sol. Energy 100 23–30. https://doi.org/10.1016/j.solener.2013.11.035
  • Gonce MK, Aslan E, Ozel F, Hatay Patir I. 2016. Dye-Sensitized Cu2 XSnS 4 (X¼Zn, Ni, Fe, Co, and Mn) nanofibers for efficient photocatalytic hydrogen evolution. Chem. Sus. Chem; 9:600e5. https://doi.org/10.1002/cssc.201501661
  • Gurav, K.V., Shin, S.W., Patil, U.M., Suryawanshi, M.P., Pawar, S.M., Gang, M.G., Vanalakar, S.A., Yun, J.H., Kim, J.H., 2015. Improvement in the properties of CZTSSe thin films by selenizing single-step electrodeposited CZTS thin films J. Alloys Comp. 631 178–182. https://doi.org/10.1016/j.jallcom.2014.12.253
  • Huang, C., Chan, Y., Liu, F., Tang, D., Yang, J., Lai, Y., Liu, Y. 2013. Synthesis and characterization of multicomponent Cu2 (FexZn1 x) SnS4 nanocrystals with tunable band gap and structure, J. Mater. Chem. 15402 5407. https://doi.org/10.1039/C3TA00191A
  • Indubala, E., Sarveshvaran, S., Sudha, V., Mamajiwala, A.Y., Harinipriya, S., 2018. Secondary phases and temperature effect on the synthesis and sulfurization of CZTS, Sol. Energy 173 215–224. https://doi.org/10.1016/j.solener.2018.07.085
  • Liang, X., Guo, P., Wang, G., Deng, R., Pan, D., Wei, X., 2012. Dilute magnetic semiconductor Cu2MnSnS4 nanocrystals with a novel zinc-blende structure, J. Nanomater. 2 5044–5046. https://doi.org/10.1039/C2RA20198D
  • Liu, F., Sun, K., Li, W., Yan, C., Cui, H., Jiang, L., Hao, X., Green, M.A., 2014. Enhancing the Cu2ZnSnS4 solar cell efficiency by back contact modification: Inserting a thin TiB2 intermediate layer at Cu2ZnSnS4/Mo interface. Appl. Phys. Lett. 104 051105. https://doi.org/10.1063/1.4863736
  • Liu, M.L., Chen, I.W., Huang, F.Q., Chen, L.D., 2009. Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4. Adv. Mater. 21 3808–3812. https://doi.org/10.1002/adma.200900409
  • Mitzi, D.B. 1999. Synthesis, structure, and properties of organic-inorganic perovskites and related materials, Prog. Inorg. Chem. 1–121, https://doi.org/10.1002/9780470166499.ch1.
  • Saleem, M., Fang, L., Wakeel, A., Rashad, M., Kong, C., 2012. Simple preparation and characterization of nano-crystalline zinc oxide thin films by sol-gel method on glass substrate, World J. Condens. Matter Phys. 2 (1), 17630. https://doi.org/10.4236/wjcmp.2012.21002
  • Sanad, M. M. S., Elseman, A. M., Elsenety, M. M., Rashad, M. M., Elsayed BA. 2019. Facile synthesis of sulfide-based chalcogenide as hole-transporting materials for cost-effective efficient perovskite solar cells. J. Mat. Sci.: Mat. Electronics. 30, 6868–6875. https://doi.org/10.1007/s10854-019-01001-z
  • Seol, J.-S., Lee, S.-Y., Lee, J.-C., Nam, H.-D., Kim, K.-H., 2003. Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process. Solar energy materials and solar cells, 75(1-2), 155-162. https://doi.org/10.1016/S0927-0248(02)00127-7
  • Shadrokh, Z., Yazdani, A., Eshghi, H. 2016. Solvothermal synthesis of Cu2Zn1-xFexSnS4 nanoparticles and the influence of annealing conditions on drop-casted thin films, Semicond. Sci. Technol. 31 (4). https://doi.org/10.1088/0268-1242/31/4/045004
  • Shi, C., Shi, G., Chen, Z., Yang, P., Yao, M., 2012. Deposition of Cu2ZnSnS4 thin films by vacuum thermal evaporation from single quaternary compound source, Mater. Lett. 73 89–91. https://doi.org/10.1016/j.matlet.2012.01.018
  • Shin, B., Gunawan, O., Zhu, Y., Bojarczuk, N.A., Chey, S.J., Guha, S., 2013. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Progress in Photovoltaics: Research and Applications, 21 72–76. https://doi.org/10.1002/pip.1174
  • Shockley, W., Queisser, H.J., 1961. Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys. 32 (1961) 510–519. https://doi.org/10.1063/1.1736034.
  • Song, T.B., Chen, Q., Zhou, H., Jiang, C., Wang, H.H., Yang, Y.M., Yang, Y. 2015. Perovskitesolar cells: film formation and properties, J. Mater. Chem. 3, 9032–9050. https://doi.org/10.1039/C4TA05246C.
  • Swami, S.K., Chaturvedi, N., Kumar, A., Dutta, V., 2015. Effect of deposition temperature on the structural and electrical properties of spray deposited kesterite (Cu2ZnSnS4) films, Sol. Energy 122, 508–516. https://doi.org/10.1016/j.solener.2015.09.027
  • Tanaka, K., Moritake, N., Uchiki, H., 2007. Preparation of Cu2ZnSnS4 thin films by sulfurizing sol–gel deposited precursors, Sol. Energy Mater. Sol. Cells 91 1199–1201. https://doi.org/10.1016/j.solmat.2007.04.012
  • Tiong, V.T., Zhang, Y., Bell, J., Wang, H., 2014. Phase-selective hydrothermal synthesis of Cu2ZnSnS4 nanocrystals: the effect of the sulphur precursor, CrystEngComm 16 (20) 4306–4313. https://doi.org/10.1039/C3CE42606H
  • Tress, W., Marinova, N., Inganas, O., Nazeeruddin, M.K., Zakeeruddin, S.M.,Graetzel, M. 2015. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination. Adv. Energy Mater., 5 (3), 1400812, https://doi.org/10.1002/aenm.20140081
  • Tunuguntla, V., Chen, W.-C., Shih, P.-H., Shown, I., Lin, Y.-R., Hwang, J.-S., Lee, C.-H., Chen, L.-C., Chen, K.-H., 2015. A nontoxic solvent based sol–gel Cu2ZnSnS4 thin film for high efficiency and scalable low-cost photovoltaic cells, J. Mater. Chem. A 3 15324–15330. https://doi.org/10.1039/C5TA02833G
  • Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y., Mitzi, D.B., 2013. Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Adv. Energy Mater. 4, 1301465. https://doi.org/10.1002/aenm.201301465
  • Weber, A., Krauth, H., Perlt, S., Schubert, B., Kötschau, I., Schorr, S., Schock, H.W., 2009. Multi-stage evaporation of Cu2ZnSnS4 thin films, Thin Solid Films, 517, 2524–2526. https://doi.org/10.1016/j.tsf.2008.11.033
  • Woo, K., Kim, K., Zhong, Z., Kim, I., Oh, Y., Jeong, S., Moon, J., 2014. Non-toxic ethanol based particulate inks for low temperature processed Cu2ZnSn(S,Se)4 solar cells without S/Se treatment. Sol. Energy Mater. Sol. Cells, 128, 362–368. https://doi.org/10.1016/j.solmat.2014.06.013
  • Wu, S.H., Chang, C.W., Chen, H.J., Shih, C.F., Wang, Y.Y., Li, C.C., Chan, S.W., 2017. Highefficiency Cu2ZnSn(S,Se)4 solar cells fabricated through a low-cost solution process and a two-step heat treatment, Prog. Photovolt: Research and Applications, 25 (1), 58–66. https://doi.org/10.1002/pip.2810
  • Yu, J., Deng, H., Tao, J., Chen, L., Cao, H., Sun, L., Yang, P., Chu, J., 2017. Synthesis of Cu2MnSnS4 thin film deposited on seeded fluorine doped tin oxide substrate via a green and low-cost electrodeposition method, Mater. Lett. 191 186–188. https://doi.org/10.1016/j.matchemphys.2018.03.009
  • Yu, J.J., Deng, H.M., Chen, L.L., Tao, J.H., Zhang, Q., Guo, B.L., Sun, L., Yang, P.X., Zheng, X.P., Chu, J.H., 2018. Improvement performance of two-step electrodepositing Cu 2 MnSnS 4 thin film solar cells by tuning Cu-Sn alloy layer deposition time. Mater. Chem. Phys. 211 382–388. https://doi.org/10.1016/j.matchemphys.2018.03.009
  • Yuan, T., Li, Y., Jia, M., Lai, Y., Li, J., Liu, F., Liu, Y., 2015. Fabrication of Cu2ZnSnS4 thin film solar cells by sulfurization of electrodeposited stacked binary Cu–Zn and Cu–Sn alloy layers, Mater. Lett. 155 44–47. https://doi.org/10.1016/j.matlet.2015.04.101
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Photonics, Optoelectronics and Optical Communications
Journal Section Articles
Authors

Canan Aytuğ Ava 0000-0003-4771-816X

Early Pub Date March 28, 2025
Publication Date
Submission Date March 21, 2024
Acceptance Date October 24, 2024
Published in Issue Year 2025 Volume: 25 Issue: 2

Cite

APA Aytuğ Ava, C. (2025). Cu2ZnSnS4 ve Cu2MnSnS4 İnce Filmlerin Sentez ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(2), 269-278.
AMA Aytuğ Ava C. Cu2ZnSnS4 ve Cu2MnSnS4 İnce Filmlerin Sentez ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. March 2025;25(2):269-278.
Chicago Aytuğ Ava, Canan. “Cu2ZnSnS4 Ve Cu2MnSnS4 İnce Filmlerin Sentez Ve Karakterizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, no. 2 (March 2025): 269-78.
EndNote Aytuğ Ava C (March 1, 2025) Cu2ZnSnS4 ve Cu2MnSnS4 İnce Filmlerin Sentez ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 2 269–278.
IEEE C. Aytuğ Ava, “Cu2ZnSnS4 ve Cu2MnSnS4 İnce Filmlerin Sentez ve Karakterizasyonu”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 2, pp. 269–278, 2025.
ISNAD Aytuğ Ava, Canan. “Cu2ZnSnS4 Ve Cu2MnSnS4 İnce Filmlerin Sentez Ve Karakterizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/2 (March 2025), 269-278.
JAMA Aytuğ Ava C. Cu2ZnSnS4 ve Cu2MnSnS4 İnce Filmlerin Sentez ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:269–278.
MLA Aytuğ Ava, Canan. “Cu2ZnSnS4 Ve Cu2MnSnS4 İnce Filmlerin Sentez Ve Karakterizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 2, 2025, pp. 269-78.
Vancouver Aytuğ Ava C. Cu2ZnSnS4 ve Cu2MnSnS4 İnce Filmlerin Sentez ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(2):269-78.