Research Article
BibTex RIS Cite

Investigation of Corrosion Properties of ZK60 (Ca/Ag) Alloys with Rare Earth Element Addition

Year 2025, Volume: 25 Issue: 2, 395 - 406

Abstract

In this study, the ZK60 alloy was prepared with rare earth elements (Y, Nd and Ce) added at different composition (0.5–1 wt%) and elements (Ca, Ag) added at a fixed composition (0.5 wt%) and extrusion. The effect of its application on microstructure and corrosion properties was examined. The extrusion process was carried out at 270 °C, at a speed of 0.3 m/s and at a ratio of 2.24:1. Corrosion tests were performed in Hank's solution at 36 °C. As a result of phase analysis, in addition to the main matrix (α-Mg) phase, Zn2Zr and MgZn2 intermetallic phases were detected in the microstructure of the ZK60 alloy. In addition to these phases, the presence of, Mg41Nd5, Mg3Y2Zn3 and Mg54Ag17 phases was detected in the structure of ZK60-0.5E and ZK60-1E alloys containing rare earth elements. Additionally, it was observed that the grain structures became thinner and the secondary phase particles increased with the addition of rare earth elements. Potentiodynamic corrosion tests conducted on the ZK60 alloy revealed that the corrosion rate was rather high. Additionally, the ZK60-0.5E and ZK60-1E alloys made with rare earth element additions showed increased corrosion resistance and slower corrosion rates.

Project Number

KBUBAP-22-YL-029

References

  • Abdiyan, F., Khanlarkhani, A., Zahedi Asl, V., Biabani, P., Zhao, J., Najafi, S., vd. 2022. Effect of adding Y and Ce on corrosion behaviour of the extruded ZK60 magnesium alloy. Corrosion Engineering, Science and Technology, 57(1), 1–6. https://doi.org/10.1080/1478422X.2021.1976085
  • Argade, G. R., Panigrahi, S. K. and Mishra, R. S. 2012. Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium. Corrosion Science, 58, 145–151. https://doi.org/10.1016/j.corsci.2012.01.021
  • Ben-Hamu, G., Eliezer, D., Kaya, A., Na, Y. G. and Shin, K. S. 2006. Microstructure and corrosion behavior of Mg–Zn– Ag alloys. Materials Science and Engineering: A, 435–436, 579–587. https://doi.org/10.1016/j.msea.2006.07.109
  • Chang, J., Duo, J., Xiang, Y., Yang, H., Ding, W. and Peng, Y. 2011. Influence of Nd and Y additions on the corrosion behaviour of extruded Mg-Zn-Zr alloys. International Journal of Minerals, Metallurgy, and Materials, 18(2), 203–209. https://doi.org/10.1007/s12613-011-0423-z
  • Chen, J., Tan, L., Etim, I. P. and Yang, K. 2018. Comparative study of the effect of Nd and Y content on the mechanical and biodegradable properties of Mg-Zn-Zr-xNd/Y (x=0.5, 1, 2) alloys. Materials Technology, 33(10), 659–671. https://doi.org/10.1080/10667857.2018.1492227
  • Chen, J., Tan, L. and Yang, K. 2017. Effect of heat treatment on mechanical and biodegradable properties of an extruded ZK60 alloy. Bioactive Materials, 2(1), 19–26. https://doi.org/10.1016/j.bioactmat.2016.12.002
  • Ci, W., Deng, L., Chen, X., Liu, C. and Pan, F. 2023. Effect of minor Ca addition on microstructure and corrosion behavior of Mg–Y–Ca alloys. Journal of Materials Research and Technology, 26, 7502–7515. https://doi.org/10.1016/j.jmrt.2023.09.112
  • Cui, X.-J., Liu, C.-H., Yang, R.-S., Li, M.-T. and Lin, X.-Z. 2015. Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism. Surface and Coatings Technology, 269, 228–237. https://doi.org/10.1016/j.surfcoat.2014.09.071
  • Ding, Y., Wen, C., Hodgson, P. and Li, Y. 2014. Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. Journal of Materials Chemistry B, 2(14), 1912–1933. https://doi.org/10.1039/C3TB21746A
  • Djebarı, K., Türen, Y., Ahlatcı, H. and Elen, L. 2022. Biyobozunur ZW21 Döküm Alaşımlarının Mikroyapı, Sertlik ve Korozyon Özelliklerini İncelenmesi. Avrupa Bilim ve Teknoloji Dergisi, (43), 6–12. https://doi.org/10.31590/ejosat.1202073
  • Elen, L., Turen, Y., Ahlatci, H., Unal, M. and Ergin, D. 2022. Microstructural, mechanical, and in vitro corrosion properties of biodegradable Mg-Ag alloys. Biointerphases, 17(4), 041001. https://doi.org/10.1116/6.0001858
  • Ergin, D., Djebarı, K., Türen, Y., Ahlatcı, H., Elen, L. And Ünal, M., 2021. The Effects Of Rare Earth Elements (Yttrıum, Neodymıum And Cerıum) on Mıcrostructural, Hardness, And Trıbologıcal Propertıes Of Calcıum And Sılver Added As-Cast Zk60-(0.5%)Yndce And Zk60-(1%)Yndce Alloys. Iksad Global Publıshıng House, Samsun, Türkiye, 360-370.
  • Frankel, G. S., Samaniego, A. and Birbilis, N. 2013. Evolution of hydrogen at dissolving magnesium surfaces. Corrosion Science, 70, 104–111. https://doi.org/10.1016/j.corsci.2013.01.017
  • Fu, W., Yang, H., Li, T., Sun, J., Guo, S., Fang, D., vd. 2023. Enhancing corrosion resistance of ZK60 magnesium alloys via Ca microalloying: The impact of nanoscale precipitates. Journal of Magnesium and Alloys, 11(9), 3214–3230. https://doi.org/10.1016/j.jma.2022.06.011
  • Gören, H. A., Ünal, M., Türen, Y. and Ahlatcı, H. 2021. ZM21 Magnezyum Alaşımına Lantan ve Kalsiyum İlavesinin Mikroyapı, Mekanik ve Hadde Özelliklerine Etkisi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(2), 1024–1031. https://doi.org/10.35193/bseufbd.1003822
  • Gu, X. N., Li, N., Zheng, Y. F. and Ruan, L. 2011. In vitro degradation performance and biological response of a Mg–Zn–Zr alloy. Materials Science and Engineering: B, 176(20), 1778–1784. https://doi.org/10.1016/j.mseb.2011.05.032
  • Guan, R. G., Shen, Y. F., Zhao, Z. Y. and Misra, R. D. K. 2016. Nanoscale precipitates strengthened lanthanum-bearing Mg-3Sn-1Mn alloys through continuous rheo-rolling. Scientific Reports, 6(1), 23154. https://doi.org/10.1038/srep23154
  • Huan, Z. G., Leeflang, M. A., Zhou, J., Fratila-Apachitei, L. E. and Duszczyk, J. 2010. In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys. Journal of Materials Science: Materials in Medicine, 21(9), 2623–2635. https://doi.org/10.1007/s10856-010-4111-8
  • Jia, Y., Ba, Z., Chen, X., Zhou, B., Zhou, W., Liu, H., vd. 2020. Controlled surface mechanical property and corrosion resistance of ZK60 magnesium alloy treated by zirconium ion implantation. Surface Topography: Metrology and Properties, 8(2), 025015. https://doi.org/10.1088/2051-672X/ab8c96
  • Jiang, S. T., Zhang, J., Shun, S. Z. and Chen, M. F. 2016. The formation of FHA coating on biodegradable Mg-Zn-Zr alloy using a two-step chemical treatment method. Applied Surface Science, 388, 424–430. https://doi.org/10.1016/j.apsusc.2015.12.087
  • Kang, J., Han, J.-K., Yang, H.-M., Park, K. W., Kang, H.-J., Koo, B.-K., vd. 2017. Bioresorbable Vascular Scaffolds- Are We Facing a Time of Crisis or One of Breakthrough? Circulation Journal: Official Journal of the Japanese Circulation Society, 81(8), 1065–1074. https://doi.org/10.1253/circj.CJ-17-0152
  • Kelen, F. 2023. Magnezyum ve Magnezyum Esaslı Malzemelerde Korozyon. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11(1), 41–56. https://doi.org/10.29130/dubited.1004053
  • Kelen, F., Aydoğmuş, T. and Gavgalı, M. 2022. Tek eksenli sıcak presleme tekniği ile imal edilen magnezyum matrisli kompozit malzemelerin korozyon davranışlarının incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(1), 34–41. https://doi.org/10.17714/gumusfenbil.894269
  • Kwon, J., Baek, S.-M., Jung, H., Kim, J. C., Lee, S.-Y. and Park, S. S. 2021. Role of microalloyed Sm in enhancing the corrosion resistance of hot-rolled Mg–8Sn–1Al–1Zn alloy. Corrosion Science, 185, 109425. https://doi.org/10.1016/j.corsci.2021.109425
  • Li, H., Liu, D.-B., Zhao, Y., Jin, F. and Chen, M. 2016. The influence of Zn content on the corrosion and wear performance of Mg-Zn-Ca alloy in simulated body fluid. Faculty of Engineering and Information Sciences - Papers: Part A, 3890–3895. https://doi.org/10.1007/s11665-016-2207-0
  • Li, K., Injeti, V. S. Y., Trivedi, P., Murr, L. E. and Misra, R. D. K. 2018. Nanoscale deformation of multiaxially forged ultrafine-grained Mg-2Zn-2Gd alloy with high strength-high ductility combination and comparison with the coarse-grained counterpart. Journal of Materials Science & Technology, 34(2), 311–316. https://doi.org/10.1016/j.jmst.2017.07.023
  • Li, L., Gao, J. and Wang, Y. 2004. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surface and Coatings Technology, 185(1), 92–98. https://doi.org/10.1016/j.surfcoat.2004.01.004
  • Liu, J., Song, Y., Chen, J., Chen, P., Shan, D. and Han, E.-H. 2016. The Special Role of Anodic Second Phases in the Micro-galvanic Corrosion of EW75 Mg Alloy. Electrochimica Acta, 189, 190–195. https://doi.org/10.1016/j.electacta.2015.12.075
  • Liu, X., Shan, D., Song, Y. and Han, E. 2017. Influence of yttrium element on the corrosion behaviors of Mg–Y binary magnesium alloy. Journal of Magnesium and Alloys, 5(1), 26–34. https://doi.org/10.1016/j.jma.2016.12.002
  • Liu, Y., Wen, J., Li, H. and He, J. 2022. Effects of extrusion parameters on the microstructure, corrosion resistance, and mechanical properties of biodegradable Mg–Zn–Gd–Y–Zr alloy. Journal of Alloys and Compounds, 891, 161964. https://doi.org/10.1016/j.jallcom.2021.161964
  • Lv, S., Meng, F., Lu, X., Yang, Q., Qiu, X., Duan, Q., vd. 2019. Influence of Nd addition on microstructures and mechanical properties of a hot-extruded Mg−6.0Zn−0.5Zr (wt.%) alloy. Journal of Alloys and Compounds, 806, 1166–1179. https://doi.org/10.1016/j.jallcom.2019.07.300
  • Ma, C., Liu, M., Wu, G., Ding, W. and Zhu, Y. 2003. Tensile properties of extruded ZK60–RE alloys. Materials Science and Engineering: A, 349(1), 207–212. https://doi.org/10.1016/S0921-5093(02)00740-2
  • Mandal, M., Moon, A. P., Deo, G., Mendis, C. L. and Mondal, K. 2014. Corrosion behavior of Mg–2.4Zn alloy micro-alloyed with Ag and Ca. Corrosion Science, 78, 172–182. https://doi.org/10.1016/j.corsci.2013.09.012
  • Reddy, K. R. R. M., Mrudula, G., Elipey, M. K., Singaiah, K. and Prabhakar, G. V. N. B. 2023. Investigating the role of processing temperature on the microstructure evolution, mechanical properties, and corrosion behaviour of equal channel angular pressed AZ31 Mg alloy. Engineering Research Express, 6(1), 015002. https://doi.org/10.1088/2631-8695/ad1216
  • Sabbaghian, M., Fakhar, N., Nagy, P., Fekete, K. and Gubicza, J. 2021. Investigation of shear and tensile mechanical properties of ZK60 Mg alloy sheet processed by rolling and sheet extrusion. Materials Science and Engineering: A, 828, 142098. https://doi.org/10.1016/j.msea.2021.142098
  • Sheikhani, A., Palizdar, Y., Nezhad, M. S. A., Najafi, S. and Torkamani, H. 2019. The effect of Ce addition (up to 3%) and extrusion ratio on the microstructure and tensile properties of ZK60 Mg alloy. Materials Research Express, 6(8), 086594. https://doi.org/10.1088/2053-1591/ab1fa0
  • Song, G. 2005. Recent Progress in Corrosion and Protection of Magnesium Alloys. Advanced Engineering Materials, 7(7), 563–586. https://doi.org/10.1002/adem.200500013
  • Song, G. and Atrens, A. 2003. Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance. Advanced Engineering Materials, 5(12), 837–858. https://doi.org/10.1002/adem.200310405
  • Song, G. and Song, S. 2007. A Possible Biodegradable Magnesium Implant Material. Advanced Engineering Materials, 9(4), 298–302. https://doi.org/10.1002/adem.200600252
  • Song, Y., Han, E.-H., Shan, D., Yim, C. D. and You, B. S. 2012. The role of second phases in the corrosion behavior of Mg–5Zn alloy. Corrosion Science, 60, 238–245.
  • https://doi.org/10.1016/j.corsci.2012.03.030 Song, Y., Shan, D. and Han, E.-H. 2017. Pitting corrosion of a Rare Earth Mg alloy GW93. Journal of Materials Science & Technology, 33(9), 954–960. https://doi.org/10.1016/j.jmst.2017.01.014
  • Staiger, M. P., Pietak, A. M., Huadmai, J. and Dias, G. 2006. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27(9), 1728–1734. https://doi.org/10.1016/j.biomaterials.2005.10.003
  • Su, J., Teng, J., Xu, Z. and Li, Y. 2022. Corrosion-wear behavior of a biocompatible magnesium matrix composite in simulated body fluid. Friction, 10(1), 31–43. https://doi.org/10.1007/s40544-020-0361-8
  • Tie, D., Feyerabend, F., Müller, W. D., Schade, R., Liefeith, K., Kainer, K. U., vd. 2013. Antibacterial biodegradable Mg-Ag alloys. European Cells & Materials, 25, 284–298; discussion 298. https://doi.org/10.22203/ecm.v025a20
  • Tong, G., Liu, H. and Liu, Y. 2010. Effect of rare earth additions on microstructure and mechanical properties of AZ91 magnesium alloys. Transactions of Nonferrous Metals Society of China, 20, s336–s340. https://doi.org/10.1016/S1003-6326(10)60493-1
  • Tong, X., Miao, D., Zhou, R., Shen, X., Luo, P., Ma, J., vd. 2024. Mechanical properties, corrosion behavior, and in vitro and in vivo biocompatibility of hot-extruded Zn-5RE (RE = Y, Ho, and Er) alloys for biodegradable bone-fixation applications. Acta Biomaterialia, 185, 55–72. https://doi.org/10.1016/j.actbio.2024.07.006
  • Trivedi, P., Nune, K. C. and Misra, R. D. K. 2016. Degradation behaviour of magnesium-rare earth biomedical alloys. Materials Technology, 31(12), 726–731. https://doi.org/10.1080/10667857.2016.1213550
  • Turen, Y. and Elen, L. 2023. Effects of Zn, Nd, and Ca addition on the microstructure, mechanical and corrosion properties of biodegradable Mg-Ag alloys. Metallurgical Research & Technology, 120(2), 215. https://doi.org/10.1051/metal/2022111
  • Ünal, M. and Gören, H. A. 2024. The effects of Nd, La, and Ca addition on the corrosion properties of as-cast and as-rolled ZM21 Mg alloys. Metallurgical Research & Technology, 121(2), 207. https://doi.org/10.1051/metal/2024004
  • Wang, W., Wu, H., Sun, Y., Yan, J., Zhang, L., Zhang, S., vd. 2020. Local intragranular misorientation accelerates corrosion in biodegradable Mg. Acta Biomaterialia, 101, 575–585. https://doi.org/10.1016/j.actbio.2019.10.036
  • Windhagen, H., Radtke, K., Weizbauer, A., Diekmann, J., Noll, Y., Kreimeyer, U., vd. 2013. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomedical Engineering Online, 12, 62. https://doi.org/10.1186/1475-925X-12-62
  • Witte, F., Fischer, J., Nellesen, J., Crostack, H.-A., Kaese, V., Pisch, A., vd. 2006. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 27(7), 1013–1018. https://doi.org/10.1016/j.biomaterials.2005.07.037
  • Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U., Willumeit, R., vd. 2008. Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 12(5), 63–72. https://doi.org/10.1016/j.cossms.2009.04.001
  • Wu, G., Ibrahim, J. M. and Chu, P. K. 2013. Surface design of biodegradable magnesium alloys — A review. Surface and Coatings Technology, 233, 2–12. https://doi.org/10.1016/j.surfcoat.2012.10.009
  • Xie, J., Zhang, J., You, Z., Liu, S., Guan, K., Wu, R., vd. 2021. Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying. Journal of Magnesium and Alloys, 9(1), 41–56. https://doi.org/10.1016/j.jma.2020.08.016
  • Xiong, Y., Zhu, T., Yang, J., Yu, Y. and Gong, X. 2020. Effect of Twin-Induced Texture Evolution on Corrosion Resistance of Extruded ZK60 Magnesium Alloy in Simulated Body Fluid. Journal of Materials Engineering and Performance, 29(9), 5710–5717. https://doi.org/10.1007/s11665-020-05068-2
  • Xu, H., Zhang, X., Zhang, K., Shi, Y. and Ren, J. 2016. Effect of extrusion on corrosion behavior and corrosion mechanism of Mg-Y alloy. Journal of Rare Earths, 34(3), 315–327. https://doi.org/10.1016/S1002-0721(16)60031-5
  • Yu, K., Dai, Y., Luo, Z., Long, H., Zeng, M., Li, Z., vd. 2018. In vitro and in vivo evaluation of novel biodegradable Mg-Ag-Y alloys for use as resorbable bone fixation implant. Journal of Biomedical Materials Research Part A, 106(7), 2059–2069. https://doi.org/10.1002/jbm.a.36397
  • Zainal Abidin, N. I., Martin, D. and Atrens, A. 2011. Corrosion of high purity Mg, AZ91, ZE41 and Mg2Zn0.2Mn in Hank’s solution at room temperature. Corrosion Science, 53(3), 862–872. https://doi.org/10.1016/j.corsci.2010.10.008
  • Zengin, H. and Turen, Y. 2020. Effect of Y addition on microstructure and corrosion behavior of extruded Mg–Zn–Nd–Zr alloy. Journal of Magnesium and Alloys, 8(3), 640–653. https://doi.org/10.1016/j.jma.2020.06.004
  • Zengin, H., Turen, Y., Ahlatci, H. and Sun, Y. 2018. Mechanical Properties and Corrosion Behavior of As-Cast Mg-Zn-Zr-(La) Magnesium Alloys. Journal of Materials Engineering and Performance, 27(2), 389–397. https://doi.org/10.1007/s11665-017-3112-x
  • Zhang, B. P., Wang, Y. and Geng, L. 2011. Research on Mg-Zn-Ca Alloy as Degradable Biomaterial. IntechOpen. https://doi.org/10.5772/23929
  • Zhang, Y., Liu, Y., Zheng, R., Zheng, Y. and Chen, L. 2023. Research progress on corrosion behaviors and biocompatibility of rare-earth magnesium alloys in vivo and in vitro. Journal of Rare Earths, 41(12), 1827–1842. https://doi.org/10.1016/j.jre.2023.03.005
  • Zhang, Z., Liu, X., Hu, W., Li, J., Le, Q., Bao, L., vd. 2015. Microstructures, mechanical properties and corrosion behaviors of Mg–Y–Zn–Zr alloys with specific Y/Zn mole ratios. Journal of Alloys and Compounds, 624, 116–125. https://doi.org/10.1016/j.jallcom.2014.10.177
  • Zhou, H. T., Zhang, Z. D., Liu, C. M. and Wang, Q. W. 2007. Effect of Nd and Y on the microstructure and mechanical properties of ZK60 alloy. Materials Science and Engineering: A, 445–446, 1–6. https://doi.org/10.1016/j.msea.2006.04.028
  • Zhou, X., Zhou, H. T., Zhang, Z. D., Liu, R. R. and Liu, L. B. 2012. Tensile Properties of Hot Extruded Mg-Zn-Nd-Y-Zr Alloy at Elevated Temperatures. Advanced Materials Research, 415–417, 1157–1163. https://doi.org/10.4028/www.scientific.net/AMR.415-417.1157
  • Zhou, Y. L., Luo, D. M., Hu, W. Y., Li, Y. C., Hodgson, P. D. and Wen, C. E. 2011. Compressive Properties of Hot-Rolled Mg-Zr-Ca Alloys for Biomedical Applications. Advanced Materials Research, 197–198, 56–59. https://doi.org/10.4028/www.scientific.net/AMR.197-198.56
  • Zhu, S., Liu, Z., Qu, R., Wang, L., Li, Q. and Guan, S. 2013. Effect of rare earth and Mn elements on the corrosion behavior of extruded AZ61 system in 3.5 wt% NaCl solution and salt spray test. Journal of Magnesium and Alloys, 1(3), 249–255. https://doi.org/10.1016/j.jma.2013.10.003
  • Zou, J., Ma, L., Jia, W., Le, Q., Qin, G. and Yuan, Y. 2021. Microstructural and mechanical response of ZK60 magnesium alloy subjected to radial forging. Journal of Materials Science & Technology, 83, 228–238. https://doi.org/10.1016/j.jmst.2020.11.080

Nadir Toprak Elementi İlaveli ZK60 (Ca/Ag) Alaşımlarının Korozyon Özelliklerinin İncelenmesi

Year 2025, Volume: 25 Issue: 2, 395 - 406

Abstract

Bu çalışmada, ZK60 alaşımının farklı oranlarda (ağ. %0,5–1) ilave edilen nadir toprak elementleri (Y, Nd ve Ce) ile sabit oranda (ağ. %0,5) ilave edilen elementlerin (Ca, Ag) ve ekstrüzyon uygulamasının mikroyapı ve korozyon özellikleri üzerine etkisi incelenmiştir. Ekstrüzyon işlemi, 270 °C’de, 0,3 m/s hızda ve 2,24:1 oranında yapılmıştır. Korozyon testleri Hank solüsyonu içerisinde ve 36 °C’de yapılmıştır. Faz analizi sonucunda ZK60 alaşımının mikroyapısında ana matris (α-Mg) fazının yanı sıra yapıda ve Zn2Zr MgZn2 intermetalik fazlar tespit edilmiştir. Nadir toprak elementi içeren ZK60-0,5E ile ZK60-1E alaşımlarının yapısında ise bu fazlara ek olarak Mg54Ag17, Mg3Y2Zn3 ve Mg41Nd5 fazlarının varlığı tespit edilmiştir. Ayrıca nadir toprak elementi ilavesi ile tane yapılarının inceldiği ve ikincil faz partiküllerinin arttığı gözlenmiştir. ZK60 alaşımına uygulanan potansiyodinamik korozyon testleri neticesinde korozyon hızının oldukça yüksek olduğu, nadir toprak element ilaveleri ile oluşturulmuş olan ZK60-0,5E ve ZK60-1E alaşımlarda korozyon direncinin arttığı ve korozyon hızlarının da yavaşladığı görülmüştür.

Project Number

KBUBAP-22-YL-029

References

  • Abdiyan, F., Khanlarkhani, A., Zahedi Asl, V., Biabani, P., Zhao, J., Najafi, S., vd. 2022. Effect of adding Y and Ce on corrosion behaviour of the extruded ZK60 magnesium alloy. Corrosion Engineering, Science and Technology, 57(1), 1–6. https://doi.org/10.1080/1478422X.2021.1976085
  • Argade, G. R., Panigrahi, S. K. and Mishra, R. S. 2012. Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium. Corrosion Science, 58, 145–151. https://doi.org/10.1016/j.corsci.2012.01.021
  • Ben-Hamu, G., Eliezer, D., Kaya, A., Na, Y. G. and Shin, K. S. 2006. Microstructure and corrosion behavior of Mg–Zn– Ag alloys. Materials Science and Engineering: A, 435–436, 579–587. https://doi.org/10.1016/j.msea.2006.07.109
  • Chang, J., Duo, J., Xiang, Y., Yang, H., Ding, W. and Peng, Y. 2011. Influence of Nd and Y additions on the corrosion behaviour of extruded Mg-Zn-Zr alloys. International Journal of Minerals, Metallurgy, and Materials, 18(2), 203–209. https://doi.org/10.1007/s12613-011-0423-z
  • Chen, J., Tan, L., Etim, I. P. and Yang, K. 2018. Comparative study of the effect of Nd and Y content on the mechanical and biodegradable properties of Mg-Zn-Zr-xNd/Y (x=0.5, 1, 2) alloys. Materials Technology, 33(10), 659–671. https://doi.org/10.1080/10667857.2018.1492227
  • Chen, J., Tan, L. and Yang, K. 2017. Effect of heat treatment on mechanical and biodegradable properties of an extruded ZK60 alloy. Bioactive Materials, 2(1), 19–26. https://doi.org/10.1016/j.bioactmat.2016.12.002
  • Ci, W., Deng, L., Chen, X., Liu, C. and Pan, F. 2023. Effect of minor Ca addition on microstructure and corrosion behavior of Mg–Y–Ca alloys. Journal of Materials Research and Technology, 26, 7502–7515. https://doi.org/10.1016/j.jmrt.2023.09.112
  • Cui, X.-J., Liu, C.-H., Yang, R.-S., Li, M.-T. and Lin, X.-Z. 2015. Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism. Surface and Coatings Technology, 269, 228–237. https://doi.org/10.1016/j.surfcoat.2014.09.071
  • Ding, Y., Wen, C., Hodgson, P. and Li, Y. 2014. Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. Journal of Materials Chemistry B, 2(14), 1912–1933. https://doi.org/10.1039/C3TB21746A
  • Djebarı, K., Türen, Y., Ahlatcı, H. and Elen, L. 2022. Biyobozunur ZW21 Döküm Alaşımlarının Mikroyapı, Sertlik ve Korozyon Özelliklerini İncelenmesi. Avrupa Bilim ve Teknoloji Dergisi, (43), 6–12. https://doi.org/10.31590/ejosat.1202073
  • Elen, L., Turen, Y., Ahlatci, H., Unal, M. and Ergin, D. 2022. Microstructural, mechanical, and in vitro corrosion properties of biodegradable Mg-Ag alloys. Biointerphases, 17(4), 041001. https://doi.org/10.1116/6.0001858
  • Ergin, D., Djebarı, K., Türen, Y., Ahlatcı, H., Elen, L. And Ünal, M., 2021. The Effects Of Rare Earth Elements (Yttrıum, Neodymıum And Cerıum) on Mıcrostructural, Hardness, And Trıbologıcal Propertıes Of Calcıum And Sılver Added As-Cast Zk60-(0.5%)Yndce And Zk60-(1%)Yndce Alloys. Iksad Global Publıshıng House, Samsun, Türkiye, 360-370.
  • Frankel, G. S., Samaniego, A. and Birbilis, N. 2013. Evolution of hydrogen at dissolving magnesium surfaces. Corrosion Science, 70, 104–111. https://doi.org/10.1016/j.corsci.2013.01.017
  • Fu, W., Yang, H., Li, T., Sun, J., Guo, S., Fang, D., vd. 2023. Enhancing corrosion resistance of ZK60 magnesium alloys via Ca microalloying: The impact of nanoscale precipitates. Journal of Magnesium and Alloys, 11(9), 3214–3230. https://doi.org/10.1016/j.jma.2022.06.011
  • Gören, H. A., Ünal, M., Türen, Y. and Ahlatcı, H. 2021. ZM21 Magnezyum Alaşımına Lantan ve Kalsiyum İlavesinin Mikroyapı, Mekanik ve Hadde Özelliklerine Etkisi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(2), 1024–1031. https://doi.org/10.35193/bseufbd.1003822
  • Gu, X. N., Li, N., Zheng, Y. F. and Ruan, L. 2011. In vitro degradation performance and biological response of a Mg–Zn–Zr alloy. Materials Science and Engineering: B, 176(20), 1778–1784. https://doi.org/10.1016/j.mseb.2011.05.032
  • Guan, R. G., Shen, Y. F., Zhao, Z. Y. and Misra, R. D. K. 2016. Nanoscale precipitates strengthened lanthanum-bearing Mg-3Sn-1Mn alloys through continuous rheo-rolling. Scientific Reports, 6(1), 23154. https://doi.org/10.1038/srep23154
  • Huan, Z. G., Leeflang, M. A., Zhou, J., Fratila-Apachitei, L. E. and Duszczyk, J. 2010. In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys. Journal of Materials Science: Materials in Medicine, 21(9), 2623–2635. https://doi.org/10.1007/s10856-010-4111-8
  • Jia, Y., Ba, Z., Chen, X., Zhou, B., Zhou, W., Liu, H., vd. 2020. Controlled surface mechanical property and corrosion resistance of ZK60 magnesium alloy treated by zirconium ion implantation. Surface Topography: Metrology and Properties, 8(2), 025015. https://doi.org/10.1088/2051-672X/ab8c96
  • Jiang, S. T., Zhang, J., Shun, S. Z. and Chen, M. F. 2016. The formation of FHA coating on biodegradable Mg-Zn-Zr alloy using a two-step chemical treatment method. Applied Surface Science, 388, 424–430. https://doi.org/10.1016/j.apsusc.2015.12.087
  • Kang, J., Han, J.-K., Yang, H.-M., Park, K. W., Kang, H.-J., Koo, B.-K., vd. 2017. Bioresorbable Vascular Scaffolds- Are We Facing a Time of Crisis or One of Breakthrough? Circulation Journal: Official Journal of the Japanese Circulation Society, 81(8), 1065–1074. https://doi.org/10.1253/circj.CJ-17-0152
  • Kelen, F. 2023. Magnezyum ve Magnezyum Esaslı Malzemelerde Korozyon. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11(1), 41–56. https://doi.org/10.29130/dubited.1004053
  • Kelen, F., Aydoğmuş, T. and Gavgalı, M. 2022. Tek eksenli sıcak presleme tekniği ile imal edilen magnezyum matrisli kompozit malzemelerin korozyon davranışlarının incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(1), 34–41. https://doi.org/10.17714/gumusfenbil.894269
  • Kwon, J., Baek, S.-M., Jung, H., Kim, J. C., Lee, S.-Y. and Park, S. S. 2021. Role of microalloyed Sm in enhancing the corrosion resistance of hot-rolled Mg–8Sn–1Al–1Zn alloy. Corrosion Science, 185, 109425. https://doi.org/10.1016/j.corsci.2021.109425
  • Li, H., Liu, D.-B., Zhao, Y., Jin, F. and Chen, M. 2016. The influence of Zn content on the corrosion and wear performance of Mg-Zn-Ca alloy in simulated body fluid. Faculty of Engineering and Information Sciences - Papers: Part A, 3890–3895. https://doi.org/10.1007/s11665-016-2207-0
  • Li, K., Injeti, V. S. Y., Trivedi, P., Murr, L. E. and Misra, R. D. K. 2018. Nanoscale deformation of multiaxially forged ultrafine-grained Mg-2Zn-2Gd alloy with high strength-high ductility combination and comparison with the coarse-grained counterpart. Journal of Materials Science & Technology, 34(2), 311–316. https://doi.org/10.1016/j.jmst.2017.07.023
  • Li, L., Gao, J. and Wang, Y. 2004. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surface and Coatings Technology, 185(1), 92–98. https://doi.org/10.1016/j.surfcoat.2004.01.004
  • Liu, J., Song, Y., Chen, J., Chen, P., Shan, D. and Han, E.-H. 2016. The Special Role of Anodic Second Phases in the Micro-galvanic Corrosion of EW75 Mg Alloy. Electrochimica Acta, 189, 190–195. https://doi.org/10.1016/j.electacta.2015.12.075
  • Liu, X., Shan, D., Song, Y. and Han, E. 2017. Influence of yttrium element on the corrosion behaviors of Mg–Y binary magnesium alloy. Journal of Magnesium and Alloys, 5(1), 26–34. https://doi.org/10.1016/j.jma.2016.12.002
  • Liu, Y., Wen, J., Li, H. and He, J. 2022. Effects of extrusion parameters on the microstructure, corrosion resistance, and mechanical properties of biodegradable Mg–Zn–Gd–Y–Zr alloy. Journal of Alloys and Compounds, 891, 161964. https://doi.org/10.1016/j.jallcom.2021.161964
  • Lv, S., Meng, F., Lu, X., Yang, Q., Qiu, X., Duan, Q., vd. 2019. Influence of Nd addition on microstructures and mechanical properties of a hot-extruded Mg−6.0Zn−0.5Zr (wt.%) alloy. Journal of Alloys and Compounds, 806, 1166–1179. https://doi.org/10.1016/j.jallcom.2019.07.300
  • Ma, C., Liu, M., Wu, G., Ding, W. and Zhu, Y. 2003. Tensile properties of extruded ZK60–RE alloys. Materials Science and Engineering: A, 349(1), 207–212. https://doi.org/10.1016/S0921-5093(02)00740-2
  • Mandal, M., Moon, A. P., Deo, G., Mendis, C. L. and Mondal, K. 2014. Corrosion behavior of Mg–2.4Zn alloy micro-alloyed with Ag and Ca. Corrosion Science, 78, 172–182. https://doi.org/10.1016/j.corsci.2013.09.012
  • Reddy, K. R. R. M., Mrudula, G., Elipey, M. K., Singaiah, K. and Prabhakar, G. V. N. B. 2023. Investigating the role of processing temperature on the microstructure evolution, mechanical properties, and corrosion behaviour of equal channel angular pressed AZ31 Mg alloy. Engineering Research Express, 6(1), 015002. https://doi.org/10.1088/2631-8695/ad1216
  • Sabbaghian, M., Fakhar, N., Nagy, P., Fekete, K. and Gubicza, J. 2021. Investigation of shear and tensile mechanical properties of ZK60 Mg alloy sheet processed by rolling and sheet extrusion. Materials Science and Engineering: A, 828, 142098. https://doi.org/10.1016/j.msea.2021.142098
  • Sheikhani, A., Palizdar, Y., Nezhad, M. S. A., Najafi, S. and Torkamani, H. 2019. The effect of Ce addition (up to 3%) and extrusion ratio on the microstructure and tensile properties of ZK60 Mg alloy. Materials Research Express, 6(8), 086594. https://doi.org/10.1088/2053-1591/ab1fa0
  • Song, G. 2005. Recent Progress in Corrosion and Protection of Magnesium Alloys. Advanced Engineering Materials, 7(7), 563–586. https://doi.org/10.1002/adem.200500013
  • Song, G. and Atrens, A. 2003. Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance. Advanced Engineering Materials, 5(12), 837–858. https://doi.org/10.1002/adem.200310405
  • Song, G. and Song, S. 2007. A Possible Biodegradable Magnesium Implant Material. Advanced Engineering Materials, 9(4), 298–302. https://doi.org/10.1002/adem.200600252
  • Song, Y., Han, E.-H., Shan, D., Yim, C. D. and You, B. S. 2012. The role of second phases in the corrosion behavior of Mg–5Zn alloy. Corrosion Science, 60, 238–245.
  • https://doi.org/10.1016/j.corsci.2012.03.030 Song, Y., Shan, D. and Han, E.-H. 2017. Pitting corrosion of a Rare Earth Mg alloy GW93. Journal of Materials Science & Technology, 33(9), 954–960. https://doi.org/10.1016/j.jmst.2017.01.014
  • Staiger, M. P., Pietak, A. M., Huadmai, J. and Dias, G. 2006. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27(9), 1728–1734. https://doi.org/10.1016/j.biomaterials.2005.10.003
  • Su, J., Teng, J., Xu, Z. and Li, Y. 2022. Corrosion-wear behavior of a biocompatible magnesium matrix composite in simulated body fluid. Friction, 10(1), 31–43. https://doi.org/10.1007/s40544-020-0361-8
  • Tie, D., Feyerabend, F., Müller, W. D., Schade, R., Liefeith, K., Kainer, K. U., vd. 2013. Antibacterial biodegradable Mg-Ag alloys. European Cells & Materials, 25, 284–298; discussion 298. https://doi.org/10.22203/ecm.v025a20
  • Tong, G., Liu, H. and Liu, Y. 2010. Effect of rare earth additions on microstructure and mechanical properties of AZ91 magnesium alloys. Transactions of Nonferrous Metals Society of China, 20, s336–s340. https://doi.org/10.1016/S1003-6326(10)60493-1
  • Tong, X., Miao, D., Zhou, R., Shen, X., Luo, P., Ma, J., vd. 2024. Mechanical properties, corrosion behavior, and in vitro and in vivo biocompatibility of hot-extruded Zn-5RE (RE = Y, Ho, and Er) alloys for biodegradable bone-fixation applications. Acta Biomaterialia, 185, 55–72. https://doi.org/10.1016/j.actbio.2024.07.006
  • Trivedi, P., Nune, K. C. and Misra, R. D. K. 2016. Degradation behaviour of magnesium-rare earth biomedical alloys. Materials Technology, 31(12), 726–731. https://doi.org/10.1080/10667857.2016.1213550
  • Turen, Y. and Elen, L. 2023. Effects of Zn, Nd, and Ca addition on the microstructure, mechanical and corrosion properties of biodegradable Mg-Ag alloys. Metallurgical Research & Technology, 120(2), 215. https://doi.org/10.1051/metal/2022111
  • Ünal, M. and Gören, H. A. 2024. The effects of Nd, La, and Ca addition on the corrosion properties of as-cast and as-rolled ZM21 Mg alloys. Metallurgical Research & Technology, 121(2), 207. https://doi.org/10.1051/metal/2024004
  • Wang, W., Wu, H., Sun, Y., Yan, J., Zhang, L., Zhang, S., vd. 2020. Local intragranular misorientation accelerates corrosion in biodegradable Mg. Acta Biomaterialia, 101, 575–585. https://doi.org/10.1016/j.actbio.2019.10.036
  • Windhagen, H., Radtke, K., Weizbauer, A., Diekmann, J., Noll, Y., Kreimeyer, U., vd. 2013. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomedical Engineering Online, 12, 62. https://doi.org/10.1186/1475-925X-12-62
  • Witte, F., Fischer, J., Nellesen, J., Crostack, H.-A., Kaese, V., Pisch, A., vd. 2006. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 27(7), 1013–1018. https://doi.org/10.1016/j.biomaterials.2005.07.037
  • Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U., Willumeit, R., vd. 2008. Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 12(5), 63–72. https://doi.org/10.1016/j.cossms.2009.04.001
  • Wu, G., Ibrahim, J. M. and Chu, P. K. 2013. Surface design of biodegradable magnesium alloys — A review. Surface and Coatings Technology, 233, 2–12. https://doi.org/10.1016/j.surfcoat.2012.10.009
  • Xie, J., Zhang, J., You, Z., Liu, S., Guan, K., Wu, R., vd. 2021. Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying. Journal of Magnesium and Alloys, 9(1), 41–56. https://doi.org/10.1016/j.jma.2020.08.016
  • Xiong, Y., Zhu, T., Yang, J., Yu, Y. and Gong, X. 2020. Effect of Twin-Induced Texture Evolution on Corrosion Resistance of Extruded ZK60 Magnesium Alloy in Simulated Body Fluid. Journal of Materials Engineering and Performance, 29(9), 5710–5717. https://doi.org/10.1007/s11665-020-05068-2
  • Xu, H., Zhang, X., Zhang, K., Shi, Y. and Ren, J. 2016. Effect of extrusion on corrosion behavior and corrosion mechanism of Mg-Y alloy. Journal of Rare Earths, 34(3), 315–327. https://doi.org/10.1016/S1002-0721(16)60031-5
  • Yu, K., Dai, Y., Luo, Z., Long, H., Zeng, M., Li, Z., vd. 2018. In vitro and in vivo evaluation of novel biodegradable Mg-Ag-Y alloys for use as resorbable bone fixation implant. Journal of Biomedical Materials Research Part A, 106(7), 2059–2069. https://doi.org/10.1002/jbm.a.36397
  • Zainal Abidin, N. I., Martin, D. and Atrens, A. 2011. Corrosion of high purity Mg, AZ91, ZE41 and Mg2Zn0.2Mn in Hank’s solution at room temperature. Corrosion Science, 53(3), 862–872. https://doi.org/10.1016/j.corsci.2010.10.008
  • Zengin, H. and Turen, Y. 2020. Effect of Y addition on microstructure and corrosion behavior of extruded Mg–Zn–Nd–Zr alloy. Journal of Magnesium and Alloys, 8(3), 640–653. https://doi.org/10.1016/j.jma.2020.06.004
  • Zengin, H., Turen, Y., Ahlatci, H. and Sun, Y. 2018. Mechanical Properties and Corrosion Behavior of As-Cast Mg-Zn-Zr-(La) Magnesium Alloys. Journal of Materials Engineering and Performance, 27(2), 389–397. https://doi.org/10.1007/s11665-017-3112-x
  • Zhang, B. P., Wang, Y. and Geng, L. 2011. Research on Mg-Zn-Ca Alloy as Degradable Biomaterial. IntechOpen. https://doi.org/10.5772/23929
  • Zhang, Y., Liu, Y., Zheng, R., Zheng, Y. and Chen, L. 2023. Research progress on corrosion behaviors and biocompatibility of rare-earth magnesium alloys in vivo and in vitro. Journal of Rare Earths, 41(12), 1827–1842. https://doi.org/10.1016/j.jre.2023.03.005
  • Zhang, Z., Liu, X., Hu, W., Li, J., Le, Q., Bao, L., vd. 2015. Microstructures, mechanical properties and corrosion behaviors of Mg–Y–Zn–Zr alloys with specific Y/Zn mole ratios. Journal of Alloys and Compounds, 624, 116–125. https://doi.org/10.1016/j.jallcom.2014.10.177
  • Zhou, H. T., Zhang, Z. D., Liu, C. M. and Wang, Q. W. 2007. Effect of Nd and Y on the microstructure and mechanical properties of ZK60 alloy. Materials Science and Engineering: A, 445–446, 1–6. https://doi.org/10.1016/j.msea.2006.04.028
  • Zhou, X., Zhou, H. T., Zhang, Z. D., Liu, R. R. and Liu, L. B. 2012. Tensile Properties of Hot Extruded Mg-Zn-Nd-Y-Zr Alloy at Elevated Temperatures. Advanced Materials Research, 415–417, 1157–1163. https://doi.org/10.4028/www.scientific.net/AMR.415-417.1157
  • Zhou, Y. L., Luo, D. M., Hu, W. Y., Li, Y. C., Hodgson, P. D. and Wen, C. E. 2011. Compressive Properties of Hot-Rolled Mg-Zr-Ca Alloys for Biomedical Applications. Advanced Materials Research, 197–198, 56–59. https://doi.org/10.4028/www.scientific.net/AMR.197-198.56
  • Zhu, S., Liu, Z., Qu, R., Wang, L., Li, Q. and Guan, S. 2013. Effect of rare earth and Mn elements on the corrosion behavior of extruded AZ61 system in 3.5 wt% NaCl solution and salt spray test. Journal of Magnesium and Alloys, 1(3), 249–255. https://doi.org/10.1016/j.jma.2013.10.003
  • Zou, J., Ma, L., Jia, W., Le, Q., Qin, G. and Yuan, Y. 2021. Microstructural and mechanical response of ZK60 magnesium alloy subjected to radial forging. Journal of Materials Science & Technology, 83, 228–238. https://doi.org/10.1016/j.jmst.2020.11.080
There are 69 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Levent Elen 0000-0001-8740-7900

Deniz Ergin 0000-0003-4460-5821

Yunus Türen 0000-0001-8755-1865

Project Number KBUBAP-22-YL-029
Early Pub Date March 28, 2025
Publication Date
Submission Date June 17, 2024
Acceptance Date November 3, 2024
Published in Issue Year 2025 Volume: 25 Issue: 2

Cite

APA Elen, L., Ergin, D., & Türen, Y. (2025). Nadir Toprak Elementi İlaveli ZK60 (Ca/Ag) Alaşımlarının Korozyon Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(2), 395-406.
AMA Elen L, Ergin D, Türen Y. Nadir Toprak Elementi İlaveli ZK60 (Ca/Ag) Alaşımlarının Korozyon Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. March 2025;25(2):395-406.
Chicago Elen, Levent, Deniz Ergin, and Yunus Türen. “Nadir Toprak Elementi İlaveli ZK60 (Ca/Ag) Alaşımlarının Korozyon Özelliklerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, no. 2 (March 2025): 395-406.
EndNote Elen L, Ergin D, Türen Y (March 1, 2025) Nadir Toprak Elementi İlaveli ZK60 (Ca/Ag) Alaşımlarının Korozyon Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 2 395–406.
IEEE L. Elen, D. Ergin, and Y. Türen, “Nadir Toprak Elementi İlaveli ZK60 (Ca/Ag) Alaşımlarının Korozyon Özelliklerinin İncelenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 2, pp. 395–406, 2025.
ISNAD Elen, Levent et al. “Nadir Toprak Elementi İlaveli ZK60 (Ca/Ag) Alaşımlarının Korozyon Özelliklerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/2 (March 2025), 395-406.
JAMA Elen L, Ergin D, Türen Y. Nadir Toprak Elementi İlaveli ZK60 (Ca/Ag) Alaşımlarının Korozyon Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:395–406.
MLA Elen, Levent et al. “Nadir Toprak Elementi İlaveli ZK60 (Ca/Ag) Alaşımlarının Korozyon Özelliklerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 2, 2025, pp. 395-06.
Vancouver Elen L, Ergin D, Türen Y. Nadir Toprak Elementi İlaveli ZK60 (Ca/Ag) Alaşımlarının Korozyon Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(2):395-406.