TÜBİTAK UME Laboratuvarında Karbondioksit Üçlü Nokta Gerçekleştirimi
Year 2025,
Volume: 25 Issue: 6, 1272 - 1278
Yusuf Cenk İltuş
,
Murat Kalemci
,
Ali Uytun
,
Hasipcan Aydin
,
Lidya Susam
Abstract
Evrenin oluşumundan günümüze kadar maddeyi tanımlamada temel bir parametre olan sıcaklık, bilimsel gelişmelerle birlikte evrim geçirmiştir. Günlük yaşamda, sağlıkta, endüstride ve araştırmada hayati önem taşıyan sıcaklık ölçümü yüksek hassasiyet gerektirmektedir. Sıcaklık ölçüm teknolojilerindeki yenilikler, özellikle Standart Platin Direnç Termometreleri (SPRT'ler) bu talebi karşılamıştır. Uluslararası Sıcaklık Ölçeği (ITS-90), Suyun Üçlü Noktası (TPW) ve Cıvanın Üçlü Noktası (TP(Hg)) gibi sabit noktaları tanımlar. Ancak, cıvanın kısıtlamaları nedeniyle alternatif sabit noktalar aranmaktadır. 2012 yılında düzenlenen XX IMEKO Dünya Sıcaklık Kongresi'nde, Karbondioksit Üçlü Noktası (TP(CO2)) ve Kükürt Heksaflorür (TP(SF6)) alternatif olarak önerilmiştir. Son çalışmalar, Karbondioksit Üçlü Noktasının sıcaklık değerini 1 mK’nin altında belirsizlikle 216.591 K civarında ölçmüştür. Bu çalışma, TÜBİTAK UME'deki Karbondioksit Üçlü Nokta hücrelerinin yapımına ve metrolojik karakterizasyonuna odaklanmaktadır. Ölçümler, üçlü nokta gerçekleştirme için iki farklı yöntem kullanılarak Birincil Seviye Sıcaklık Laboratuvarı'nda gerçekleştirildi. Çalışma, özenli kalibrasyon süreçlerini ve elde edilen hassasiyeti, Karbon Dioksit Üçlü Noktasını kararlı bir referans noktası olduğunu göstermektedir. CCT'nin önerilen değerleriyle yapılan karşılaştırmalar, Cıva Üçlü Noktasına bir alternatif olarak doğruluğunu ve uygulanabilirliğini vurguluyor.
Thanks
Bu makale, Katılımcı Devletler tarafından ortak finanse edilen AB EMPIR programı ve Avrupa Birliği'nin Ufuk 2020 araştırma ve inovasyon programından, özellikle EMPIR projesi 18SIB02 "Yeniden tanımlanmış kelvin'in gerçekleştirilmesi" kapsamında alınan fonlarla yazılmıştır.
References
-
Preston-Thomas, H., 1990. The international temperature scale of 1990 (ITS-90). Metrologia, 27(1), 3–10.
https://doi.org/10.1088/0026-1394/27/1/002
-
del Campo, D., Bojkovski, J., Dobre, M., Filipe, E., Kalemci, M., Merlone, A., Pearce, J., Peruzzi, A., Sparasci, F., Strnad, R., Taubert, D., & Turzo-Andras, E. (2012, September). Novel techniques for traceable temperature dissemination: A European joint research project [Paper presentation]. 20th IMEKO World Congress 2012, Busan, South Korea.
Bedford, R. E., Hodge, G. D., & McLaughlin, J. D., 1996. Metrologia, 33, 133.
-
Kawamura, Y., & Nakano, T., 2021. Evaluation of the temperature scale of SPRT calibrated at the triple point of sulfur hexafluoride. Measurement: Sensors, 18, 100211.
https://doi.org/10.1016/j.measen.2021.100211
-
Bedford, R. E., Bonnier, G., Maas, H., & Pavese, F., 1984. Recommended values of temperature for a selected set of secondary reference points. Metrologia, 20, 145–155.
-
Ambrose, D., 2002. The triple point of carbon dioxide as a thermometric fixed point. British Journal of Applied Physics, 8, 32.
https://doi.org/10.1088/0508-3443/8/1/309
-
Kartal Dogan, A., Bonnier, G., Uytun, A., Koçaş Kozbe, I., & Durgut, Y., 2011. Toward carbon dioxide vapor-pressure thermometer. International Journal of Thermophysics, 32.
https://doi.org/10.1007/s10765-011-1091-y
-
Hermier, Y., 2007. Realisation and study of a CO2 triple point thermometric cell. Revue Française de Métrologie, 10, 2007-2.
Kawamura, Y., Lee, H., & Park, S., 2020. Metrologia, 57, 015004.
https://doi.org/10.1088/1681-7575/ab451e
-
Liang, Y., Zhang, J. T., Feng, X. J., & Qiu, P., 2023. Realization of the triple point of carbon dioxide in a transportable cell using long-stem SPRTs. Metrologia, 60(1), 015006.
https://doi.org/10.1088/1681-7575/aca417
-
BIPM, 2021. The Consultative Committee for Thermometry, strategy document for rolling programme development from 2021 to 2031.
-
Span, R., & Wagner, W., 1996. A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 25(6), 1509–1596.
-
Kalemci, M., Ince, A., & Bonier, G., 2013. Investigation of thermal effects on melting curves of mercury. In Proceedings of the IMEKO World Congress, Vol. 1552, 227–231.
https://doi.org/10.1063/1.4819544
-
Kalemci, M., Arifovic, N., Bagçe, A., Aytekin, S. O., & Ince, A. T., 2015. Construction of home-made tin fixed-point cell at TUBITAK UME. International Journal of Thermophysics, 36, 1968–1979.
https://doi.org/10.1007/s10765-015-1944-x
-
Kalemci, M., Bagçe, A., Ince, A. T., & Arifovic, N., 2018. A new generation of open zinc freezing point cells at TUBITAK UME. International Journal of Thermophysics, 39, 102.
https://doi.org/10.1007/s10765-018-2423-y
-
Hill, K. D., 1994. An apparatus for realizing the triple point of mercury. Metrologia, 31(1), 39.
Kalemci, M., Ince, A., & Bonier, G., 2009. Realization of new mercury triple point cells at TUBITAK-UME. In Proceedings of the XIX IMEKO World Congress, Fundamental and Applied Metrology (. September 6−11, Lisbon, Portugal. pp. 1032–1036, ISBN 978-963-88410-0-1.
Realization Triple Point of Carbon Dioxide at TÜBİTAK UME Laboratory
Year 2025,
Volume: 25 Issue: 6, 1272 - 1278
Yusuf Cenk İltuş
,
Murat Kalemci
,
Ali Uytun
,
Hasipcan Aydin
,
Lidya Susam
Abstract
Temperature, a fundamental parameter in describing matter from the formation of the universe to the present day, has evolved with scientific advancements. Temperature measurement, crucial in everyday life, health, industry, and research, demands high precision. Innovations in temperature measurement technologies, particularly Standard Platinum Resistance Thermometers (SPRTs), have addressed this demand. The International Temperature Scale (ITS-90) defines fixed points, including the Triple Point of Water (TPW) and the Triple Point of Mercury (TP(Hg)). However, due to mercury's restrictions, alternative fixed points are sought. At the XX IMEKO World Congress on Temperature in 2012, Carbon Dioxide Triple Point (TP(CO2)) and Sulfur Hexafluoride (TP(SF6)) were proposed as alternatives. Recent studies have measured the triple point temperature of carbon dioxide to be around 216.591 K, with an uncertainty of less than 1 mK. This study focuses on the construction and metrological characterization of Carbon Dioxide Triple Point cells at TUBITAK UME. The measurements were conducted within the Primary Level Temperature Laboratory, performing two different methods for triple point realization. The study highlights the meticulous calibration processes and achieved precision, affirming the Carbon Dioxide Triple Point as a stable reference point. Comparisons with CCT's recommended values underline its accuracy and feasibility as an alternative to the Mercury Triple Point.
Thanks
This paper has been written through funding received from the EU EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme, specifically from the EMPIR project 18SIB02 “Realising the redefined kelvin”.
References
-
Preston-Thomas, H., 1990. The international temperature scale of 1990 (ITS-90). Metrologia, 27(1), 3–10.
https://doi.org/10.1088/0026-1394/27/1/002
-
del Campo, D., Bojkovski, J., Dobre, M., Filipe, E., Kalemci, M., Merlone, A., Pearce, J., Peruzzi, A., Sparasci, F., Strnad, R., Taubert, D., & Turzo-Andras, E. (2012, September). Novel techniques for traceable temperature dissemination: A European joint research project [Paper presentation]. 20th IMEKO World Congress 2012, Busan, South Korea.
Bedford, R. E., Hodge, G. D., & McLaughlin, J. D., 1996. Metrologia, 33, 133.
-
Kawamura, Y., & Nakano, T., 2021. Evaluation of the temperature scale of SPRT calibrated at the triple point of sulfur hexafluoride. Measurement: Sensors, 18, 100211.
https://doi.org/10.1016/j.measen.2021.100211
-
Bedford, R. E., Bonnier, G., Maas, H., & Pavese, F., 1984. Recommended values of temperature for a selected set of secondary reference points. Metrologia, 20, 145–155.
-
Ambrose, D., 2002. The triple point of carbon dioxide as a thermometric fixed point. British Journal of Applied Physics, 8, 32.
https://doi.org/10.1088/0508-3443/8/1/309
-
Kartal Dogan, A., Bonnier, G., Uytun, A., Koçaş Kozbe, I., & Durgut, Y., 2011. Toward carbon dioxide vapor-pressure thermometer. International Journal of Thermophysics, 32.
https://doi.org/10.1007/s10765-011-1091-y
-
Hermier, Y., 2007. Realisation and study of a CO2 triple point thermometric cell. Revue Française de Métrologie, 10, 2007-2.
Kawamura, Y., Lee, H., & Park, S., 2020. Metrologia, 57, 015004.
https://doi.org/10.1088/1681-7575/ab451e
-
Liang, Y., Zhang, J. T., Feng, X. J., & Qiu, P., 2023. Realization of the triple point of carbon dioxide in a transportable cell using long-stem SPRTs. Metrologia, 60(1), 015006.
https://doi.org/10.1088/1681-7575/aca417
-
BIPM, 2021. The Consultative Committee for Thermometry, strategy document for rolling programme development from 2021 to 2031.
-
Span, R., & Wagner, W., 1996. A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 25(6), 1509–1596.
-
Kalemci, M., Ince, A., & Bonier, G., 2013. Investigation of thermal effects on melting curves of mercury. In Proceedings of the IMEKO World Congress, Vol. 1552, 227–231.
https://doi.org/10.1063/1.4819544
-
Kalemci, M., Arifovic, N., Bagçe, A., Aytekin, S. O., & Ince, A. T., 2015. Construction of home-made tin fixed-point cell at TUBITAK UME. International Journal of Thermophysics, 36, 1968–1979.
https://doi.org/10.1007/s10765-015-1944-x
-
Kalemci, M., Bagçe, A., Ince, A. T., & Arifovic, N., 2018. A new generation of open zinc freezing point cells at TUBITAK UME. International Journal of Thermophysics, 39, 102.
https://doi.org/10.1007/s10765-018-2423-y
-
Hill, K. D., 1994. An apparatus for realizing the triple point of mercury. Metrologia, 31(1), 39.
Kalemci, M., Ince, A., & Bonier, G., 2009. Realization of new mercury triple point cells at TUBITAK-UME. In Proceedings of the XIX IMEKO World Congress, Fundamental and Applied Metrology (. September 6−11, Lisbon, Portugal. pp. 1032–1036, ISBN 978-963-88410-0-1.