Research Article
BibTex RIS Cite

Donma-Çözülme Döngülerinin İstanbul İli ve Çevresinde Yer Alan Kireçtaşının CBR (%) Değerlerine Etkisi

Year 2025, Volume: 25 Issue: 5, 1126 - 1137, 01.10.2025
https://doi.org/10.35414/akufemubid.1607298

Abstract

Kullanım amacına göre geoteknik yapılarının inşasında farklı dolgu malzemeleri tercih edilmektedir. Dolgu malzemelerinin temini ve uygulama sahasına iletimi büyük nüfuslu yerleşim yerlerinde çevre kirliliğine, zaman, iş gücü ve ekonomik kayıplara neden olur. Bu olumsuzlukları minimize etmek için yapının inşa edildiği bölgeden çıkan uygun nitelikli kazı malzemesinin kullanımı amaçlanır. İnşa edilecek yapının performansı ve stabilitesi dolgu malzemesine ait tasarım parametrelerinin ve bu parametrelerin hizmet ömrü boyunca değişiminin doğru bir şekilde tahmin edilmesine bağlıdır. Özellikle donma-çözülme döngülerinin zemin iç yapısında meydana getirdiği değişimler zeminlerin mukavemetinde önemli değişimlere neden olur. İklim değişikliğiyle birlikte hava durumundaki düzensizleşme, yerel zeminlerin içinde veya üzerinde inşa edilen yapılar için dikkate alınması gereken bir durumdur. Bu çalışma kapsamında İstanbul il sınırları içerisindeki altı farklı bölgelerden temin edilen, içerisinde farklı oranlarda ve farklı özelliklerde ince dane içeren kireçtaşının donma-çözülme döngüleri sonucunda mukavemetindeki değişim incelenmiştir. Kireçtaşının dane çapı dağılımı dikkate alındığında bu değişim CBR (%) değerlerindeki düşüş ile açıklanmıştır. Deneysel çalışmalarda 24 saat -20 °C’de donmaya ve 24 saat +20 °C’de çözülmeye maruz bırakılan numunelerde 10. döngü sonunda CBR (%) değerlerinde %37’ye varan azalmalar tespit edilmiştir. Bu azalma miktarı, numunelerin LL (%) ve D50 artışına bağlı olarak artış göstermiştir.

References

  • Al-Abri, D. S., & Mohamedzein, Y. E. A. (2010). Performance of plastic pipes installed in dune sand. Pipelines 2010: Climbing New Peaks to Infrastructure Reliability—Renew, Rehab, and Reinvest, 410–419. https://doi.org/10.1061/41138(386)40
  • Aldaood, A., Bouasker, M., & Al-Mukhtar, M. (2014). Impact of freeze-thaw cycles on mechanical behaviour of lime stabilized gypseous soils. Cold Regions Science and Technology, 99, 38–45. https://doi.org/10.1016/j.coldregions.2013.12.003
  • Alkire, B., & Morrison, J. (1982). Change in soil structure due to freeze-thaw and repeated loading. Transportation Research Record 918.
  • ASTM D854-14. (2014). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International.
  • ASTM International. (2014). ASTM D854-14: Standard test methods for specific gravity of soil solids by water pycnometer.
  • ASTM International. (2015). ASTM C97/C97M-15: Standard test methods for absorption and bulk specific gravity of dimension stone.
  • ASTM International. (2016). ASTM D422-63: Standard test method for particle-size analysis of soils.
  • ASTM International. (2017). ASTM D4318-17: Standard test methods for liquid limit, plastic limit, and plasticity index of soils.
  • ASTM International. (2020). ASTM C131/C131M − 20: Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine.
  • ASTM International. (2021). ASTM D1883-21: Standard test method for California bearing ratio (CBR) of laboratory-compacted soils.
  • ASTM International. (2023). ASTM D698-23: Standard test methods for laboratory compaction characteristics of soil using standard effort (12,400 ft-lbf/ft³ (600 kN-m/m³).
  • Balaban, E., Šmejda, A., & Onur, M. İ. (2020). Performance analysis of geosynthetic reinforced earth walls with different backfills by finite element method. Resilience, 4(1), 117–128. https://doi.org/10.32569/resilience.632301
  • Baradan, B. (2020). İnşaat mühendisleri için malzeme bilgisi. DEÜ Yayınları. Beju, Y. Z., & Mandal, J. N. (2018). Experimental investigation of shear strength behaviors of stone dust–EPS geofoam interface. Journal of Hazardous, Toxic, and Radioactive Waste, 22(4), 04018033. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000426
  • Bilodeau, J. P., Doré, G., & Pierre, P. (2008). Gradation influence on frost susceptibility of base granular materials. International Journal of Pavement Engineering, 9(6), 397–411. https://doi.org/10.1080/10298430802279819
  • Brooks, R., Udoeyo, F. F., & Takkalapelli, K. V. (2011). Geotechnical properties of problem soils stabilized with fly ash and limestone dust in Philadelphia. Journal of Materials in Civil Engineering, 23(5), 711–716. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000214
  • Bui, B., Morel, J.-C., Tran, V.-H., Hans, S., & Oggero, M. (2016). How to use in-situ soils as building materials. Procedia Engineering, 145, 1119–1126. https://doi.org/10.1016/j.proeng.2016.04.145
  • Chamberlain, E., Iskander, I., & Hunsiker, S. (1990). Effect of freeze-thaw on the permeability and macrostructure of soils. In Proceedings of the International Symposium on Frozen Soil Impacts on Agriculture, Range, and Forest Lands. Cold Regions Research and Engineering Laboratory, Hanover, NH, USA.
  • Cravotta, C. A. III, & Trahan, M. K. (1999). Limestone drains to increase pH and remove dissolved metals from acidic mine drainage. Applied Geochemistry, 14(5), 581–606. https://doi.org/10.1016/S0883-2927(98)00066-3
  • Croudace, I. W., & Rothwell, R. G. (2015). Micro-XRF studies of sediment cores. Springer. https://doi.org/10.1007/978-94-017-9849-5
  • Culley, R. W. (1971). Effect of freeze-thaw cycling on stress-strain characteristics and volume change of a till subjected to repetitive loading. Canadian Geotechnical Journal, 8(3), 359–371. https://doi.org/10.1139/t71-038
  • Dereli, B. (2024). Konsol istinat duvarlarında geri dolgu malzemesi olarak Bitlis pomza agregalı köpük betonların kullanılabilirliğinin araştırılması, Ph.D. thesis, Süleyman Demirel Üniversitesi].
  • Durgunluoğlu, H. T., Yildiz, T., Seyedtehrani, E., & Özbatir, M. (2018). Toprakarme istinat yapılarına yeni bir yaklaşım: Zemin çivili toprakarme duvar. Zemin Mekaniği ve Geoteknik Mühendisliği 17. Ulusal Konferansı, İstanbul. Eigenbrod, K. D. (1996). Effects of cyclic freezing and thawing on volume changes and permeabilities of soft fine-grained soils. Canadian Geotechnical Journal, 33(4), 529–537. https://doi.org/10.1139/t96-079-301
  • Gençdal, H. B., & Kılıç, H. (2023). Effects of microencapsulated phase change material on the behavior of silty soil subjected to freeze–thaw cycles. Sustainability, 15(15), 11832. https://doi.org/10.3390/su151512005
  • Gere, J. M., & Goodno, B. J. (2012). Mechanics of materials (8th ed.). Cengage Learning. Gratchev, I. (2020). Rock mechanics through project-based learning. CRC Press/Balkema. Gülen, M., Aslan Fidan, A., Köşeli, A. S., & Kılıç, H. (2024). Effect of freeze-thaw on CBR in soils with different gradation and mineralogy. Turkish Journal of Civil Engineering, 35(4). https://doi.org/10.18400/tjce.1349440
  • Hazirbaba, K., & Gullu, H. (2010). California bearing ratio improvement and freeze-thaw performance of fine-grained soils treated with geofiber and synthetic fluid. Cold Regions Science and Technology, 63(1–2), 50–60. https://doi.org/10.1016/j.coldregions.2010.05.006
  • Hendry, M. T., Onwude, L. U., & Sego, D. C. (2016). A laboratory investigation of the frost heave susceptibility of fine-grained soil generated from the abrasion of a diorite aggregate. Cold Regions Science and Technology, 123, 91–98. https://doi.org/10.1016/j.coldregions.2015.11.016
  • Holtz, R. D., Kovacs, W. D., & Sheahan, T. C. (2023). An introduction to geotechnical engineering (3rd ed.). Pearson Education. Holtz, W. G., & Gibbs, H. J. (1956). Engineering properties of expansive clays. Transactions Paper, 2814, 121, 641–677. https://doi.org/10.1061/TACEAT.0007325
  • Işık, A., Çevikbilen, G., & İyisan, R. (2014). Freezing and thawing behaviour of compacted soils. 11th International Congress on Advances in Civil Engineering, İstanbul.
  • Jessberger, H. L., & Carbee, D. L. (1970). Influence of frost action on the bearing capacity of soils. Highway Research Record, 304, 14–26.
  • Karayolları Genel Müdürlüğü. (2020). Karayolu teknik şartnamesi (Yol altyapısı, sanat yapıları, köprü ve tüneller, üstyapı ve çeşitli işler). Karayolları Genel Müdürlüğü.
  • Kawabata, S., Ishikawa, T., & Kameyama, S. (2016). Effects of freeze-thaw history on bearing capacity of granular base course materials. Procedia Engineering, 143, 828–835. https://doi.org/10.1016/j.proeng.2016.06.134
  • Konrad, J. M., & Lemieux, N. (2005). Influence of fines on frost heave characteristics of a well-graded base-course material. Canadian Geotechnical Journal, 42(2), 515–527. https://doi.org/10.1139/t04-115
  • Lambe, T. W., Kaplar, C. W., & Lambie, T. J. (1969). Effect of mineralogical composition of fines on frost susceptibility of soils. CRREL REPORT.
  • Laskar, A., & Pal, S. K. (2012). Geotechnical characteristics of two different soils and their mixture and relationships between parameters. Electronic Journal of Geotechnical Engineering, 17, 2821–2832. Leroueil, S., Tardif, J., Roy, M., Rochelle, P. L., & Konrad, J. M. (1991). Effects of frost on the mechanical behaviour of Champlain Sea clays. Canadian Geotechnical Journal, 28(5), 690–697. https://doi.org/10.1139/t91-083
  • Li, G., Ma, W., Zhao, S., Mao, Y., & Mu, Y. (2012). Effect of freeze-thaw cycles on mechanical behavior of compacted fine-grained soil. In Cold Regions Engineering 2012: Sustainable Infrastructure Development in a Changing Cold Environment, pp. 297–308. https://doi.org/10.1061/9780784412473.008
  • Liu, J., Chang, D., & Yu, Q. (2016). Influence of freeze-thaw cycles on mechanical properties of a silty sand. Engineering Geology, 210, 23–32. https://doi.org/10.1016/j.enggeo.2016.05.019
  • Liu, K., Ye, W., & Jing, H. (2021). Shear strength and microstructure of intact loess subjected to freeze-thaw cycling. Advances in Materials Science and Engineering. 1173603. https://doi.org/10.1155/2021/1173603
  • Lutgens, F. K., Tarbuck, E. J., & Tasa, D. (2012). Essentials of geology (11th ed.). Pearson Prentice Hall. Mina, E., Kusuma, R., & Ulfah, N. (2019). Utilization of steel slag and fly ash in soil stabilization and their effect on California bearing ratio (CBR) value: Case study: Kp. Kadusentar road Medong village Mekarjaya subdistrict Pandeglang district. IOP Conference Series: Materials Science and Engineering, 673, 012034. http://www.doi.org/10.1088/1757-899X/673/1/012034
  • Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behaviour (3rd ed.). John Wiley & Sons. Oghenero, A. E., Akpokodje, E. G., & Tse, A. C. (2014). Geotechnical properties of subsurface soils in Warri, Western Niger Delta, Nigeria. Journal of Earth Sciences and Geotechnical Engineering, 4(1), 89–102.
  • Öztürk, Ö., Çelikol, M., & Erkan, M. (2007). Türkiye agrega sektör raporu. Hazır Beton, 84, 52–56.
  • Peck, R. B., Hanson, W. E., & Thornburn, T. H. (1974). Foundation engineering. John Wiley & Sons. Poernomo, Y. C. S., Winarto, S., Mahardana, Z. B., Karisma, D. A., & Ajiono, R. (2021). The limestone as a materials combination of base course on the road pavement. IOP Conference Series: Materials Science and Engineering, 1125(1), 012019. https://www.doi.org/10.1088/1757-899X/1125/1/012019
  • Qi, J., Ma, W., & Song, C. (2008). Influence of freeze-thaw on engineering properties of a silty soil. Cold Regions Science and Technology, 53, 397–404. https://doi.org/10.1016/j.coldregions.2007.05.010
  • Riccio, M., Ehrlich, M., & Dias, D. (2014). Field monitoring and analyses of the response of a block-faced geogrid wall using fine-grained tropical soils. Geotextiles and Geomembranes, 42(2), 127–138. https://www.doi.org/10.1016/j.geotexmem.2014.01.006
  • Roy, S., & Bhalla, S. K. (2017). Role of geotechnical properties of soil on civil engineering structures. Resources and Environment, 7(4), 103–109. https://www.doi.org/10.5923/j.re.20170704.03
  • Seed, H. B., Woodward, R. J., & Lundgren, R. (1962). Prediction of swelling potential for compacted clays. ASCE Soil Mechanics and Foundations Division, 88, 53–87. https://doi.org/10.1061/JSFEAQ.0000431
  • Tang, L., Cong, S., Geng, L., Ling, X., & Gan, F. (2018). The effect of freeze-thaw cycling on the mechanical properties of expansive soils. Cold Regions Science and Technology, 145, 197–207. https://doi.org/10.1016/j.coldregions.2017.10.004
  • Vallejo, G., & Ferrer, M. (2014). Mühendislik jeolojisi (K. Kayabalı, Trans.). Ankara Üniversitesi Yayınları. Viklander, P. (1998). Permeability and volume changes in till due to cyclic freeze/thaw. Canadian Geotechnical Journal, 35(3), 471–477. https://doi.org/10.1139/t98-015
  • Wang, J., Qu, X. L., Wu, C. L., & Xiang, Y. M. (2013). Experimental research on shear strength of subgrade soil and plasticity index under different freeze-thaw cycles. Applied Mechanics and Materials, 256, 43–47. https://doi.org/10.4028/www.scientific.net/AMM.256-259.43
  • Wang, T. L., Liu, Y. J., Yan, H., & Xu, L. (2015). An experimental study on the mechanical properties of silty soils under repeated freeze-thaw cycles. Cold Regions Science and Technology, 112, 51–65. https://doi.org/10.1016/j.coldregions.2015.01.004
  • Xie, S., Qu, J., Lai, Y., Zhou, Z., & Xu, X. (2015). Effects of freeze-thaw cycles on soil mechanical and physical properties in the Qinghai-Tibet Plateau. Journal of Mountain Science, 12, 999–1099. https://doi.org/10.1007/s11629-014-3384-7
  • Yağız, S. (2010). Geomechanical properties of construction stones quarried in Southwestern Turkey. Scientific Research and Essays, 5(7), 750–757.
  • Yang, G., Liu, H., Lv, P., & Zhang, B. (2012). Geogrid-reinforced lime-treated cohesive soil retaining wall: Case study and implications. Geotextiles and Geomembranes, 35, 112–118. https://doi.org/10.1016/j.geotexmem.2012.09.001
  • Yılmaz, A., Saltan, M., & Akıllı, A. (2012). Göller yöresinde işletilen kireçtaşı agregalarının yol inşaatı malzemesi olarak kullanılabilirliğinin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 18(3), 199–207.
  • Youdeowei, P. O., & Nwankwoala, H. O. (2013). Suitability of soils as bearing media at a freshwater swamp terrain in the Niger Delta. Journal of Geology and Mining Research, 5(3), 58–64. https://doi.org/10.5897/JGMR11.046
  • Yu, Z., Fang, J., Xu, A., & Zhou, W. (2022). The study of influence of freeze-thaw cycles on silty sand in seasonally frozen soil regions. Geofluids. 6886108. https://doi.org/10.1155/2022/6886108
  • Zhang, F., Jing, R., Feng, D., & Lin, B. (2015). Mechanical properties and an empirical model of compacted silty clay subjected to freeze-thaw cycles. In Innovative Materials and Design for Sustainable Transportation Infrastructure, pp. 200–212. https://doi.org/10.1061/9780784479278.019
  • Zhou, Z., Ma, W., Zhang, S., Mu, Y., & Li, G. (2018). Effect of freeze-thaw cycles in mechanical behaviors of frozen loess. Cold Regions Science and Technology, 146, 9–18. https://doi.org/10.1016/j.coldregions.2017.11.011

The effect of freeze-thaw cycles on the values of CBR (%) of limestone in and around the province of Istanbul

Year 2025, Volume: 25 Issue: 5, 1126 - 1137, 01.10.2025
https://doi.org/10.35414/akufemubid.1607298

Abstract

Different backfill materials are preferred in the construction of geotechnical structures according to the intended use. The supply and transport of backfill materials to the application site causes environmental pollution, time, labour and economic losses in large populated settlements. To minimise these problems, it is aimed to use the appropriate quality excavation material from the region where the construction is built. The performance and stability of the construction depends on the accurate estimation of the design parameters of the backfill material and the change of these parameters during the service life. In particular, changes in the internal structure of soils caused by freeze-thaw cycles cause significant changes in the strength of soils. The irregularity in the weather with climate change is a situation that needs to be considered for structures built in or on local soils. Within the scope of this study, the changes in the strength of limestone containing various proportions and properties of fine grains obtained from six different regions within the borders of Istanbul province were investigated as a result of freeze-thaw cycles. Considering the grain size distribution of limestone, this change was explained by the decrease in CBR (%) values. In the experimental studies, CBR (%) values of the samples exposed to freezing at -20 °C for 24 hours and thawing at +20 °C for 24 hours decreased up to 37% at the end of the 10th cycle. The reduction rate increased with the increase in LL (%) and D50 of the samples.

References

  • Al-Abri, D. S., & Mohamedzein, Y. E. A. (2010). Performance of plastic pipes installed in dune sand. Pipelines 2010: Climbing New Peaks to Infrastructure Reliability—Renew, Rehab, and Reinvest, 410–419. https://doi.org/10.1061/41138(386)40
  • Aldaood, A., Bouasker, M., & Al-Mukhtar, M. (2014). Impact of freeze-thaw cycles on mechanical behaviour of lime stabilized gypseous soils. Cold Regions Science and Technology, 99, 38–45. https://doi.org/10.1016/j.coldregions.2013.12.003
  • Alkire, B., & Morrison, J. (1982). Change in soil structure due to freeze-thaw and repeated loading. Transportation Research Record 918.
  • ASTM D854-14. (2014). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International.
  • ASTM International. (2014). ASTM D854-14: Standard test methods for specific gravity of soil solids by water pycnometer.
  • ASTM International. (2015). ASTM C97/C97M-15: Standard test methods for absorption and bulk specific gravity of dimension stone.
  • ASTM International. (2016). ASTM D422-63: Standard test method for particle-size analysis of soils.
  • ASTM International. (2017). ASTM D4318-17: Standard test methods for liquid limit, plastic limit, and plasticity index of soils.
  • ASTM International. (2020). ASTM C131/C131M − 20: Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine.
  • ASTM International. (2021). ASTM D1883-21: Standard test method for California bearing ratio (CBR) of laboratory-compacted soils.
  • ASTM International. (2023). ASTM D698-23: Standard test methods for laboratory compaction characteristics of soil using standard effort (12,400 ft-lbf/ft³ (600 kN-m/m³).
  • Balaban, E., Šmejda, A., & Onur, M. İ. (2020). Performance analysis of geosynthetic reinforced earth walls with different backfills by finite element method. Resilience, 4(1), 117–128. https://doi.org/10.32569/resilience.632301
  • Baradan, B. (2020). İnşaat mühendisleri için malzeme bilgisi. DEÜ Yayınları. Beju, Y. Z., & Mandal, J. N. (2018). Experimental investigation of shear strength behaviors of stone dust–EPS geofoam interface. Journal of Hazardous, Toxic, and Radioactive Waste, 22(4), 04018033. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000426
  • Bilodeau, J. P., Doré, G., & Pierre, P. (2008). Gradation influence on frost susceptibility of base granular materials. International Journal of Pavement Engineering, 9(6), 397–411. https://doi.org/10.1080/10298430802279819
  • Brooks, R., Udoeyo, F. F., & Takkalapelli, K. V. (2011). Geotechnical properties of problem soils stabilized with fly ash and limestone dust in Philadelphia. Journal of Materials in Civil Engineering, 23(5), 711–716. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000214
  • Bui, B., Morel, J.-C., Tran, V.-H., Hans, S., & Oggero, M. (2016). How to use in-situ soils as building materials. Procedia Engineering, 145, 1119–1126. https://doi.org/10.1016/j.proeng.2016.04.145
  • Chamberlain, E., Iskander, I., & Hunsiker, S. (1990). Effect of freeze-thaw on the permeability and macrostructure of soils. In Proceedings of the International Symposium on Frozen Soil Impacts on Agriculture, Range, and Forest Lands. Cold Regions Research and Engineering Laboratory, Hanover, NH, USA.
  • Cravotta, C. A. III, & Trahan, M. K. (1999). Limestone drains to increase pH and remove dissolved metals from acidic mine drainage. Applied Geochemistry, 14(5), 581–606. https://doi.org/10.1016/S0883-2927(98)00066-3
  • Croudace, I. W., & Rothwell, R. G. (2015). Micro-XRF studies of sediment cores. Springer. https://doi.org/10.1007/978-94-017-9849-5
  • Culley, R. W. (1971). Effect of freeze-thaw cycling on stress-strain characteristics and volume change of a till subjected to repetitive loading. Canadian Geotechnical Journal, 8(3), 359–371. https://doi.org/10.1139/t71-038
  • Dereli, B. (2024). Konsol istinat duvarlarında geri dolgu malzemesi olarak Bitlis pomza agregalı köpük betonların kullanılabilirliğinin araştırılması, Ph.D. thesis, Süleyman Demirel Üniversitesi].
  • Durgunluoğlu, H. T., Yildiz, T., Seyedtehrani, E., & Özbatir, M. (2018). Toprakarme istinat yapılarına yeni bir yaklaşım: Zemin çivili toprakarme duvar. Zemin Mekaniği ve Geoteknik Mühendisliği 17. Ulusal Konferansı, İstanbul. Eigenbrod, K. D. (1996). Effects of cyclic freezing and thawing on volume changes and permeabilities of soft fine-grained soils. Canadian Geotechnical Journal, 33(4), 529–537. https://doi.org/10.1139/t96-079-301
  • Gençdal, H. B., & Kılıç, H. (2023). Effects of microencapsulated phase change material on the behavior of silty soil subjected to freeze–thaw cycles. Sustainability, 15(15), 11832. https://doi.org/10.3390/su151512005
  • Gere, J. M., & Goodno, B. J. (2012). Mechanics of materials (8th ed.). Cengage Learning. Gratchev, I. (2020). Rock mechanics through project-based learning. CRC Press/Balkema. Gülen, M., Aslan Fidan, A., Köşeli, A. S., & Kılıç, H. (2024). Effect of freeze-thaw on CBR in soils with different gradation and mineralogy. Turkish Journal of Civil Engineering, 35(4). https://doi.org/10.18400/tjce.1349440
  • Hazirbaba, K., & Gullu, H. (2010). California bearing ratio improvement and freeze-thaw performance of fine-grained soils treated with geofiber and synthetic fluid. Cold Regions Science and Technology, 63(1–2), 50–60. https://doi.org/10.1016/j.coldregions.2010.05.006
  • Hendry, M. T., Onwude, L. U., & Sego, D. C. (2016). A laboratory investigation of the frost heave susceptibility of fine-grained soil generated from the abrasion of a diorite aggregate. Cold Regions Science and Technology, 123, 91–98. https://doi.org/10.1016/j.coldregions.2015.11.016
  • Holtz, R. D., Kovacs, W. D., & Sheahan, T. C. (2023). An introduction to geotechnical engineering (3rd ed.). Pearson Education. Holtz, W. G., & Gibbs, H. J. (1956). Engineering properties of expansive clays. Transactions Paper, 2814, 121, 641–677. https://doi.org/10.1061/TACEAT.0007325
  • Işık, A., Çevikbilen, G., & İyisan, R. (2014). Freezing and thawing behaviour of compacted soils. 11th International Congress on Advances in Civil Engineering, İstanbul.
  • Jessberger, H. L., & Carbee, D. L. (1970). Influence of frost action on the bearing capacity of soils. Highway Research Record, 304, 14–26.
  • Karayolları Genel Müdürlüğü. (2020). Karayolu teknik şartnamesi (Yol altyapısı, sanat yapıları, köprü ve tüneller, üstyapı ve çeşitli işler). Karayolları Genel Müdürlüğü.
  • Kawabata, S., Ishikawa, T., & Kameyama, S. (2016). Effects of freeze-thaw history on bearing capacity of granular base course materials. Procedia Engineering, 143, 828–835. https://doi.org/10.1016/j.proeng.2016.06.134
  • Konrad, J. M., & Lemieux, N. (2005). Influence of fines on frost heave characteristics of a well-graded base-course material. Canadian Geotechnical Journal, 42(2), 515–527. https://doi.org/10.1139/t04-115
  • Lambe, T. W., Kaplar, C. W., & Lambie, T. J. (1969). Effect of mineralogical composition of fines on frost susceptibility of soils. CRREL REPORT.
  • Laskar, A., & Pal, S. K. (2012). Geotechnical characteristics of two different soils and their mixture and relationships between parameters. Electronic Journal of Geotechnical Engineering, 17, 2821–2832. Leroueil, S., Tardif, J., Roy, M., Rochelle, P. L., & Konrad, J. M. (1991). Effects of frost on the mechanical behaviour of Champlain Sea clays. Canadian Geotechnical Journal, 28(5), 690–697. https://doi.org/10.1139/t91-083
  • Li, G., Ma, W., Zhao, S., Mao, Y., & Mu, Y. (2012). Effect of freeze-thaw cycles on mechanical behavior of compacted fine-grained soil. In Cold Regions Engineering 2012: Sustainable Infrastructure Development in a Changing Cold Environment, pp. 297–308. https://doi.org/10.1061/9780784412473.008
  • Liu, J., Chang, D., & Yu, Q. (2016). Influence of freeze-thaw cycles on mechanical properties of a silty sand. Engineering Geology, 210, 23–32. https://doi.org/10.1016/j.enggeo.2016.05.019
  • Liu, K., Ye, W., & Jing, H. (2021). Shear strength and microstructure of intact loess subjected to freeze-thaw cycling. Advances in Materials Science and Engineering. 1173603. https://doi.org/10.1155/2021/1173603
  • Lutgens, F. K., Tarbuck, E. J., & Tasa, D. (2012). Essentials of geology (11th ed.). Pearson Prentice Hall. Mina, E., Kusuma, R., & Ulfah, N. (2019). Utilization of steel slag and fly ash in soil stabilization and their effect on California bearing ratio (CBR) value: Case study: Kp. Kadusentar road Medong village Mekarjaya subdistrict Pandeglang district. IOP Conference Series: Materials Science and Engineering, 673, 012034. http://www.doi.org/10.1088/1757-899X/673/1/012034
  • Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behaviour (3rd ed.). John Wiley & Sons. Oghenero, A. E., Akpokodje, E. G., & Tse, A. C. (2014). Geotechnical properties of subsurface soils in Warri, Western Niger Delta, Nigeria. Journal of Earth Sciences and Geotechnical Engineering, 4(1), 89–102.
  • Öztürk, Ö., Çelikol, M., & Erkan, M. (2007). Türkiye agrega sektör raporu. Hazır Beton, 84, 52–56.
  • Peck, R. B., Hanson, W. E., & Thornburn, T. H. (1974). Foundation engineering. John Wiley & Sons. Poernomo, Y. C. S., Winarto, S., Mahardana, Z. B., Karisma, D. A., & Ajiono, R. (2021). The limestone as a materials combination of base course on the road pavement. IOP Conference Series: Materials Science and Engineering, 1125(1), 012019. https://www.doi.org/10.1088/1757-899X/1125/1/012019
  • Qi, J., Ma, W., & Song, C. (2008). Influence of freeze-thaw on engineering properties of a silty soil. Cold Regions Science and Technology, 53, 397–404. https://doi.org/10.1016/j.coldregions.2007.05.010
  • Riccio, M., Ehrlich, M., & Dias, D. (2014). Field monitoring and analyses of the response of a block-faced geogrid wall using fine-grained tropical soils. Geotextiles and Geomembranes, 42(2), 127–138. https://www.doi.org/10.1016/j.geotexmem.2014.01.006
  • Roy, S., & Bhalla, S. K. (2017). Role of geotechnical properties of soil on civil engineering structures. Resources and Environment, 7(4), 103–109. https://www.doi.org/10.5923/j.re.20170704.03
  • Seed, H. B., Woodward, R. J., & Lundgren, R. (1962). Prediction of swelling potential for compacted clays. ASCE Soil Mechanics and Foundations Division, 88, 53–87. https://doi.org/10.1061/JSFEAQ.0000431
  • Tang, L., Cong, S., Geng, L., Ling, X., & Gan, F. (2018). The effect of freeze-thaw cycling on the mechanical properties of expansive soils. Cold Regions Science and Technology, 145, 197–207. https://doi.org/10.1016/j.coldregions.2017.10.004
  • Vallejo, G., & Ferrer, M. (2014). Mühendislik jeolojisi (K. Kayabalı, Trans.). Ankara Üniversitesi Yayınları. Viklander, P. (1998). Permeability and volume changes in till due to cyclic freeze/thaw. Canadian Geotechnical Journal, 35(3), 471–477. https://doi.org/10.1139/t98-015
  • Wang, J., Qu, X. L., Wu, C. L., & Xiang, Y. M. (2013). Experimental research on shear strength of subgrade soil and plasticity index under different freeze-thaw cycles. Applied Mechanics and Materials, 256, 43–47. https://doi.org/10.4028/www.scientific.net/AMM.256-259.43
  • Wang, T. L., Liu, Y. J., Yan, H., & Xu, L. (2015). An experimental study on the mechanical properties of silty soils under repeated freeze-thaw cycles. Cold Regions Science and Technology, 112, 51–65. https://doi.org/10.1016/j.coldregions.2015.01.004
  • Xie, S., Qu, J., Lai, Y., Zhou, Z., & Xu, X. (2015). Effects of freeze-thaw cycles on soil mechanical and physical properties in the Qinghai-Tibet Plateau. Journal of Mountain Science, 12, 999–1099. https://doi.org/10.1007/s11629-014-3384-7
  • Yağız, S. (2010). Geomechanical properties of construction stones quarried in Southwestern Turkey. Scientific Research and Essays, 5(7), 750–757.
  • Yang, G., Liu, H., Lv, P., & Zhang, B. (2012). Geogrid-reinforced lime-treated cohesive soil retaining wall: Case study and implications. Geotextiles and Geomembranes, 35, 112–118. https://doi.org/10.1016/j.geotexmem.2012.09.001
  • Yılmaz, A., Saltan, M., & Akıllı, A. (2012). Göller yöresinde işletilen kireçtaşı agregalarının yol inşaatı malzemesi olarak kullanılabilirliğinin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 18(3), 199–207.
  • Youdeowei, P. O., & Nwankwoala, H. O. (2013). Suitability of soils as bearing media at a freshwater swamp terrain in the Niger Delta. Journal of Geology and Mining Research, 5(3), 58–64. https://doi.org/10.5897/JGMR11.046
  • Yu, Z., Fang, J., Xu, A., & Zhou, W. (2022). The study of influence of freeze-thaw cycles on silty sand in seasonally frozen soil regions. Geofluids. 6886108. https://doi.org/10.1155/2022/6886108
  • Zhang, F., Jing, R., Feng, D., & Lin, B. (2015). Mechanical properties and an empirical model of compacted silty clay subjected to freeze-thaw cycles. In Innovative Materials and Design for Sustainable Transportation Infrastructure, pp. 200–212. https://doi.org/10.1061/9780784479278.019
  • Zhou, Z., Ma, W., Zhang, S., Mu, Y., & Li, G. (2018). Effect of freeze-thaw cycles in mechanical behaviors of frozen loess. Cold Regions Science and Technology, 146, 9–18. https://doi.org/10.1016/j.coldregions.2017.11.011
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Transportation Engineering, Civil Engineering (Other)
Journal Section Articles
Authors

Murat Gülen 0000-0003-4143-9266

Murat Ergenokon Selçuk 0000-0003-1890-7965

Mehtap Koçan 0009-0000-5039-2573

Early Pub Date September 18, 2025
Publication Date October 1, 2025
Submission Date December 25, 2024
Acceptance Date March 16, 2025
Published in Issue Year 2025 Volume: 25 Issue: 5

Cite

APA Gülen, M., Selçuk, M. E., & Koçan, M. (2025). Donma-Çözülme Döngülerinin İstanbul İli ve Çevresinde Yer Alan Kireçtaşının CBR (%) Değerlerine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(5), 1126-1137. https://doi.org/10.35414/akufemubid.1607298
AMA Gülen M, Selçuk ME, Koçan M. Donma-Çözülme Döngülerinin İstanbul İli ve Çevresinde Yer Alan Kireçtaşının CBR (%) Değerlerine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. October 2025;25(5):1126-1137. doi:10.35414/akufemubid.1607298
Chicago Gülen, Murat, Murat Ergenokon Selçuk, and Mehtap Koçan. “Donma-Çözülme Döngülerinin İstanbul İli Ve Çevresinde Yer Alan Kireçtaşının CBR (%) Değerlerine Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, no. 5 (October 2025): 1126-37. https://doi.org/10.35414/akufemubid.1607298.
EndNote Gülen M, Selçuk ME, Koçan M (October 1, 2025) Donma-Çözülme Döngülerinin İstanbul İli ve Çevresinde Yer Alan Kireçtaşının CBR (%) Değerlerine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 5 1126–1137.
IEEE M. Gülen, M. E. Selçuk, and M. Koçan, “Donma-Çözülme Döngülerinin İstanbul İli ve Çevresinde Yer Alan Kireçtaşının CBR (%) Değerlerine Etkisi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 5, pp. 1126–1137, 2025, doi: 10.35414/akufemubid.1607298.
ISNAD Gülen, Murat et al. “Donma-Çözülme Döngülerinin İstanbul İli Ve Çevresinde Yer Alan Kireçtaşının CBR (%) Değerlerine Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/5 (October2025), 1126-1137. https://doi.org/10.35414/akufemubid.1607298.
JAMA Gülen M, Selçuk ME, Koçan M. Donma-Çözülme Döngülerinin İstanbul İli ve Çevresinde Yer Alan Kireçtaşının CBR (%) Değerlerine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:1126–1137.
MLA Gülen, Murat et al. “Donma-Çözülme Döngülerinin İstanbul İli Ve Çevresinde Yer Alan Kireçtaşının CBR (%) Değerlerine Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 5, 2025, pp. 1126-37, doi:10.35414/akufemubid.1607298.
Vancouver Gülen M, Selçuk ME, Koçan M. Donma-Çözülme Döngülerinin İstanbul İli ve Çevresinde Yer Alan Kireçtaşının CBR (%) Değerlerine Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(5):1126-37.