Research Article
BibTex RIS Cite

İçme Suyu Dağıtım Sistemlerinde Depo Sızıntı Yönetimi Bileşenlerinin Analitik Hiyerarşi Süreci (AHP) ve Bulanık AHP ile Değerlendirilmesi

Year 2025, Volume: 25 Issue: 6, 1416 - 1426

Abstract

Suyun temini ve dağıtımında çeşitli kademelerde sızıntılar meydana gelmektedir. Su idareleri sızıntıları azaltmak, bütçe, su ve enerji verimliliğini sağlamak amacıyla çalışmalar yapmaktadır. Bu çalışmada dağıtım sistemlerinde hizmet veren içme suyu depolarındaki sızıntıların yönetimi bileşenlerinin AHP ve Bulanık AHP yöntemleri ile değerlendirilmesi amaçlanmıştır. Depolarda sızıntı yönetimini kapsayan 4 ana başlık altında toplam 37 bileşen belirlenmiştir. Çalışmada bu ana başlıklar ve alt bileşenlerin depo sızıntı yönetimindeki etki düzeylerinin belirlenmesi ve daha etkin biçimde yönetilmesi amacıyla önceliklendirilmesi hedeflenmiştir. Karar probleminin çözümünde karmaşık yapıdaki problemlerde çok kriterli karar verme yöntemlerinin etkinliğini göstermek, kıyaslama ve sıralama yapabilmek amacıyla AHP ve Bulanık AHP yöntemleri kullanılmıştır. Depo sızıntı yönetim bileşenleri bu yöntemlerle analiz edilmiş, Depolarda Meydana Gelen Sızıntılar (V3), Depolarda Sızıntı Yönetimi ve Önlenmesi (S3) ve Fiziki Kayıp Performans Göstergelerinin İzlenmesi (P2) bileşenlerinin sistem için öncelikli olduğu görülmüştür. Kurulan modelde AHP ve Bulanık AHP ile hesaplanan ağırlık katsayıları, sistemi en çok etkileyen, yani sızıntı oluşumuna neden olan bileşenlerin değerlendirilmesi ve önceliklendirilmesinde önemli rol oynamaktadır. Yöntemlerin karar sürecine sayısal bir çözüm getirerek Su İdareleri için depo sızıntı yönetiminin kontrolünde öncelikli olarak iyileştirilmesi, müdahale edilmesi, bakım-onarımının sağlanması gereken bileşenleri belirlenmesinde ve İdarelerin stratejik plan oluşturmasında önemli ölçüde katkı sağlayacağı düşünülmektedir.

Project Number

TÜBİTAK 220M091

Thanks

Bu çalışma TÜBİTAK (Proje No: 220M091) tarafından desteklenmiştir.

References

  • Al-Omari, A. 2013. A Methodology for the Breakdown of NRW into Real and Administrative Losses. Water Resources Management, 27, 1913-1930. https://doi.org/10.1007/s11269-013-0262-y
  • AL-Washali, T., Sharma, S., Lupoja, R., AL-Nozaily, F., Haidera, M., & Kennedy, M. 2020. Assessment of water losses in distribution networks: Methods, applications, uncertainties, and implications in intermittent supply. Resources, Conservation and Recycling, 152, 104515. https://doi.org/10.1016/j.resconrec.2019.104515.
  • Bozkurt, C. 2022. Su Kayıp Yönetimi Ve Kontrolü İçin Optimizasyon Tabanlı En Uygun Strateji Modelinin Geliştirilmesi. İnönü Üniversitesi Fen Bilimleri Enstitüsü.
  • Büyüközkan, G., Kahraman, C., & Ruan, D. 2004. A fuzzy multi-criteria decision approach for software development strategy selection. International Journal of General Systems, 33(2–3), 259–280. https://doi.org/10.1080/03081070310001633581
  • Chang, D-Y. 1992. Extent analysis and synthetic decision, Optimization Techniques and Applications 1, 352.
  • Chang, D-Y. 1996. Applications of the extent analysis method on fuzzy AHP, European Journal ofOperational Research 95, 649–655.
  • Cheng, C. H. (1998). A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets and Systems, 95(3), 307–317. https://doi.org/10.1016/S0165-0114(96)00272-2
  • Cheng, C. H., & Mon, D. L. (1994). Evaluating weapon system by Analytical Hierarchy Process based on fuzzy scales. Fuzzy Sets and Systems, 63(1), 1–10. https://doi.org/10.1016/0165-0114(94)90140-6
  • Choi, Y. H., Choi, T., Yoo, D. G., & Lee, S. 2022. Development of an Evaluation Method for Deriving the Water Loss Reduction Factors of Water Distribution Systems: A Case Study in Korean Small and Medium Cities. Applied Sciences (Switzerland), 12, 24. https://doi.org/10.3390/app122412530
  • Dai, P. D. (2020). Optimal Pressure Management for Large-Scale Water Distribution Systems Using Smoothing Model, Journal of Science and Technology, 147, 034-039.
  • Darko, A., Chan, A. P. C., Ameyaw, E. E., Owusu, E. K., Pärn, E., & Edwards, D. J. 2019. Review of application of analytic hierarchy process (AHP) in construction. International Journal of Construction Management, 19 (5), 436–452. https://doi.org/10.1080/15623599.2018.1452098
  • Delgado-Galván, X., Pérez-García, R., Izquierdo, J., & Mora-Rodríguez, J. (2010). An analytic hierarchy process for assessing externalities in water leakage management. Mathematical and Computer Modelling, 52 (7–8), 1194–1202. https://doi.org/10.1016/j.mcm.2010.03.014
  • Farley, M., & Liemberger, R. 2005. Developing a non-revenue water reduction strategy: Planning and implementing the strategy. In Water Science and Technology: Water Supply, 5 (1), 41-50. https://doi.org/10.2166/ws.2005.0006
  • Farouk, A. M., Romali, N. S., Rahman, R. A., & Seman, M. A. 2021. Optimization Techniques for Rehabilitating Water Distribution Networks. IOP Conference Series: Earth and Environmental Science, 641(1). https://doi.org/10.1088/1755-1315/641/1/012019
  • Gonza, D. K., Tekleweld, F. A., Hishe, T. G., Shumey, E. E., & Birhane, B. S. 2021. Performance analysis of water meters for measuring domestic water consumption, the case of Dire Dawa, Ethiopia. International Journal of Energy and Water Resources, 5(4), 405–412. https://doi.org/10.1007/s42108-021-00130-8.
  • Göksu, A. 2008. Bulanık Analitik Hiyerarşik Proses Ve Üniversite Tercih Sıralamasında Uygulanması. Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü.
  • Grigg, N.S. Water Distribution Systems: Integrated Approaches for Effective Utility Management. Water 2024, 16, 524. https://doi.org/10.3390/ w16040524.
  • Gupta, A., & Kulat, K. D. 2018. A Selective Literature Review on Leak Management Techniques for Water Distribution System. Water Resources Management. https://doi.org/10.1007/s11269-018-1985-6
  • Hajkowicz, S., & Collins, K. 2007. A review of multiple criteria analysis for water resource planning and management. Water Resources Management, 21(9), 1553–1566. https://doi.org/10.1007/s11269-006-9112-5
  • Heo, E., Kim, J., & Boo, K. J. 2010. Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy AHP. Renewable and Sustainable Energy Reviews, 14(8), 2214–2220. https://doi.org/10.1016/j.rser.2010.01.020.
  • Hiroshi Sakai; Review of research on performance indicators for water utilities. AQUA - Water Infrastructure, Ecosystems and Society 1 February 2024; 73 (2): 167–182. https://doi.org/10.2166/aqua.2024.224
  • Kiavarz, M., Samadzadegan, F., & Noorollahi, Y. 2014. Geothermics Spatial analysis and multi-criteria decision making for regional-scale geothermal favorability map. Geothermics, 50, 189–201. https://doi.org/10.1016/j.geothermics.2013.09.004
  • Kılıç, S. 2023. Sürdürülebilir Su Ve Atık Su Yönetimi İçin En Uygun Strateji Modelinin Ve Performans Değerlendirme Sisteminin Geliştirilmesi. İnönü Üniversitesi Fen Bilimleri Enstitüsü.
  • Kilinç, Y., Özdemir, Ö., Orhan, C., & Firat, M. 2018. Evaluation of technical performance of pipes in water distribution systems by analytic hierarchy process. Sustainable Cities and Society, 42(March), 13–21. https://doi.org/10.1016/j.scs.2018.06.035
  • Kwong, C. K., & Bai, H. 2003. Determining the importance weights for the customer requirements in QFD using a fuzzy AHF with an extent analysis approach. IIE Transactions (Institute of Industrial Engineers), 35(7), 619–626. https://doi.org/10.1080/07408170304355
  • Laarhoven, P. J. M. Van, & W.Pedrycz. 1983. A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11(1–3), 229–241.
  • Lai, E., Lundie, S., & Ashbolt, N. J. 2008. Review of multi-criteria decision aid for integrated sustainability assessment of urban water systems. Urban Water Journal, 5(4), 315–327. https://doi.org/10.1080/15730620802041038
  • Liemberger, R., Brothers, K., Lambert, A., Mckenzie, R., Rizzo, A., & Waldron, T. 2007. Water Loss Performance Indicators. In Proceedings of IWA Specialised Conference Water Loss 23th-26th September (pp. 148-160).
  • Liou, T. S., & Wang, M. J. J. 1992. Ranking fuzzy numbers with integral value. Fuzzy Sets and Systems, 50(3), 247–255. https://doi.org/10.1016/0165-0114(92)90223-Q.
  • M Firat, C Bozkurt, A Ateş, S Yilmaz, Ö Özdemir. 2023. Development and implementation of a novel assessment system for water utilities in strategic water loss management. Journal of Pipeline Systems Engineering and Practice.
  • Saaty, T. L. 1990. How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. https://doi.org/10.1016/0377-2217(90)90057-I
  • Saaty, T. L. 2002. Decision making with the Analytic Hierarchy Process. Scientia Iranica, 9(3), 215–229. https://doi.org/10.1504/ijssci.2008.017590.
  • Sakai H., Satake M., Arai Y. & Takizawa S. 2020 Report cards for aging and maintenance assessment of water-supply infrastructure. Journal of Water Supply: Research and Technology – AQUA 69, 355–364. https://doi.org/10.2166/aqua.2020.112.
  • Şengül, Ü., Eren, M., & Shıraz, S. E. 2012. B ulanik ahp i̇le beledi̇yeleri̇n toplu taşima araç seçi̇mi̇. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, (40), 143–165.
  • Tabesh, M., Asadiyami Yekta, A. H., & Burrows, R. 2009. An integrated model to evaluate losses in water distribution systems. Water Resources Management. https://doi.org/10.1007/s11269-008-9284-2.
  • Tornyeviadzi, H. M., Neba, F. A., Mohammed, H., & Seidu, R. 2021. Nodal vulnerability assessment of water distribution networks: An integrated Fuzzy AHP-TOPSIS approach. International Journal of Critical Infrastructure Protection, 34, 100434. https://doi.org/10.1016/j.ijcip.2021.100434
  • Vaidya, O. S., & Kumar, S. 2006. Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29. https://doi.org/10.1016/j.ejor.2004.04.028
  • Zhu, K. 1999. A discussion on Extent Analysis Method and applications of fuzzy AHP, 116, 450–456.
  • Zyoud, S. H., Fuchs-Hanusch, D., Shaheen, H., Samhan, S., Rabi, A., & Al-Wadi, F. 2016. Utilizing analytic hierarchy process (AHP) for decision making in water loss management of intermittent water supply systems. Journal of Water Sanitation and Hygiene for Development, 6(4), 534–546. https://doi.org/10.2166/washdev.2016.123
  • Zyoud, S. H., Kaufmann, L. G., Shaheen, H., Samhan, S., & Fuchs-Hanusch, D. 2016. A framework for water loss management in developing countries under fuzzy environment: Integration of Fuzzy AHP with Fuzzy TOPSIS. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2016.05.016
  • Tshimbalanga, M. A. E. (2022). Real water loss within water distribution networks of the tshwane metropolitan city in south africa (Order No. 31715807). Available from ProQuest Dissertations & Theses Global. (3132876683). Retrieved from https://www.proquest.com/dissertations-theses/real-water-loss-within-distribution-networks/docview/3132876683/se-2.

Evaluation of Components of Tank Leakage Management in Drinking Water Distribution Systems Using Analytical Hierarchy Process (AHP) and Fuzzy AHP

Year 2025, Volume: 25 Issue: 6, 1416 - 1426

Abstract

Leakages occur at various stages in the supply and distribution of water. Water administrations are working to reduce leakages and ensure budget, water and energy efficiency. This study aims to evaluate the leakage management components in drinking water tanks serving in distribution systems with the AHP and fuzzy FAHP methods. A total of 37 components were determined under 4 main headings covering leakage management in tanks. The study aimed to determine the impact levels of these main headings and sub-components in tank leakage management and to prioritize them in order to manage them more effectively. AHP and FAHP methods were used to demonstrate the effectiveness of multi-criteria decision-making methods in complex structured problems in solving the decision problem, and to make comparisons and rankings. Tank leakage management components were analyzed with these methods, and it was seen that the Leaks Occurring in Tanks (V3), Leakage Management and Prevention in Tanks (S3) and Monitoring of Physical Loss Performance Indicators (P2) components were prioritized for the system. In the established model, the weight coefficients calculated with AHP and Fuzzy AHP play an important role in the evaluation and prioritization of the components that affect the system the most, that is, cause leakage. It is thought that the methods will contribute significantly to the determination of the components that need to be improved, intervened, maintained and repaired in the control of tank leakage management for Water Administrations by bringing a numerical solution to the decision-making process and to the establishment of strategic plans by the Administrations.

Project Number

TÜBİTAK 220M091

References

  • Al-Omari, A. 2013. A Methodology for the Breakdown of NRW into Real and Administrative Losses. Water Resources Management, 27, 1913-1930. https://doi.org/10.1007/s11269-013-0262-y
  • AL-Washali, T., Sharma, S., Lupoja, R., AL-Nozaily, F., Haidera, M., & Kennedy, M. 2020. Assessment of water losses in distribution networks: Methods, applications, uncertainties, and implications in intermittent supply. Resources, Conservation and Recycling, 152, 104515. https://doi.org/10.1016/j.resconrec.2019.104515.
  • Bozkurt, C. 2022. Su Kayıp Yönetimi Ve Kontrolü İçin Optimizasyon Tabanlı En Uygun Strateji Modelinin Geliştirilmesi. İnönü Üniversitesi Fen Bilimleri Enstitüsü.
  • Büyüközkan, G., Kahraman, C., & Ruan, D. 2004. A fuzzy multi-criteria decision approach for software development strategy selection. International Journal of General Systems, 33(2–3), 259–280. https://doi.org/10.1080/03081070310001633581
  • Chang, D-Y. 1992. Extent analysis and synthetic decision, Optimization Techniques and Applications 1, 352.
  • Chang, D-Y. 1996. Applications of the extent analysis method on fuzzy AHP, European Journal ofOperational Research 95, 649–655.
  • Cheng, C. H. (1998). A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets and Systems, 95(3), 307–317. https://doi.org/10.1016/S0165-0114(96)00272-2
  • Cheng, C. H., & Mon, D. L. (1994). Evaluating weapon system by Analytical Hierarchy Process based on fuzzy scales. Fuzzy Sets and Systems, 63(1), 1–10. https://doi.org/10.1016/0165-0114(94)90140-6
  • Choi, Y. H., Choi, T., Yoo, D. G., & Lee, S. 2022. Development of an Evaluation Method for Deriving the Water Loss Reduction Factors of Water Distribution Systems: A Case Study in Korean Small and Medium Cities. Applied Sciences (Switzerland), 12, 24. https://doi.org/10.3390/app122412530
  • Dai, P. D. (2020). Optimal Pressure Management for Large-Scale Water Distribution Systems Using Smoothing Model, Journal of Science and Technology, 147, 034-039.
  • Darko, A., Chan, A. P. C., Ameyaw, E. E., Owusu, E. K., Pärn, E., & Edwards, D. J. 2019. Review of application of analytic hierarchy process (AHP) in construction. International Journal of Construction Management, 19 (5), 436–452. https://doi.org/10.1080/15623599.2018.1452098
  • Delgado-Galván, X., Pérez-García, R., Izquierdo, J., & Mora-Rodríguez, J. (2010). An analytic hierarchy process for assessing externalities in water leakage management. Mathematical and Computer Modelling, 52 (7–8), 1194–1202. https://doi.org/10.1016/j.mcm.2010.03.014
  • Farley, M., & Liemberger, R. 2005. Developing a non-revenue water reduction strategy: Planning and implementing the strategy. In Water Science and Technology: Water Supply, 5 (1), 41-50. https://doi.org/10.2166/ws.2005.0006
  • Farouk, A. M., Romali, N. S., Rahman, R. A., & Seman, M. A. 2021. Optimization Techniques for Rehabilitating Water Distribution Networks. IOP Conference Series: Earth and Environmental Science, 641(1). https://doi.org/10.1088/1755-1315/641/1/012019
  • Gonza, D. K., Tekleweld, F. A., Hishe, T. G., Shumey, E. E., & Birhane, B. S. 2021. Performance analysis of water meters for measuring domestic water consumption, the case of Dire Dawa, Ethiopia. International Journal of Energy and Water Resources, 5(4), 405–412. https://doi.org/10.1007/s42108-021-00130-8.
  • Göksu, A. 2008. Bulanık Analitik Hiyerarşik Proses Ve Üniversite Tercih Sıralamasında Uygulanması. Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü.
  • Grigg, N.S. Water Distribution Systems: Integrated Approaches for Effective Utility Management. Water 2024, 16, 524. https://doi.org/10.3390/ w16040524.
  • Gupta, A., & Kulat, K. D. 2018. A Selective Literature Review on Leak Management Techniques for Water Distribution System. Water Resources Management. https://doi.org/10.1007/s11269-018-1985-6
  • Hajkowicz, S., & Collins, K. 2007. A review of multiple criteria analysis for water resource planning and management. Water Resources Management, 21(9), 1553–1566. https://doi.org/10.1007/s11269-006-9112-5
  • Heo, E., Kim, J., & Boo, K. J. 2010. Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy AHP. Renewable and Sustainable Energy Reviews, 14(8), 2214–2220. https://doi.org/10.1016/j.rser.2010.01.020.
  • Hiroshi Sakai; Review of research on performance indicators for water utilities. AQUA - Water Infrastructure, Ecosystems and Society 1 February 2024; 73 (2): 167–182. https://doi.org/10.2166/aqua.2024.224
  • Kiavarz, M., Samadzadegan, F., & Noorollahi, Y. 2014. Geothermics Spatial analysis and multi-criteria decision making for regional-scale geothermal favorability map. Geothermics, 50, 189–201. https://doi.org/10.1016/j.geothermics.2013.09.004
  • Kılıç, S. 2023. Sürdürülebilir Su Ve Atık Su Yönetimi İçin En Uygun Strateji Modelinin Ve Performans Değerlendirme Sisteminin Geliştirilmesi. İnönü Üniversitesi Fen Bilimleri Enstitüsü.
  • Kilinç, Y., Özdemir, Ö., Orhan, C., & Firat, M. 2018. Evaluation of technical performance of pipes in water distribution systems by analytic hierarchy process. Sustainable Cities and Society, 42(March), 13–21. https://doi.org/10.1016/j.scs.2018.06.035
  • Kwong, C. K., & Bai, H. 2003. Determining the importance weights for the customer requirements in QFD using a fuzzy AHF with an extent analysis approach. IIE Transactions (Institute of Industrial Engineers), 35(7), 619–626. https://doi.org/10.1080/07408170304355
  • Laarhoven, P. J. M. Van, & W.Pedrycz. 1983. A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11(1–3), 229–241.
  • Lai, E., Lundie, S., & Ashbolt, N. J. 2008. Review of multi-criteria decision aid for integrated sustainability assessment of urban water systems. Urban Water Journal, 5(4), 315–327. https://doi.org/10.1080/15730620802041038
  • Liemberger, R., Brothers, K., Lambert, A., Mckenzie, R., Rizzo, A., & Waldron, T. 2007. Water Loss Performance Indicators. In Proceedings of IWA Specialised Conference Water Loss 23th-26th September (pp. 148-160).
  • Liou, T. S., & Wang, M. J. J. 1992. Ranking fuzzy numbers with integral value. Fuzzy Sets and Systems, 50(3), 247–255. https://doi.org/10.1016/0165-0114(92)90223-Q.
  • M Firat, C Bozkurt, A Ateş, S Yilmaz, Ö Özdemir. 2023. Development and implementation of a novel assessment system for water utilities in strategic water loss management. Journal of Pipeline Systems Engineering and Practice.
  • Saaty, T. L. 1990. How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. https://doi.org/10.1016/0377-2217(90)90057-I
  • Saaty, T. L. 2002. Decision making with the Analytic Hierarchy Process. Scientia Iranica, 9(3), 215–229. https://doi.org/10.1504/ijssci.2008.017590.
  • Sakai H., Satake M., Arai Y. & Takizawa S. 2020 Report cards for aging and maintenance assessment of water-supply infrastructure. Journal of Water Supply: Research and Technology – AQUA 69, 355–364. https://doi.org/10.2166/aqua.2020.112.
  • Şengül, Ü., Eren, M., & Shıraz, S. E. 2012. B ulanik ahp i̇le beledi̇yeleri̇n toplu taşima araç seçi̇mi̇. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, (40), 143–165.
  • Tabesh, M., Asadiyami Yekta, A. H., & Burrows, R. 2009. An integrated model to evaluate losses in water distribution systems. Water Resources Management. https://doi.org/10.1007/s11269-008-9284-2.
  • Tornyeviadzi, H. M., Neba, F. A., Mohammed, H., & Seidu, R. 2021. Nodal vulnerability assessment of water distribution networks: An integrated Fuzzy AHP-TOPSIS approach. International Journal of Critical Infrastructure Protection, 34, 100434. https://doi.org/10.1016/j.ijcip.2021.100434
  • Vaidya, O. S., & Kumar, S. 2006. Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29. https://doi.org/10.1016/j.ejor.2004.04.028
  • Zhu, K. 1999. A discussion on Extent Analysis Method and applications of fuzzy AHP, 116, 450–456.
  • Zyoud, S. H., Fuchs-Hanusch, D., Shaheen, H., Samhan, S., Rabi, A., & Al-Wadi, F. 2016. Utilizing analytic hierarchy process (AHP) for decision making in water loss management of intermittent water supply systems. Journal of Water Sanitation and Hygiene for Development, 6(4), 534–546. https://doi.org/10.2166/washdev.2016.123
  • Zyoud, S. H., Kaufmann, L. G., Shaheen, H., Samhan, S., & Fuchs-Hanusch, D. 2016. A framework for water loss management in developing countries under fuzzy environment: Integration of Fuzzy AHP with Fuzzy TOPSIS. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2016.05.016
  • Tshimbalanga, M. A. E. (2022). Real water loss within water distribution networks of the tshwane metropolitan city in south africa (Order No. 31715807). Available from ProQuest Dissertations & Theses Global. (3132876683). Retrieved from https://www.proquest.com/dissertations-theses/real-water-loss-within-distribution-networks/docview/3132876683/se-2.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering (Other)
Journal Section Articles
Authors

Halil Eren 0000-0001-6071-6009

Cansu Bozkurt 0000-0002-0987-1297

Mahmut Fırat 0000-0002-8010-9289

Project Number TÜBİTAK 220M091
Early Pub Date November 13, 2025
Publication Date November 14, 2025
Submission Date October 15, 2024
Acceptance Date June 1, 2025
Published in Issue Year 2025 Volume: 25 Issue: 6

Cite

APA Eren, H., Bozkurt, C., & Fırat, M. (2025). İçme Suyu Dağıtım Sistemlerinde Depo Sızıntı Yönetimi Bileşenlerinin Analitik Hiyerarşi Süreci (AHP) ve Bulanık AHP ile Değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(6), 1416-1426.
AMA Eren H, Bozkurt C, Fırat M. İçme Suyu Dağıtım Sistemlerinde Depo Sızıntı Yönetimi Bileşenlerinin Analitik Hiyerarşi Süreci (AHP) ve Bulanık AHP ile Değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. November 2025;25(6):1416-1426.
Chicago Eren, Halil, Cansu Bozkurt, and Mahmut Fırat. “İçme Suyu Dağıtım Sistemlerinde Depo Sızıntı Yönetimi Bileşenlerinin Analitik Hiyerarşi Süreci (AHP) Ve Bulanık AHP Ile Değerlendirilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, no. 6 (November 2025): 1416-26.
EndNote Eren H, Bozkurt C, Fırat M (November 1, 2025) İçme Suyu Dağıtım Sistemlerinde Depo Sızıntı Yönetimi Bileşenlerinin Analitik Hiyerarşi Süreci (AHP) ve Bulanık AHP ile Değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 6 1416–1426.
IEEE H. Eren, C. Bozkurt, and M. Fırat, “İçme Suyu Dağıtım Sistemlerinde Depo Sızıntı Yönetimi Bileşenlerinin Analitik Hiyerarşi Süreci (AHP) ve Bulanık AHP ile Değerlendirilmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 6, pp. 1416–1426, 2025.
ISNAD Eren, Halil et al. “İçme Suyu Dağıtım Sistemlerinde Depo Sızıntı Yönetimi Bileşenlerinin Analitik Hiyerarşi Süreci (AHP) Ve Bulanık AHP Ile Değerlendirilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/6 (November2025), 1416-1426.
JAMA Eren H, Bozkurt C, Fırat M. İçme Suyu Dağıtım Sistemlerinde Depo Sızıntı Yönetimi Bileşenlerinin Analitik Hiyerarşi Süreci (AHP) ve Bulanık AHP ile Değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:1416–1426.
MLA Eren, Halil et al. “İçme Suyu Dağıtım Sistemlerinde Depo Sızıntı Yönetimi Bileşenlerinin Analitik Hiyerarşi Süreci (AHP) Ve Bulanık AHP Ile Değerlendirilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 6, 2025, pp. 1416-2.
Vancouver Eren H, Bozkurt C, Fırat M. İçme Suyu Dağıtım Sistemlerinde Depo Sızıntı Yönetimi Bileşenlerinin Analitik Hiyerarşi Süreci (AHP) ve Bulanık AHP ile Değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(6):1416-2.