Research Article
BibTex RIS Cite

Nano İkiz Yapılı Çok Kristalli Au Nano Teline Uygulanan Tek Eksenli Çekme ve Sıkıştırma İşleminin Moleküler Dinamik İncelenmesi

Year 2025, Volume: 25 Issue: 2, 287 - 297

Abstract

Bu çalışmada nano ikiz yapılara sahip çok kristalli Au nano tellerine tek eksen doğrultusunda uygulanan çekme ve sıkıştırma deformasyon sürecinde meydana gelen mekanik ve yapısal özelliklerdeki değişimler Moleküler Dinamik (MD) benzetim yöntemi kullanılarak incelenmeye çalışıldı. Au nano tel yapılarında ikiz sınır aralığının bir fonksiyonu olarak Hall-Petch (HP) ve ters HP ilişkisi gözlendi. Ters HP ilişkisinin varlığından ikiz sınırlarının, çok kristalli nano tellerin sıkıştırma ve çekme deformasyon işlemlerinde önemli bir rol oynayabileceği belirlendi. Hem sıkıştırma hem de çekme deformasyonu altında nano tel yapılar içerisinde çok sayıda kısmi dislokasyonların oluşumu ve gelişimi tespit edildi.

References

  • Afanasyev, K.A., Sansoz, F., 2007. Strengthening in gold nanopillars with nanoscale twins. NanoLett., 7, 2056–2062. https://doi.org/10.1021/nl070959l
  • Bañuelos, E. U., Aburto, C. C., Arce, A. M., 2016. A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids. The Journal of Chemical Physics, 144, 094504. https://doi.org/ 10.1063/1.4943001
  • Cao, A., Wei, Y., 2006. Atomistic simulations of the mechanical behaviorof five fold twinned nanowires. Phys. Rev. B, 74, 214108. https://doi.org/10.1103/PhysRevB.74.214108
  • Cao, A. J., Wei, Y. G., Mao, S. X., 2007. Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries. Applied Physics Letters, 90, 151909. https://doi.org/10.1063/1.2721367
  • Chen, Y., An, X., Liao, X., 2017. Mechanical behaviors of nanowires. Appl Phys Rev., 4(3), 031104. https://doi.org/10.1063/1.4989649
  • Chen, J., Ding, Y., Gao, Y., Wang, B., Li. R., 2024. Twin spacing and grain size dependent tensile deformation mechanism of a nano-ploycrystalline Ni-based alloy. Journal of Materials Research and Technology, 29, 4306–4316. https://doi.org/10.1016/j.jmrt.2024.02.175
  • Daw, M.S., Baskes, M.I., 1983. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett., 50, 1285–1295. https://doi.org/10.1103/PhysRevLett.50.1285
  • Deng, C., Sansoz, F., 2009. Near-ideal strength in gold nanowires achieved through microstructural design. ACSNano, 3, 3001–3008. https://doi.org/10.1021/nn900668p
  • Diao, J., Gall, K., Dunn, M.L., 2003. Surface-stress-induced phase transformation in metal nanowires. Nat. Mater., 2, 656-660. https://doi.org/10.1038/nmat977
  • Diao. J., Gall, K., Dunn, M.L., 2004. Yield strength asymmetry in metal nanowires. Nano Lett., 4, 1863-1867. https://doi.org/10.1021/nl0489992
  • Fan, H.J., Werner, P., Zacharias. M., 2006. Semiconductor nanowires: from self-organization to patterned growth. Small, 2(6), 700–717. https://doi.org/10.1002/smll.200500495
  • Fanga, R., Wanga, W., Guoa, L., Zhanga, K., Zhanga, X., Lib, H., 2020. Atomic insight into the solidification of Cu melt confined in graphene Nanoslits. Journal of Crystal Growth, 532, 125382. https://doi.org/10.1016/j.jcrysgro.2019.125382
  • Fang, Q.J.L., Sansoz, F., 2021. Columnar grain-driven plasticity and cracking in nanotwinned FCC metals. Acta Mater., 212, 116925. https://doi.org/10.1016/j.actamat.2021.116925
  • Gao, Y., Sun, Y., Yang, Y., Sun, Q., Zhao, J., 2015. Twin boundary spacing-dependent deformation behaviours of twinned silver nanowires. Molecular Simulations, 41, 1546-1552. https://doi.org/10.1080/08927022.2014.999238
  • Guellil, A.M., Adams, J.B., 1992. The application of the analytic embedded atom method to bcc metals and alloys. J. Mater. Res., 7, 639-652. https://doi.org/10.1557/JMR.1992.0639
  • Haslam, A.J., Phillpot, S.R., Wolf, D., Moldovan, D., Gleiter, H., 2001. Mechanisms of grain growth in nanocrystalline fcc metals by molecular-dynamics simulation. Mater Sci Eng. A, 318, 293–312. https://doi.org/10.1016/S0921-5093(01)01266-7
  • Haslam, A.J., Moldovan, D., Yamakov, V., Wolf, D., Phillpot, S.R., Gleiter, H., 2003. Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation. Acta Mater., 51, 2097–2112. https://doi.org/10.1016/S1359-6454(03)00011-9
  • Hirel, P., 2015. Atomsk: a tool for manipulating and converting atomic data files. Comput. Phys. Commun., 197, 212. https://doi.org/10.1016/j.cpc.2015.07.012
  • Hochbaum, A.I., Yang, P., 2010. Semiconductor nanowires for energy conversion. Chem. Rev., 110(1), 527–546. https://doi.org/10.1021/cr900075v.
  • Hou, Z., Xiao, Q., Wang, Z., Wang, J., Liu, R., Wang, C., 2020. Effect of twin boundary spacing on the deformation behaviour of Au nanowire. Physica B, 581, 411952. https://doi.org/10.1016/j.physb.2019.411952
  • Hu, Y., Xu, J., Zhang, Y., Ding, S., Xia, R., 2022. Tensile and Compressive Mechanical Properties of Polycrystalline Tungsten–Molybdenum Alloy. Phys. Status Solidi A, 219, 2200288. https://doi.org/10.1002/pssa.202200288
  • Kazanc, S., Ozgen, S., Adiguzel, O., 2003. Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica B, 334, 375-381. https://doi.org/10.1016/S0921-4526(03)00101-7
  • Kazanc, S., 2013. The effects on the lattice dynamical properties of the temperature and pressure in random NiPd alloy. Canadian Journal of Physics, 91, 833-838. https://doi.org/10.1139/cjp-2013-0090
  • Klinger, L., Rabkin, E., 2006. Thermal stability and creep of polycrystalline nanowires. Acta Mater., 54, 305-311. https://doi.org/10.1016/j.actamat.2005.08.034
  • Li, X., Wei, Y., Lu, L., Lu, K., Gao, H., 2010. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature, 464, 877–880. https://doi.org/10.1038/nature08929
  • Li, Q., Zhang, Y., Zou, X., Gao, J., Yang, C., Ding, L., Wu, Z., Li, N., Zhang, S., Huo, Z., 2019. Influence of rapid thermal annealing on the wafer warpage in 3D NAND flash memory. Semicond. Sci. Technol., 34, 02LT01. https://doi.org/10.1088/1361-6641/aafccd
  • Liu, J.L., Fan, X.F., Zheng, W.T., Singh, D.J., Shi, Y.F., 2020. Nanocrystalline gold with small size: inverse Hall–Petch between mixed regime and super-soft regime. Philos. Mag., 100, 2335–2351. https://doi.org/10.1080/14786435.2020.1765039
  • Lu, K., Lu, L., Suresh, S., 2009. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science, 304, 349–52. https://doi.org/10.1126/science.1159610
  • Lu, K. 2016. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat. Rev. Mater., 1, 16019. https://doi.org/10.1038/NATREVMATS.2016.19
  • Molares, M.E.T., Balogh, A.G., Cornelius, T.W., Neumann, R., Trautmann, C., 2004. Fragmentation of nanowires driven by Rayleigh instability. Appl. Phys. Lett., 85, 5337-5339. https://doi.org/10.1063/1.1826237
  • Niu, J.J., Zhang, J,Y., Liu, G., Zhang, P., Lei, S.Y., Zhang, G.J., Sun. J., 2012. Size- dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (X = Cr, Zr) multilayer films, Acta Materialia, 60, 3677-3689. https://doi.org/10.1016/j.actamat.2012.03.052
  • Niu, Y., Jia, Y., Lv, X., Zhu, Y., Wang, Y., 2024. Molecular dynamics simulations of polycrystalline titanium mechanical properties: Grain size effect. Materials Today Communications, 40, 109558. https://doi.org/10.1016/j.mtcomm.2024.109558
  • Philips, R., 2001. Crystals, Defects and Microstructures. Cambridge University Press.
  • Rajput, A., Paul, S.K., 2023. Influence of hard inclusion on Bauschinger effect and cyclic deformation behavior: an atomistic simulation on single-crystal and polycrystal aluminum. Materials Today Communications, 34, 105126. https://doi.org/10.1016/j.mtcomm.2022.105126
  • Rawat, S., Mitra, N., 2020. Twinning, phase transformation and dislocation evolution in single crystal titanium under uniaxial strain conditions: A molecular dynamics study. Computational Materials Science, 172, 109325. https://doi.org/10.1016/j.commatsci.2019.109325
  • Ren, J.Q., Yang, D., Wang, Q., Lu, X.F., Zhang, X.D., Xue, H.T., Tang, F.L., Ding, Y.T., 2022. Effect of grain size and twin boundary spacing on plastic deformation of nano-polycrystalline al alloy by molecular dynamics study. Rare Met Mater Eng., 51, 2436–2445. https://doi.org/10.12442/j.issn.1002-185X.E20210014
  • Schiøtz, J., Jacobsen, K.W., 2003. A maximum in the strength of nanocrystalline copper. Science, 301,1357–9. https://doi.org/10.1126/science.1086636
  • Smith, W.F., 1996. Principles of Materials Science and Engineering, McGraw-Hill Inc., New York, USA.
  • Stukowski, A., 2010. Atomic- Scale Modeling of Nanostructured Metals and Alloys. Zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation vorgelegt von Dipl.-Phys. Technische Universität, Darmstadt.
  • Sun, L.G., Wu, G., Wang, Q., Lu, J., 2020. Nanostructural metallic materials: structures and mechanical properties. Mater. Today, 38, 114–135. https://doi.org/10.1016/j.mattod.2020.04.005
  • Teo, B.K., Huang, S.P., Zhang, R.Q., Li, W.K., 2009. Theoretical calculations of structures and properties of one-dimensional silicon-based nanomaterials: Particularities and peculiarities of silicon and silicon-containing nanowires and nanotubes. Coord. Chem. Rev., 253(23), 2935–2958. https://doi.org/10.1016/j.ccr.2009.08.001
  • Veerababu, J., Nagesha, A., Shankar, V., 2024. Slip to twinning to slip transition in polycrystalline BCC-Fe: Effect of grain size. Physica B: Condensed Matter, 694, 416465. https://doi.org/10.1016/j.physb.2024.416465
  • Wang, L.H., Teng, J., Liu, P., Hirata, A., Ma, E., Zhang, Z., Chen, M.W., Han, X.D., 2014. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun., 5, 1–7 https://doi.org/10.1038/ncomms5402
  • Wen, B., Xu, B., Wang, Y.B., Gao, G.Y., Zhou, X.F., Zhao, Z.S., Tian, Y.J., 2019. Continuous strengthening in nanotwinned diamond. npj Comput. Mater, 5, 117. https://doi.org/10.1038/s41524-019-0256-2
  • Wu, W., Brongersma, S.H., Hove, M.V., Maex, K., 2004. Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions. Appl.Phys. Lett., 84, 2838-2840. https://doi.org/10.1063/1.1703844
  • Wu, B., Heidelberg, A., Boland, J.J., 2005. Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater., 4, 525-529. https://doi.org/10.1038/nmat1403
  • Wu, B., Heidelberg, A., Boland, J.J., Sader, J.E., Sun, X., Li, Y., 2006. Microstructure hardened silver nanowires, NanoLett., 6, 468–472. https://doi.org/10.1021/nl052427f
  • Wu, A.H., Boland, J.J., Sader, J.E., Sun, X., Li, Y. 2009. Microstructure-hardened silver nanowires, Nano Lett., 6, 468-472. https://doi.org/10.1021/nl052427f
  • Zhakhovskii, V.V., Inogamov, N.A., Petrov, Y.V., Ashitkov, S.I., Nishihara, K., 2009. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials. Applied Surface Science, 255 (24), 9592-9596. https://doi.org/10.1016/j.apsusc.2009.04.082
  • Zhang, L., Lu, C., Tieu, K., 2016. A review on atomistic simulation of grain boundary behaviors in face-centered cubic metals. Comput. Mater. Sci. 118, 180-191. https://doi.org/10.1016/j.commatsci.2016.03.021
  • Zhang, L., Shibuta, Y., Huang, X., Lu, C., Liu, M., 2019. Grain boundary induced deformation mechanisms in nanocrystalline Al by molecular dynamics simulation: From interatomic potential perspective. Comput. Mater. Sci., 156, 421-433. https://doi.org/10.1016/j.commatsci.2018.10.021
  • Zhang, Y., Li, J., Hu, Y., Ding, S., Du, F., Xia, R., 2021. Mechanical properties and scaling laws of polycrystalline CuZr shape memory alloy. J. Appl. Phys., 130, 155106. https://doi.org/10.1063/5.0065441

Molecular Dynamics Investigation of Uniaxial Tensile and Compressive Deformation Applied to Nanotwin Structured Polycrystalline Au Nanowire

Year 2025, Volume: 25 Issue: 2, 287 - 297

Abstract

In this study, the changes in mechanical and structural properties occurring during the tensile and compression deformation process applied in the uniaxial direction to polycrystalline Au nanowires with nanotwin structures were tried to be examined using the Molecular Dynamics (MD) simulation method. Hall-Petch (HP) and inverse HP relationships were observed in Au nanowire structures as a function of twin boundary spacing. From the existence of the inverse HP relationship, it was determined that twin boundaries may play an important role in the compression and tensile deformation processes of polycrystalline nanowires. The formation and development of numerous partial dislocations within the nanowire structures were detected under both compression and tensile deformation.

References

  • Afanasyev, K.A., Sansoz, F., 2007. Strengthening in gold nanopillars with nanoscale twins. NanoLett., 7, 2056–2062. https://doi.org/10.1021/nl070959l
  • Bañuelos, E. U., Aburto, C. C., Arce, A. M., 2016. A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids. The Journal of Chemical Physics, 144, 094504. https://doi.org/ 10.1063/1.4943001
  • Cao, A., Wei, Y., 2006. Atomistic simulations of the mechanical behaviorof five fold twinned nanowires. Phys. Rev. B, 74, 214108. https://doi.org/10.1103/PhysRevB.74.214108
  • Cao, A. J., Wei, Y. G., Mao, S. X., 2007. Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries. Applied Physics Letters, 90, 151909. https://doi.org/10.1063/1.2721367
  • Chen, Y., An, X., Liao, X., 2017. Mechanical behaviors of nanowires. Appl Phys Rev., 4(3), 031104. https://doi.org/10.1063/1.4989649
  • Chen, J., Ding, Y., Gao, Y., Wang, B., Li. R., 2024. Twin spacing and grain size dependent tensile deformation mechanism of a nano-ploycrystalline Ni-based alloy. Journal of Materials Research and Technology, 29, 4306–4316. https://doi.org/10.1016/j.jmrt.2024.02.175
  • Daw, M.S., Baskes, M.I., 1983. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett., 50, 1285–1295. https://doi.org/10.1103/PhysRevLett.50.1285
  • Deng, C., Sansoz, F., 2009. Near-ideal strength in gold nanowires achieved through microstructural design. ACSNano, 3, 3001–3008. https://doi.org/10.1021/nn900668p
  • Diao, J., Gall, K., Dunn, M.L., 2003. Surface-stress-induced phase transformation in metal nanowires. Nat. Mater., 2, 656-660. https://doi.org/10.1038/nmat977
  • Diao. J., Gall, K., Dunn, M.L., 2004. Yield strength asymmetry in metal nanowires. Nano Lett., 4, 1863-1867. https://doi.org/10.1021/nl0489992
  • Fan, H.J., Werner, P., Zacharias. M., 2006. Semiconductor nanowires: from self-organization to patterned growth. Small, 2(6), 700–717. https://doi.org/10.1002/smll.200500495
  • Fanga, R., Wanga, W., Guoa, L., Zhanga, K., Zhanga, X., Lib, H., 2020. Atomic insight into the solidification of Cu melt confined in graphene Nanoslits. Journal of Crystal Growth, 532, 125382. https://doi.org/10.1016/j.jcrysgro.2019.125382
  • Fang, Q.J.L., Sansoz, F., 2021. Columnar grain-driven plasticity and cracking in nanotwinned FCC metals. Acta Mater., 212, 116925. https://doi.org/10.1016/j.actamat.2021.116925
  • Gao, Y., Sun, Y., Yang, Y., Sun, Q., Zhao, J., 2015. Twin boundary spacing-dependent deformation behaviours of twinned silver nanowires. Molecular Simulations, 41, 1546-1552. https://doi.org/10.1080/08927022.2014.999238
  • Guellil, A.M., Adams, J.B., 1992. The application of the analytic embedded atom method to bcc metals and alloys. J. Mater. Res., 7, 639-652. https://doi.org/10.1557/JMR.1992.0639
  • Haslam, A.J., Phillpot, S.R., Wolf, D., Moldovan, D., Gleiter, H., 2001. Mechanisms of grain growth in nanocrystalline fcc metals by molecular-dynamics simulation. Mater Sci Eng. A, 318, 293–312. https://doi.org/10.1016/S0921-5093(01)01266-7
  • Haslam, A.J., Moldovan, D., Yamakov, V., Wolf, D., Phillpot, S.R., Gleiter, H., 2003. Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation. Acta Mater., 51, 2097–2112. https://doi.org/10.1016/S1359-6454(03)00011-9
  • Hirel, P., 2015. Atomsk: a tool for manipulating and converting atomic data files. Comput. Phys. Commun., 197, 212. https://doi.org/10.1016/j.cpc.2015.07.012
  • Hochbaum, A.I., Yang, P., 2010. Semiconductor nanowires for energy conversion. Chem. Rev., 110(1), 527–546. https://doi.org/10.1021/cr900075v.
  • Hou, Z., Xiao, Q., Wang, Z., Wang, J., Liu, R., Wang, C., 2020. Effect of twin boundary spacing on the deformation behaviour of Au nanowire. Physica B, 581, 411952. https://doi.org/10.1016/j.physb.2019.411952
  • Hu, Y., Xu, J., Zhang, Y., Ding, S., Xia, R., 2022. Tensile and Compressive Mechanical Properties of Polycrystalline Tungsten–Molybdenum Alloy. Phys. Status Solidi A, 219, 2200288. https://doi.org/10.1002/pssa.202200288
  • Kazanc, S., Ozgen, S., Adiguzel, O., 2003. Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica B, 334, 375-381. https://doi.org/10.1016/S0921-4526(03)00101-7
  • Kazanc, S., 2013. The effects on the lattice dynamical properties of the temperature and pressure in random NiPd alloy. Canadian Journal of Physics, 91, 833-838. https://doi.org/10.1139/cjp-2013-0090
  • Klinger, L., Rabkin, E., 2006. Thermal stability and creep of polycrystalline nanowires. Acta Mater., 54, 305-311. https://doi.org/10.1016/j.actamat.2005.08.034
  • Li, X., Wei, Y., Lu, L., Lu, K., Gao, H., 2010. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature, 464, 877–880. https://doi.org/10.1038/nature08929
  • Li, Q., Zhang, Y., Zou, X., Gao, J., Yang, C., Ding, L., Wu, Z., Li, N., Zhang, S., Huo, Z., 2019. Influence of rapid thermal annealing on the wafer warpage in 3D NAND flash memory. Semicond. Sci. Technol., 34, 02LT01. https://doi.org/10.1088/1361-6641/aafccd
  • Liu, J.L., Fan, X.F., Zheng, W.T., Singh, D.J., Shi, Y.F., 2020. Nanocrystalline gold with small size: inverse Hall–Petch between mixed regime and super-soft regime. Philos. Mag., 100, 2335–2351. https://doi.org/10.1080/14786435.2020.1765039
  • Lu, K., Lu, L., Suresh, S., 2009. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science, 304, 349–52. https://doi.org/10.1126/science.1159610
  • Lu, K. 2016. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat. Rev. Mater., 1, 16019. https://doi.org/10.1038/NATREVMATS.2016.19
  • Molares, M.E.T., Balogh, A.G., Cornelius, T.W., Neumann, R., Trautmann, C., 2004. Fragmentation of nanowires driven by Rayleigh instability. Appl. Phys. Lett., 85, 5337-5339. https://doi.org/10.1063/1.1826237
  • Niu, J.J., Zhang, J,Y., Liu, G., Zhang, P., Lei, S.Y., Zhang, G.J., Sun. J., 2012. Size- dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (X = Cr, Zr) multilayer films, Acta Materialia, 60, 3677-3689. https://doi.org/10.1016/j.actamat.2012.03.052
  • Niu, Y., Jia, Y., Lv, X., Zhu, Y., Wang, Y., 2024. Molecular dynamics simulations of polycrystalline titanium mechanical properties: Grain size effect. Materials Today Communications, 40, 109558. https://doi.org/10.1016/j.mtcomm.2024.109558
  • Philips, R., 2001. Crystals, Defects and Microstructures. Cambridge University Press.
  • Rajput, A., Paul, S.K., 2023. Influence of hard inclusion on Bauschinger effect and cyclic deformation behavior: an atomistic simulation on single-crystal and polycrystal aluminum. Materials Today Communications, 34, 105126. https://doi.org/10.1016/j.mtcomm.2022.105126
  • Rawat, S., Mitra, N., 2020. Twinning, phase transformation and dislocation evolution in single crystal titanium under uniaxial strain conditions: A molecular dynamics study. Computational Materials Science, 172, 109325. https://doi.org/10.1016/j.commatsci.2019.109325
  • Ren, J.Q., Yang, D., Wang, Q., Lu, X.F., Zhang, X.D., Xue, H.T., Tang, F.L., Ding, Y.T., 2022. Effect of grain size and twin boundary spacing on plastic deformation of nano-polycrystalline al alloy by molecular dynamics study. Rare Met Mater Eng., 51, 2436–2445. https://doi.org/10.12442/j.issn.1002-185X.E20210014
  • Schiøtz, J., Jacobsen, K.W., 2003. A maximum in the strength of nanocrystalline copper. Science, 301,1357–9. https://doi.org/10.1126/science.1086636
  • Smith, W.F., 1996. Principles of Materials Science and Engineering, McGraw-Hill Inc., New York, USA.
  • Stukowski, A., 2010. Atomic- Scale Modeling of Nanostructured Metals and Alloys. Zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation vorgelegt von Dipl.-Phys. Technische Universität, Darmstadt.
  • Sun, L.G., Wu, G., Wang, Q., Lu, J., 2020. Nanostructural metallic materials: structures and mechanical properties. Mater. Today, 38, 114–135. https://doi.org/10.1016/j.mattod.2020.04.005
  • Teo, B.K., Huang, S.P., Zhang, R.Q., Li, W.K., 2009. Theoretical calculations of structures and properties of one-dimensional silicon-based nanomaterials: Particularities and peculiarities of silicon and silicon-containing nanowires and nanotubes. Coord. Chem. Rev., 253(23), 2935–2958. https://doi.org/10.1016/j.ccr.2009.08.001
  • Veerababu, J., Nagesha, A., Shankar, V., 2024. Slip to twinning to slip transition in polycrystalline BCC-Fe: Effect of grain size. Physica B: Condensed Matter, 694, 416465. https://doi.org/10.1016/j.physb.2024.416465
  • Wang, L.H., Teng, J., Liu, P., Hirata, A., Ma, E., Zhang, Z., Chen, M.W., Han, X.D., 2014. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun., 5, 1–7 https://doi.org/10.1038/ncomms5402
  • Wen, B., Xu, B., Wang, Y.B., Gao, G.Y., Zhou, X.F., Zhao, Z.S., Tian, Y.J., 2019. Continuous strengthening in nanotwinned diamond. npj Comput. Mater, 5, 117. https://doi.org/10.1038/s41524-019-0256-2
  • Wu, W., Brongersma, S.H., Hove, M.V., Maex, K., 2004. Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions. Appl.Phys. Lett., 84, 2838-2840. https://doi.org/10.1063/1.1703844
  • Wu, B., Heidelberg, A., Boland, J.J., 2005. Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater., 4, 525-529. https://doi.org/10.1038/nmat1403
  • Wu, B., Heidelberg, A., Boland, J.J., Sader, J.E., Sun, X., Li, Y., 2006. Microstructure hardened silver nanowires, NanoLett., 6, 468–472. https://doi.org/10.1021/nl052427f
  • Wu, A.H., Boland, J.J., Sader, J.E., Sun, X., Li, Y. 2009. Microstructure-hardened silver nanowires, Nano Lett., 6, 468-472. https://doi.org/10.1021/nl052427f
  • Zhakhovskii, V.V., Inogamov, N.A., Petrov, Y.V., Ashitkov, S.I., Nishihara, K., 2009. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials. Applied Surface Science, 255 (24), 9592-9596. https://doi.org/10.1016/j.apsusc.2009.04.082
  • Zhang, L., Lu, C., Tieu, K., 2016. A review on atomistic simulation of grain boundary behaviors in face-centered cubic metals. Comput. Mater. Sci. 118, 180-191. https://doi.org/10.1016/j.commatsci.2016.03.021
  • Zhang, L., Shibuta, Y., Huang, X., Lu, C., Liu, M., 2019. Grain boundary induced deformation mechanisms in nanocrystalline Al by molecular dynamics simulation: From interatomic potential perspective. Comput. Mater. Sci., 156, 421-433. https://doi.org/10.1016/j.commatsci.2018.10.021
  • Zhang, Y., Li, J., Hu, Y., Ding, S., Du, F., Xia, R., 2021. Mechanical properties and scaling laws of polycrystalline CuZr shape memory alloy. J. Appl. Phys., 130, 155106. https://doi.org/10.1063/5.0065441
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Atomic, Molecular and Optical Physics (Other), Metrology, Applied and Industrial Physics
Journal Section Articles
Authors

Sefa Kazanç 0000-0002-8896-8571

Early Pub Date March 28, 2025
Publication Date
Submission Date September 18, 2024
Acceptance Date November 13, 2024
Published in Issue Year 2025 Volume: 25 Issue: 2

Cite

APA Kazanç, S. (2025). Nano İkiz Yapılı Çok Kristalli Au Nano Teline Uygulanan Tek Eksenli Çekme ve Sıkıştırma İşleminin Moleküler Dinamik İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(2), 287-297.
AMA Kazanç S. Nano İkiz Yapılı Çok Kristalli Au Nano Teline Uygulanan Tek Eksenli Çekme ve Sıkıştırma İşleminin Moleküler Dinamik İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. March 2025;25(2):287-297.
Chicago Kazanç, Sefa. “Nano İkiz Yapılı Çok Kristalli Au Nano Teline Uygulanan Tek Eksenli Çekme Ve Sıkıştırma İşleminin Moleküler Dinamik İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, no. 2 (March 2025): 287-97.
EndNote Kazanç S (March 1, 2025) Nano İkiz Yapılı Çok Kristalli Au Nano Teline Uygulanan Tek Eksenli Çekme ve Sıkıştırma İşleminin Moleküler Dinamik İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 2 287–297.
IEEE S. Kazanç, “Nano İkiz Yapılı Çok Kristalli Au Nano Teline Uygulanan Tek Eksenli Çekme ve Sıkıştırma İşleminin Moleküler Dinamik İncelenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 2, pp. 287–297, 2025.
ISNAD Kazanç, Sefa. “Nano İkiz Yapılı Çok Kristalli Au Nano Teline Uygulanan Tek Eksenli Çekme Ve Sıkıştırma İşleminin Moleküler Dinamik İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/2 (March 2025), 287-297.
JAMA Kazanç S. Nano İkiz Yapılı Çok Kristalli Au Nano Teline Uygulanan Tek Eksenli Çekme ve Sıkıştırma İşleminin Moleküler Dinamik İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:287–297.
MLA Kazanç, Sefa. “Nano İkiz Yapılı Çok Kristalli Au Nano Teline Uygulanan Tek Eksenli Çekme Ve Sıkıştırma İşleminin Moleküler Dinamik İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 2, 2025, pp. 287-9.
Vancouver Kazanç S. Nano İkiz Yapılı Çok Kristalli Au Nano Teline Uygulanan Tek Eksenli Çekme ve Sıkıştırma İşleminin Moleküler Dinamik İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(2):287-9.