Research Article
BibTex RIS Cite

2,5-Bis(1-Naftil)-1,3,4-Oksadiazole'nin Yapı, Titreşim ve Elektronik Özellikleri: Deneysel ve Teorik Araştırma

Year 2025, Volume: 25 Issue: 5, 1032 - 1039, 01.10.2025
https://doi.org/10.35414/akufemubid.1643029

Abstract

Bu çalışmada, 2,5-Bis(1-naftil)-1,3,4-oksadiazol (BND) molekülünün yapısal, titreşim ve elektriksel özellikleri hem teorik hem de deneysel yöntemlerle incelenmiştir. Optimize edilmiş moleküler yapının titreşim dalga sayıları, bağ uzunlukları ve bağ açıları incelenmiş ve deneysel sonuçlarla karşılaştırılmıştır. Kaydedilen FT-IR ve FT-Raman spektrumları ile Yoğunluk Fonksiyonel Teorisi (DFT) hesaplamaları arasındaki korelasyon grafikleri oluşturulmuştur. Ayrıca, kimyasal kayma değerleri THF çözücüsünde GIAO yöntemi kullanılarak teorik olarak tahmin edilmiş ve NMR spektrumları toplanmıştır; bu değerler deneysel değerlerle tatmin edici bir korelasyon göstermiştir. Elektronik özellikleri değerlendirmek için sınır moleküler orbitalleri (HOMO-LUMO) analiz edilmiş ve molekülün kararlılığını gösteren önemli bir enerji boşluğu keşfedilmiştir. Moleküldeki yük dağılımı ve aktif noktalar 2B konturlar ve moleküler elektrostatik potansiyel (MEP) yüzey analizi ile ortaya çıkarılmıştır.

Project Number

PYO-FEN.4001.14.009

References

  • Andzelm, J., & Wimmer, E. 1992. Density functional Gaussian‐type‐orbital approach to molecular geometries, vibrations, and reaction energies. The Journal of chemical physics, 96(2), 1280-1303. https://doi.org/10.1063/1.462165
  • Bajaj, S., Asati, V., Singh, J., & Roy, P. P., 2015. 1, 3, 4-Oxadiazoles: An emerging scaffold to target growth factors, enzymes and kinases as anticancer agents. European journal of medicinal chemistry, 97, 124-141. https://doi.org/10.1016/j.ejmech.2015.04.051
  • Becke, A. D. 1992. Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of chemical physics, 96(3), 2155-2160. https://doi.org/10.1063/1.462066
  • Bouklah, M., Hammouti, B., Benkaddour, M., & Benhadda, T., 2005. Thiophene derivatives as effective inhibitors for the corrosion of steel in 0.5 m H2 SO4. Journal of Applied Electrochemistry, 35, 1095-1101. https://doi.org/10.1007/s10800-005-9004-z
  • Chang, C. H., Griniene, R., Su, Y. D., Yeh, C. C., Kao, H. C., Grazulevicius, J. V., ... & Grigalevicius, S. 2015. Efficient red phosphorescent OLEDs employing carbazole-based materials as the emitting host. Dyes and Pigments, 122, 257-263. https://doi.org/10.1016/j.dyepig.2015.06.038
  • Chebabe, D., Chikh, Z. A., Hajjaji, N., Srhiri, A., & Zucchi, F., 2003. Corrosion inhibition of Armco iron in 1 M HCl solution by alkyltriazoles. Corrosion science, 45(2), 309-320. https://doi.org/10.1016/S0010-938X(02)00098-7
  • Ditchfield, R. 1972. Molecular orbital theory of magnetic shielding and magnetic susceptibility. The Journal of Chemical Physics, 56(11), 5688-5691. https://doi.org/10.1063/1.1677088
  • El-Azhary, A. A. 1996. Vibrational analysis of the spectra of 1, 3, 4-oxadiazole, 1, 3, 4-thiadiazole, 1, 2, 5-oxadiazole and 1, 2, 5-thiadiazole: comparison between DFT, MP2 and HF force fields. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 52(1), 33-44. https://doi.org/10.1016/0584-8539(95)01535-3
  • El-Rehim, S. A., Ibrahim, M. A., & Khaled, K. F., 1999. 4-Aminoantipyrine as an inhibitor of mild steel corrosion in HCl solution. Journal of Applied Electrochemistry, 29, 593-599. https://doi.org/10.1023/A:1003450818083
  • Fang, J., & Li, J. 2002. Quantum chemistry study on the relationship between molecular structure and corrosion inhibition efficiency of amides. Journal of Molecular Structure: THEOCHEM, 593(1-3), 179-185. https://doi.org/10.1016/S0166-1280(02)00316-0
  • Fleming I., 1976. Frontier Orbitals and Organic Chemical Reactions, Wiley, London.
  • Fouda, A. S., Al-Sarawy, A. A., & El-Katori, E. E., 2006. Pyrazolone derivatives as corrosion inhibitors for C-steel in hydrochloric acid solution. Desalination, 201(1-3), 1-13. https://doi.org/10.1016/j.desal.2006.03.519
  • Foroumadi, A., Mansouri, S., Kiani, Z., & Rahmani, A., 2003. Synthesis and in vitro antibacterial evaluation of N-[5-(5-nitro-2-thienyl)-1, 3, 4-thiadiazole-2-yl] piperazinyl quinolones. European journal of medicinal chemistry, 38(9), 851-854. https://doi.org/10.1016/S0223-5234(03)00148-X
  • Frisch, M. J. E. A., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., ... & Fox, D. J. 2009. gaussian 09, Gaussian. Inc., Wallingford CT, 121, 150-166.
  • Hohenberg, P., & Kohn, W. 1964. Inhomogeneous electron gas. Physical review, 136(3B), B864. https://doi.org/10.1103/PhysRev.136.B864
  • Fuentealba, P., Pérez, P., & Contreras, R. 2000. On the condensed Fukui function. The Journal of Chemical Physics, 113(7), 2544-2551. https://doi.org/10.1063/1.1305879
  • Holla, B. S., Veerendra, B., Shivananda, M. K., & Poojary, B., 2003. Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1, 2, 4-triazoles. European Journal of Medicinal Chemistry, 38(7-8), 759-767. https://doi.org/10.1016/S0223-5234(03)00128-4
  • Hosseini, S. M. A., & Azimi, A., 2009. The inhibition of mild steel corrosion in acidic medium by 1-methyl-3-pyridin-2-yl-thiourea. Corrosion Science, 51(4), 728-732. https://doi.org/10.1016/j.corsci.2008.11.019
  • Huangzhong, Y. 2010. Different solvents effect on the performance of the solar cells based on poly (3-hexylthiophene):methanofullerenes. Synthetic Metals, 160(23-24), 2505-2509. https://doi.org/10.1016/j.synthmet.2010.09.035
  • Hughes, G., & Bryce, M. R. 2005. Electron-transporting materials for organic electroluminescent and electrophosphorescent devices. Journal of Materials Chemistry, 15(1), 94-107 https://doi.org/10.1039/B413249C
  • Jeon, B. C., Kim, M. S., Cho, M. J., Choi, D. H., Ahn, K. S., & Kim, J. H. 2014. Effect of solvent on dye-adsorption process and photovoltaic properties of dendritic organic dye on TiO2 electrode of dye-sensitized solar cells. Synthetic metals, 88, 130-135. https://doi.org/10.1016/j.synthmet.2013.12.006
  • Kalinowski, H. O., Berger, S., & Braun, S. 1988. Carbon-13 NMR spectroscopy. John Wiley and Sons, New York.
  • Krishnakumar, V., & Xavier, R. J. 2003. Normal coordinate analysis of vibrational spectra of 2-methylindoline and 5-hydroxyindane. Indian Journal of Pure & Applied Physics, 41, 95-99.
  • Krukiewicz, K., Jarosz, T., Herman, A. P., Turczyn, R., Boncel, S., & Zak, J. K. 2016. The effect of solvent on the synthesis and physicochemical properties of poly (3, 4-ethylenedioxypyrrole). Synthetic Metals, 217, 231-236. https://doi.org/10.1016/j.synthmet.2016.04.005
  • Lagrenee, M., Mernari, B., Chaibi, N., Traisnel, M., Vezin, H., & Bentiss, F., 2001. Investigation of the inhibitive effect of substituted oxadiazoles on the corrosion of mild steel in HCl medium. Corrosion science, 43(5), 951-962. https://doi.org/10.1016/S0010-938X(00)00076-7
  • Munoz-Caro, C., Nino, A., Senent, M. L., Leal, J. M., & Ibeas, S. 2000. Modeling of protonation processes in acetohydroxamic acid. The Journal of organic chemistry, 65(2), 405-410. https://doi.org/10.1021/jo991251x
  • Peng, Z., Bao, Z., & Galvin, M. E. 1998. Oxadiazole‐Containing Conjugated Polymers for Light‐Emitting Diodes. Advanced Materials, 10(9), 680-684. https://doi.org/10.1002/(SICI)1521-4095(199806)10:9<680::AID-ADMA680>3.0.CO;2-H
  • Politzer, P., Laurence, P. R., & Jayasuriya, K. 1985. Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environmental health perspectives, 61, 191-202. https://doi.org/10.1289/ehp.8561191
  • Reddy, M. A., Mallesham, G., Thomas, A., Srinivas, K., Rao, V. J., Bhanuprakash, K., ... & Srivastava, R. 2011. Synthesis and characterization of novel 2, 5-diphenyl-1, 3, 4-oxadiazole derivatives of anthracene and its application as electron transporting blue emitters in OLEDs. Synthetic metals, 161(9-10), 869-880. https://doi.org/10.1016/j.synthmet.2011.02.015
  • Reig, M., Gozálvez, C., Bujaldón, R., Bagdziunas, G., Ivaniuk, K., Kostiv, N., ... & Velasco, D. 2017. Easy accessible blue luminescent carbazole-based materials for organic light-emitting diodes. Dyes and Pigments, 137, 24-35. https://doi.org/10.1016/j.dyepig.2016.09.062
  • Rodríguez-Valdez, L. M., Martínez-Villafañe, A., & Glossman-Mitnik, D. 2005. CHIH-DFT theoretical study of isomeric thiatriazoles and their potential activity as corrosion inhibitors. Journal of Molecular Structure: THEOCHEM, 716(1-3), 61-65. https://doi.org/10.1016/j.theochem.2004.10.082
  • Romano, E., Soria, N. A. J., Rudyk, R., & Brandán, S. A. 2012. Theoretical study of the infrared spectrum of 5-phenyl-1, 3, 4-oxadiazole-2-thiol by using DFT calculations. Molecular Simulation, 38(7), 561-566. https://doi.org/10.1080/08927022.2011.640936
  • Sas, E. B., Kurban, M., Gündüz, B., & Kurt, M. 2018. Photophysical, spectroscopic properties and electronic structure of BND: Experiment and theory. Synthetic Metals, 246, 39-44. https://doi.org/10.1016/j.synthmet.2018.09.013
  • Scrocco, E., & Tomasi, J. 1978. Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials. In Advances in quantum chemistry,Vol. 11, pp. 115-193, Academic Press. https://doi.org/10.1016/S0065-3276(08)60236-1
  • Singh, N. P., & Yadav, R. A. 2001. Vibrational studies of trifluoromethyl benzene derivatives 1: 2-amino, 5-chloro and 2-amino, 5-bromo benzotrifluorides. Indian Journal of Physics, 75, 347-355.
  • Singh, N. K., Butcher, R. J., Tripathi, P., Srivastava, A. K., & Bharty, M. K. 2007. 5-Phenyl-1, 3, 4-oxadiazole-2 (3H)-thione. Acta Crystallographica Section E: Structure Reports Online, 63(2), o782-o784. https://doi.org/10.1107/S1600536806052238
  • Stephens, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. 1994. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. The Journal of physical chemistry, 98(45), 11623-11627. https://doi.org/10.1021/j100096a001
  • Şaş, E. B., Çifçi, S., & Kurt, M. 2022. Spectroscopic Characterization and DFT Calculations on 1H-benzimidazole-2-carboxylic acid monohydrate Molecule. Sakarya University Journal of Science, 26(5), 879-891. https://doi.org/10.16984/saufenbilder.1100391
  • Tanış, E., Babur Sas, E., Gündüz, B., & Kurt, M. 2018. Required theoretical and experimental physical characteristics of tris [4-(diethylamino) phenyl] amine organic material. Journal of Materials Science: Materials in Electronics, 29, 16111-16119. https://doi.org/10.1007/s10854-018-9700-1 Tao, Y., Yang, C., & Qin, J. 2011. Organic host materials for phosphorescent organic light-emitting diodes. Chemical Society Reviews, 40(5), 2943-2970. https://doi.org/10.1039/C0CS00160K
  • Tokuhisa, H., Era, M., Tsutsui, T., & Saito, S. 1995. Electron drift mobility of oxadiazole derivatives doped in polycarbonate. Applied physics letters, 66(25), 3433-3435. https://doi.org/10.1063/1.113378
  • Varsányi, G. 2012. Vibrational spectra of benzene derivatives. Elsevier.
  • Wolinski, K., Hinton, J. F., & Pulay, P. 1990. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112(23), 8251-8260. https://doi.org/10.1021/ja00179a005
  • Yang, X., Xu, X., & Zhou, G. 2015. Recent advances of the emitters for high performance deep-blue organic light-emitting diodes. Journal of Materials Chemistry C, 3(5), 913-944. https://doi.org/10.1039/C4TC02474E
  • https://cccbdb.nist.gov/vibscalejustx.asp (13.02.2025)

Structural, Vibrational, and Electronic Properties of 2,5-Bis(1-Naphthyl)-1,3,4-Oxadiazole: Experimental and Theoretical Investigation

Year 2025, Volume: 25 Issue: 5, 1032 - 1039, 01.10.2025
https://doi.org/10.35414/akufemubid.1643029

Abstract

This study used both theoretical and experimental methods to examine the structural, vibrational, and electrical characteristics of the 2,5-Bis(1-naphthyl)-1,3,4-oxadiazole (BND) molecule. The vibrational wave numbers, bond lengths, and bond angles of the optimized molecular structure were examined and compared to the experimental results. Plots of the correlation between the recorded FT-IR and FT-Raman spectra and the Density Functional Theory (DFT) computations were created. Furthermore, chemical shift values were theoretically predicted using the GIAO method in THF solvent and NMR spectra were collected; these values demonstrated a satisfactory correlation with the experimental values. The frontier molecular orbitals (HOMO-LUMO) were analyzed to assess the electronic properties, and a sizable energy gap that demonstrated the molecule's stability was discovered. The charge distribution and active spots in the molecule were revealed by 2D contours and molecular electrostatic potential (MEP) surface analysis.

Ethical Statement

The authors declare that they comply with all ethical standards.

Supporting Institution

Kırşehir Ahi Evran Üniversitesi

Project Number

PYO-FEN.4001.14.009

References

  • Andzelm, J., & Wimmer, E. 1992. Density functional Gaussian‐type‐orbital approach to molecular geometries, vibrations, and reaction energies. The Journal of chemical physics, 96(2), 1280-1303. https://doi.org/10.1063/1.462165
  • Bajaj, S., Asati, V., Singh, J., & Roy, P. P., 2015. 1, 3, 4-Oxadiazoles: An emerging scaffold to target growth factors, enzymes and kinases as anticancer agents. European journal of medicinal chemistry, 97, 124-141. https://doi.org/10.1016/j.ejmech.2015.04.051
  • Becke, A. D. 1992. Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of chemical physics, 96(3), 2155-2160. https://doi.org/10.1063/1.462066
  • Bouklah, M., Hammouti, B., Benkaddour, M., & Benhadda, T., 2005. Thiophene derivatives as effective inhibitors for the corrosion of steel in 0.5 m H2 SO4. Journal of Applied Electrochemistry, 35, 1095-1101. https://doi.org/10.1007/s10800-005-9004-z
  • Chang, C. H., Griniene, R., Su, Y. D., Yeh, C. C., Kao, H. C., Grazulevicius, J. V., ... & Grigalevicius, S. 2015. Efficient red phosphorescent OLEDs employing carbazole-based materials as the emitting host. Dyes and Pigments, 122, 257-263. https://doi.org/10.1016/j.dyepig.2015.06.038
  • Chebabe, D., Chikh, Z. A., Hajjaji, N., Srhiri, A., & Zucchi, F., 2003. Corrosion inhibition of Armco iron in 1 M HCl solution by alkyltriazoles. Corrosion science, 45(2), 309-320. https://doi.org/10.1016/S0010-938X(02)00098-7
  • Ditchfield, R. 1972. Molecular orbital theory of magnetic shielding and magnetic susceptibility. The Journal of Chemical Physics, 56(11), 5688-5691. https://doi.org/10.1063/1.1677088
  • El-Azhary, A. A. 1996. Vibrational analysis of the spectra of 1, 3, 4-oxadiazole, 1, 3, 4-thiadiazole, 1, 2, 5-oxadiazole and 1, 2, 5-thiadiazole: comparison between DFT, MP2 and HF force fields. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 52(1), 33-44. https://doi.org/10.1016/0584-8539(95)01535-3
  • El-Rehim, S. A., Ibrahim, M. A., & Khaled, K. F., 1999. 4-Aminoantipyrine as an inhibitor of mild steel corrosion in HCl solution. Journal of Applied Electrochemistry, 29, 593-599. https://doi.org/10.1023/A:1003450818083
  • Fang, J., & Li, J. 2002. Quantum chemistry study on the relationship between molecular structure and corrosion inhibition efficiency of amides. Journal of Molecular Structure: THEOCHEM, 593(1-3), 179-185. https://doi.org/10.1016/S0166-1280(02)00316-0
  • Fleming I., 1976. Frontier Orbitals and Organic Chemical Reactions, Wiley, London.
  • Fouda, A. S., Al-Sarawy, A. A., & El-Katori, E. E., 2006. Pyrazolone derivatives as corrosion inhibitors for C-steel in hydrochloric acid solution. Desalination, 201(1-3), 1-13. https://doi.org/10.1016/j.desal.2006.03.519
  • Foroumadi, A., Mansouri, S., Kiani, Z., & Rahmani, A., 2003. Synthesis and in vitro antibacterial evaluation of N-[5-(5-nitro-2-thienyl)-1, 3, 4-thiadiazole-2-yl] piperazinyl quinolones. European journal of medicinal chemistry, 38(9), 851-854. https://doi.org/10.1016/S0223-5234(03)00148-X
  • Frisch, M. J. E. A., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., ... & Fox, D. J. 2009. gaussian 09, Gaussian. Inc., Wallingford CT, 121, 150-166.
  • Hohenberg, P., & Kohn, W. 1964. Inhomogeneous electron gas. Physical review, 136(3B), B864. https://doi.org/10.1103/PhysRev.136.B864
  • Fuentealba, P., Pérez, P., & Contreras, R. 2000. On the condensed Fukui function. The Journal of Chemical Physics, 113(7), 2544-2551. https://doi.org/10.1063/1.1305879
  • Holla, B. S., Veerendra, B., Shivananda, M. K., & Poojary, B., 2003. Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1, 2, 4-triazoles. European Journal of Medicinal Chemistry, 38(7-8), 759-767. https://doi.org/10.1016/S0223-5234(03)00128-4
  • Hosseini, S. M. A., & Azimi, A., 2009. The inhibition of mild steel corrosion in acidic medium by 1-methyl-3-pyridin-2-yl-thiourea. Corrosion Science, 51(4), 728-732. https://doi.org/10.1016/j.corsci.2008.11.019
  • Huangzhong, Y. 2010. Different solvents effect on the performance of the solar cells based on poly (3-hexylthiophene):methanofullerenes. Synthetic Metals, 160(23-24), 2505-2509. https://doi.org/10.1016/j.synthmet.2010.09.035
  • Hughes, G., & Bryce, M. R. 2005. Electron-transporting materials for organic electroluminescent and electrophosphorescent devices. Journal of Materials Chemistry, 15(1), 94-107 https://doi.org/10.1039/B413249C
  • Jeon, B. C., Kim, M. S., Cho, M. J., Choi, D. H., Ahn, K. S., & Kim, J. H. 2014. Effect of solvent on dye-adsorption process and photovoltaic properties of dendritic organic dye on TiO2 electrode of dye-sensitized solar cells. Synthetic metals, 88, 130-135. https://doi.org/10.1016/j.synthmet.2013.12.006
  • Kalinowski, H. O., Berger, S., & Braun, S. 1988. Carbon-13 NMR spectroscopy. John Wiley and Sons, New York.
  • Krishnakumar, V., & Xavier, R. J. 2003. Normal coordinate analysis of vibrational spectra of 2-methylindoline and 5-hydroxyindane. Indian Journal of Pure & Applied Physics, 41, 95-99.
  • Krukiewicz, K., Jarosz, T., Herman, A. P., Turczyn, R., Boncel, S., & Zak, J. K. 2016. The effect of solvent on the synthesis and physicochemical properties of poly (3, 4-ethylenedioxypyrrole). Synthetic Metals, 217, 231-236. https://doi.org/10.1016/j.synthmet.2016.04.005
  • Lagrenee, M., Mernari, B., Chaibi, N., Traisnel, M., Vezin, H., & Bentiss, F., 2001. Investigation of the inhibitive effect of substituted oxadiazoles on the corrosion of mild steel in HCl medium. Corrosion science, 43(5), 951-962. https://doi.org/10.1016/S0010-938X(00)00076-7
  • Munoz-Caro, C., Nino, A., Senent, M. L., Leal, J. M., & Ibeas, S. 2000. Modeling of protonation processes in acetohydroxamic acid. The Journal of organic chemistry, 65(2), 405-410. https://doi.org/10.1021/jo991251x
  • Peng, Z., Bao, Z., & Galvin, M. E. 1998. Oxadiazole‐Containing Conjugated Polymers for Light‐Emitting Diodes. Advanced Materials, 10(9), 680-684. https://doi.org/10.1002/(SICI)1521-4095(199806)10:9<680::AID-ADMA680>3.0.CO;2-H
  • Politzer, P., Laurence, P. R., & Jayasuriya, K. 1985. Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environmental health perspectives, 61, 191-202. https://doi.org/10.1289/ehp.8561191
  • Reddy, M. A., Mallesham, G., Thomas, A., Srinivas, K., Rao, V. J., Bhanuprakash, K., ... & Srivastava, R. 2011. Synthesis and characterization of novel 2, 5-diphenyl-1, 3, 4-oxadiazole derivatives of anthracene and its application as electron transporting blue emitters in OLEDs. Synthetic metals, 161(9-10), 869-880. https://doi.org/10.1016/j.synthmet.2011.02.015
  • Reig, M., Gozálvez, C., Bujaldón, R., Bagdziunas, G., Ivaniuk, K., Kostiv, N., ... & Velasco, D. 2017. Easy accessible blue luminescent carbazole-based materials for organic light-emitting diodes. Dyes and Pigments, 137, 24-35. https://doi.org/10.1016/j.dyepig.2016.09.062
  • Rodríguez-Valdez, L. M., Martínez-Villafañe, A., & Glossman-Mitnik, D. 2005. CHIH-DFT theoretical study of isomeric thiatriazoles and their potential activity as corrosion inhibitors. Journal of Molecular Structure: THEOCHEM, 716(1-3), 61-65. https://doi.org/10.1016/j.theochem.2004.10.082
  • Romano, E., Soria, N. A. J., Rudyk, R., & Brandán, S. A. 2012. Theoretical study of the infrared spectrum of 5-phenyl-1, 3, 4-oxadiazole-2-thiol by using DFT calculations. Molecular Simulation, 38(7), 561-566. https://doi.org/10.1080/08927022.2011.640936
  • Sas, E. B., Kurban, M., Gündüz, B., & Kurt, M. 2018. Photophysical, spectroscopic properties and electronic structure of BND: Experiment and theory. Synthetic Metals, 246, 39-44. https://doi.org/10.1016/j.synthmet.2018.09.013
  • Scrocco, E., & Tomasi, J. 1978. Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials. In Advances in quantum chemistry,Vol. 11, pp. 115-193, Academic Press. https://doi.org/10.1016/S0065-3276(08)60236-1
  • Singh, N. P., & Yadav, R. A. 2001. Vibrational studies of trifluoromethyl benzene derivatives 1: 2-amino, 5-chloro and 2-amino, 5-bromo benzotrifluorides. Indian Journal of Physics, 75, 347-355.
  • Singh, N. K., Butcher, R. J., Tripathi, P., Srivastava, A. K., & Bharty, M. K. 2007. 5-Phenyl-1, 3, 4-oxadiazole-2 (3H)-thione. Acta Crystallographica Section E: Structure Reports Online, 63(2), o782-o784. https://doi.org/10.1107/S1600536806052238
  • Stephens, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. 1994. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. The Journal of physical chemistry, 98(45), 11623-11627. https://doi.org/10.1021/j100096a001
  • Şaş, E. B., Çifçi, S., & Kurt, M. 2022. Spectroscopic Characterization and DFT Calculations on 1H-benzimidazole-2-carboxylic acid monohydrate Molecule. Sakarya University Journal of Science, 26(5), 879-891. https://doi.org/10.16984/saufenbilder.1100391
  • Tanış, E., Babur Sas, E., Gündüz, B., & Kurt, M. 2018. Required theoretical and experimental physical characteristics of tris [4-(diethylamino) phenyl] amine organic material. Journal of Materials Science: Materials in Electronics, 29, 16111-16119. https://doi.org/10.1007/s10854-018-9700-1 Tao, Y., Yang, C., & Qin, J. 2011. Organic host materials for phosphorescent organic light-emitting diodes. Chemical Society Reviews, 40(5), 2943-2970. https://doi.org/10.1039/C0CS00160K
  • Tokuhisa, H., Era, M., Tsutsui, T., & Saito, S. 1995. Electron drift mobility of oxadiazole derivatives doped in polycarbonate. Applied physics letters, 66(25), 3433-3435. https://doi.org/10.1063/1.113378
  • Varsányi, G. 2012. Vibrational spectra of benzene derivatives. Elsevier.
  • Wolinski, K., Hinton, J. F., & Pulay, P. 1990. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112(23), 8251-8260. https://doi.org/10.1021/ja00179a005
  • Yang, X., Xu, X., & Zhou, G. 2015. Recent advances of the emitters for high performance deep-blue organic light-emitting diodes. Journal of Materials Chemistry C, 3(5), 913-944. https://doi.org/10.1039/C4TC02474E
  • https://cccbdb.nist.gov/vibscalejustx.asp (13.02.2025)
There are 44 citations in total.

Details

Primary Language English
Subjects Atomic, Molecular and Optical Physics (Other)
Journal Section Articles
Authors

Emine Babur Şaş 0000-0002-9547-5951

Mustafa Kurt 0000-0001-6040-1189

Project Number PYO-FEN.4001.14.009
Early Pub Date September 18, 2025
Publication Date October 1, 2025
Submission Date February 19, 2025
Acceptance Date April 23, 2025
Published in Issue Year 2025 Volume: 25 Issue: 5

Cite

APA Babur Şaş, E., & Kurt, M. (2025). Structural, Vibrational, and Electronic Properties of 2,5-Bis(1-Naphthyl)-1,3,4-Oxadiazole: Experimental and Theoretical Investigation. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(5), 1032-1039. https://doi.org/10.35414/akufemubid.1643029
AMA Babur Şaş E, Kurt M. Structural, Vibrational, and Electronic Properties of 2,5-Bis(1-Naphthyl)-1,3,4-Oxadiazole: Experimental and Theoretical Investigation. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. October 2025;25(5):1032-1039. doi:10.35414/akufemubid.1643029
Chicago Babur Şaş, Emine, and Mustafa Kurt. “Structural, Vibrational, and Electronic Properties of 2,5-Bis(1-Naphthyl)-1,3,4-Oxadiazole: Experimental and Theoretical Investigation”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, no. 5 (October 2025): 1032-39. https://doi.org/10.35414/akufemubid.1643029.
EndNote Babur Şaş E, Kurt M (October 1, 2025) Structural, Vibrational, and Electronic Properties of 2,5-Bis(1-Naphthyl)-1,3,4-Oxadiazole: Experimental and Theoretical Investigation. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 5 1032–1039.
IEEE E. Babur Şaş and M. Kurt, “Structural, Vibrational, and Electronic Properties of 2,5-Bis(1-Naphthyl)-1,3,4-Oxadiazole: Experimental and Theoretical Investigation”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 5, pp. 1032–1039, 2025, doi: 10.35414/akufemubid.1643029.
ISNAD Babur Şaş, Emine - Kurt, Mustafa. “Structural, Vibrational, and Electronic Properties of 2,5-Bis(1-Naphthyl)-1,3,4-Oxadiazole: Experimental and Theoretical Investigation”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/5 (October2025), 1032-1039. https://doi.org/10.35414/akufemubid.1643029.
JAMA Babur Şaş E, Kurt M. Structural, Vibrational, and Electronic Properties of 2,5-Bis(1-Naphthyl)-1,3,4-Oxadiazole: Experimental and Theoretical Investigation. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:1032–1039.
MLA Babur Şaş, Emine and Mustafa Kurt. “Structural, Vibrational, and Electronic Properties of 2,5-Bis(1-Naphthyl)-1,3,4-Oxadiazole: Experimental and Theoretical Investigation”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 5, 2025, pp. 1032-9, doi:10.35414/akufemubid.1643029.
Vancouver Babur Şaş E, Kurt M. Structural, Vibrational, and Electronic Properties of 2,5-Bis(1-Naphthyl)-1,3,4-Oxadiazole: Experimental and Theoretical Investigation. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(5):1032-9.