Providing numerical solutions to differential equations in cases where analytical solutions are not available is of great importance. Recently, obtaining more accurate numerical solutions with artificial neural network-based machine learning methods are seen as promising developments for numerical solutions of differential equations. In this paper, a low-cost, orthogonal embedding-based network with fast training by simple gradient descent algorithm is proposed to obtain numerical solutions of differential equations. This architecture is essentially a two-layer neural network that takes orthogonal polynomials as input. The efficiency and accuracy of the method used in this paper are demonstrated in various problems and comparisons are made with other methods. It is observed that the proposed method stands out especially when compared with high-cost solutions.
non-linear ordinary differential equations numerical approximation artificial neural networks orthogonal polynomials
Analitik çözümlerin mevcut olmadığı durumlarda diferansiyel denklemler için nümerik çözümler elde etmek büyük önem taşımaktadır. Son zamanlarda, yapay sinir ağı tabanlı makine öğrenmesi yöntemleriyle daha tutarlı nümerik çözümlerin elde edilmesi diferansiyel denklemlerin nümerik çözümleri için ümit verici gelişmeler olarak görülmektedir. Bu makalede, diferansiyel denklemlerin nümerik çözümlerini elde etmek için basit gradyan düşüm algoritması ile hızlı eğime sahip düşük maliyetli bir ortogonal gömme tabanlı ağ önerilmektedir. Bu mimari, temelde, ortogonal polinomları girdi olarak alan iki katmanlı bir sinir ağıdır. Bu makalede kullanılan yöntemin verimliliği ve tutarlılığı, çeşitli problemlerde gösterilmiş ve diğer yöntemlerle karşılaştırmalar yapılmıştır. Kullanılan yöntemin, özellikle yüksek maliyetli çözümlerle karşılaştırıldığında öne çıktığı görülmüştür.
Doğrusal olmayan adi diferansiyel denklemler nümerik yaklaşım yapay sinir ağları ortogonal polinomlar
| Primary Language | English |
|---|---|
| Subjects | Numerical Analysis |
| Journal Section | Articles |
| Authors | |
| Early Pub Date | May 22, 2025 |
| Publication Date | June 10, 2025 |
| Submission Date | September 30, 2024 |
| Acceptance Date | January 4, 2025 |
| Published in Issue | Year 2025 Volume: 25 Issue: 3 |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.