Research Article
BibTex RIS Cite

Ihlamurdan Antioksidan Bileşiklerin Homojenizatör Destekli Ekstraksiyonunun Modellenmesi ve Optimize Edilmesi ve HPLC-PDA ile Karakterizasyonu

Year 2025, Volume: 25 Issue: 6, 1407 - 1415

Abstract

Bu çalışmada, ıhlamurdan elde edilen antioksidanların homojenizatör destekli ekstraksiyonunun (HAE) modellenmesi ve optimizasyonu, yüzey merkezli kompozit tasarım çerçevesinde yanıt yüzey metodolojisi (RSM) kullanılarak gerçekleştirilmiştir. Deneysel faktörler homojenizasyon hızı, ekstraksiyon süresi, çözücü-katı oranı ve çözücü konsantrasyonudur. HAE işlemi, ıhlamur özütünün CUPric İndirgeyici Antioksidan Kapasitesi (CUPRAC) kullanılarak belirlenen toplam antioksidan kapasitesini (TAC) maksimize etmek için optimize edilmiştir. TAC yanıtları için oluşturulan modeller, bağımlı yanıt ile bağımsız parametreler arasında anlamlı bir ilişki (p < 0,0001) göstermiştir. Su oranı HAE işleminde en anlamlı operasyonel faktör olarak belirlenirken, çözücü-katı oranı en az anlamlı parametre olarak belirlenmiştir. Modelden elde edilen deneysel veriler, model tarafından öngörülen sonuçlarla güçlü bir uyum göstermiştir. Bu, modelin uygunluğunu ve optimizasyondaki başarısını göstermektedir. HAE'nin optimum çalışma koşulları altında, 0,912 mmol TR/g-kurutulmuş numune TAC olarak elde edildi. TAC değerlerine dayanarak, HAE yönteminin aynı deneysel koşullar altında geleneksel ısıyla ekstraksiyon yönteminden çok daha verimli olduğu bulundu. Ihlamur ekstresinin bireysel antioksidanları, bir C18 kolonunda gradyan elüsyon yöntemi ile HPLC kullanılarak tanımlandı. HPLC-PDA analizleri kullanılarak, ıhlamur ekstresinde 12 antioksidan tanımlandı. Sonuç olarak, modellenen metodoloji, doğal ürün endüstrisinde ıhlamurdan antioksidanların ve fenoliklerin ekstraksiyonu için uygulanabilir bir yöntem olarak önerildi.

References

  • Akyüz, E., 2022. Optimizing pulsed ultrasound-assisted extraction of antioxidants from linden and quantification by HPLC–PDA. Food Analytical Methods, 15(12), 3311-3321. https://doi.org/10.1007/s12161-022-02388-y.
  • Apak, R., Güçlü, K., Özyürek, M. and Karademir, S. E., 2004. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981. https://doi.org/10.1021/jf048741x.
  • Behaiyn, S., Ebrahimi, S. N., Rahimi, M. and Behboudi, H., 2023. Response surface methodology optimization extraction of aloins from Aloe vera leaf skin by ultrasonic horn sonicator and cytotoxicity evaluation. Industrial Crops and Products, 202, 117043. https://doi.org/10.1016/j.indcrop.2023.117043.
  • Chemat, F., Abert-Vian, M. and Cravotto, G., 2017. Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences, 18(3), 575. https://doi.org/10.3390/ijms13078615.
  • Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S. and Abert-Vian, M., 2017. Ultrasound-assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. https://doi.org/10.1016/j.ultsonch.2016.06.035.
  • Demir, Ö., Gök, A. and Kırbaşlar, Ş., 2024. The Extraction of Antioxidant Compounds from Coriandrum sativum Seeds by Using Green Solvents. Journal of the Turkish Chemical Society Section A: Chemistry, 11(3), 1329-1338. https://doi.org/10.18596/jotcsa.1421371.
  • Dorman, H. J., Peltoketo, A., Hiltunen, R. and Tikkanen, M. J., 2003. Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food Chemistry, 83(2), 255-262. https://doi.org/10.1016/S0308-8146(03)00088-8.
  • Ghitescu, R. E., Volf, I., Carausu, C., Bühlmann, A. M., Gilca, I. A., & Popa, V. I., 2015. Optimization of ultrasound-assisted extraction of polyphenols from spruce wood bark. Ultrasonics sonochemistry, 22, 535-541. https://doi.org/10.1016/j.ultsonch.2014.07.013.
  • Gök, A., Uyar, H. and Demir, Ö., 2024. Pomegranate seed oil extraction by cold pressing, microwave and ultrasound treatments. Biomass Conversion and Biorefinery, 1-12. https://doi.org/10.1007/s13399-024-05611-4.
  • Nabavi, S. F., Samec, D., Tomczyk, M., et al. 2020. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnology Advances, 38, 107316. https://doi.org/10.1016/j.biotechadv.2018.11.005.
  • Pereira, G. A., Molina, G., Arruda, H. S. and Pastore, G. M., 2017. Optimizing the homogenizer‐assisted extraction (HAE) of total phenolic compounds from banana peel. Journal of Food Process Engineering, 40(3), e12438. https://doi.org/10.1111/jfpe.12438.
  • Pourmorad, F., Hosseinimehr, S. J. and Shahabimajd, N., 2006. Antioxidant activity, phenol, and flavonoid contents of some selected Iranian medicinal plants. African Journal of Biotechnology, 5(11), 1142-1145. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3.
  • Roby, M. H. H., Sarhan, M. A., Selim, K. A. H. and Khalel, K. I., 2013. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Industrial Crops and Products, 43, 827-831. https://doi.org/10.1016/j.indcrop.2012.08.029.
  • Rombaut, N., Tixier, A. S., Bily, A. and Chemat, F. 2014. Green extraction processes of natural products as tools for biorefinery. Biofuels, Bioproducts and Biorefining, 8(4), 530–544. https://doi.org/10.1002/bbb.1486.
  • Sanchez-Moreno, C., Larrauri, JA. and Saura-Calixto, FA. 1998. A procedure to measure the antiradical efciency of polyphenols. Journal of the Science of Food and Agriculture, 76, 270–276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9.
  • Singleton, V. L., Orthofer, R. and Lamuela-Raventós, R. M., 1999. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology, Vol. 299, pp. 152-178, Academic press. https://doi.org/10.1016/S0076-6879(99)99017-1.
  • Stadler, A., Pichler, S., Horeis, G. and Kappe, CO., 2002. Microwave-enhanced reactions under open and closed vessel conditions. A case study. Tetrahedron, 58(16), 3177-3183. https://doi.org/10.1016/S0040-4020(02)00270-3.
  • Turkmen, N., Velioglu, Y. S., Sari, F. and Polat, G., 2007. Effect of extraction conditions on measured total polyphenol contents and antioxidant and antibacterial activities of black tea. Molecules, 12(3), 484-496. https://doi.org/10.3390/12030484.

Modeling and Optimizing Homogenizator-Assisted Extraction of Antioxidant Compounds from Linden and Characterization by HPLC-PDA

Year 2025, Volume: 25 Issue: 6, 1407 - 1415

Abstract

In this study, the modeling and optimization of homogenizer-assisted extraction (HAE) of antioxidants from linden were carried out using response surface methodology (RSM) within the framework of a face-centered composite design. Experimental factors included homogenization speed, extraction time, solvent-to-solid ratio, and solvent concentration. The HAE process was optimized to maximize the total antioxidant capacity (TAC) which determined by using CUPric Reducing Antioxidant Capacity (CUPRAC) of the linden extract. The models created for the TAC responses demonstrated a significant relationship (p < 0.0001) between the dependent response and the independent parameters. Water ratio was identified as the most significant operational factor in the HAE process, while solvent-to-solid ratio was determined to be the least significant parameter. The experimental data obtained from the model showed strong agreement with the results predicted by the model. This indicates the model's suitability and success in optimization. Under the optimum operational conditions of HAE, 0.912 mmol TR/g-dried sample was achieved as TAC. Based on the TAC values, the HAE method was found to be much more efficient than the traditional heat extraction method under the same experimental conditions. The individual antioxidants of the linden extract were identified using HPLC on a C18 column with a gradient elution method. Using HPLC–PDA analyses, 12 antioxidans were identified in the linden extract. As a result, the modeled methodology is proposed as an applicable method for the extraction of antioxidants and phenolics from linden in the natural product industry.

References

  • Akyüz, E., 2022. Optimizing pulsed ultrasound-assisted extraction of antioxidants from linden and quantification by HPLC–PDA. Food Analytical Methods, 15(12), 3311-3321. https://doi.org/10.1007/s12161-022-02388-y.
  • Apak, R., Güçlü, K., Özyürek, M. and Karademir, S. E., 2004. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981. https://doi.org/10.1021/jf048741x.
  • Behaiyn, S., Ebrahimi, S. N., Rahimi, M. and Behboudi, H., 2023. Response surface methodology optimization extraction of aloins from Aloe vera leaf skin by ultrasonic horn sonicator and cytotoxicity evaluation. Industrial Crops and Products, 202, 117043. https://doi.org/10.1016/j.indcrop.2023.117043.
  • Chemat, F., Abert-Vian, M. and Cravotto, G., 2017. Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences, 18(3), 575. https://doi.org/10.3390/ijms13078615.
  • Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S. and Abert-Vian, M., 2017. Ultrasound-assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. https://doi.org/10.1016/j.ultsonch.2016.06.035.
  • Demir, Ö., Gök, A. and Kırbaşlar, Ş., 2024. The Extraction of Antioxidant Compounds from Coriandrum sativum Seeds by Using Green Solvents. Journal of the Turkish Chemical Society Section A: Chemistry, 11(3), 1329-1338. https://doi.org/10.18596/jotcsa.1421371.
  • Dorman, H. J., Peltoketo, A., Hiltunen, R. and Tikkanen, M. J., 2003. Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food Chemistry, 83(2), 255-262. https://doi.org/10.1016/S0308-8146(03)00088-8.
  • Ghitescu, R. E., Volf, I., Carausu, C., Bühlmann, A. M., Gilca, I. A., & Popa, V. I., 2015. Optimization of ultrasound-assisted extraction of polyphenols from spruce wood bark. Ultrasonics sonochemistry, 22, 535-541. https://doi.org/10.1016/j.ultsonch.2014.07.013.
  • Gök, A., Uyar, H. and Demir, Ö., 2024. Pomegranate seed oil extraction by cold pressing, microwave and ultrasound treatments. Biomass Conversion and Biorefinery, 1-12. https://doi.org/10.1007/s13399-024-05611-4.
  • Nabavi, S. F., Samec, D., Tomczyk, M., et al. 2020. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnology Advances, 38, 107316. https://doi.org/10.1016/j.biotechadv.2018.11.005.
  • Pereira, G. A., Molina, G., Arruda, H. S. and Pastore, G. M., 2017. Optimizing the homogenizer‐assisted extraction (HAE) of total phenolic compounds from banana peel. Journal of Food Process Engineering, 40(3), e12438. https://doi.org/10.1111/jfpe.12438.
  • Pourmorad, F., Hosseinimehr, S. J. and Shahabimajd, N., 2006. Antioxidant activity, phenol, and flavonoid contents of some selected Iranian medicinal plants. African Journal of Biotechnology, 5(11), 1142-1145. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3.
  • Roby, M. H. H., Sarhan, M. A., Selim, K. A. H. and Khalel, K. I., 2013. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Industrial Crops and Products, 43, 827-831. https://doi.org/10.1016/j.indcrop.2012.08.029.
  • Rombaut, N., Tixier, A. S., Bily, A. and Chemat, F. 2014. Green extraction processes of natural products as tools for biorefinery. Biofuels, Bioproducts and Biorefining, 8(4), 530–544. https://doi.org/10.1002/bbb.1486.
  • Sanchez-Moreno, C., Larrauri, JA. and Saura-Calixto, FA. 1998. A procedure to measure the antiradical efciency of polyphenols. Journal of the Science of Food and Agriculture, 76, 270–276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9.
  • Singleton, V. L., Orthofer, R. and Lamuela-Raventós, R. M., 1999. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology, Vol. 299, pp. 152-178, Academic press. https://doi.org/10.1016/S0076-6879(99)99017-1.
  • Stadler, A., Pichler, S., Horeis, G. and Kappe, CO., 2002. Microwave-enhanced reactions under open and closed vessel conditions. A case study. Tetrahedron, 58(16), 3177-3183. https://doi.org/10.1016/S0040-4020(02)00270-3.
  • Turkmen, N., Velioglu, Y. S., Sari, F. and Polat, G., 2007. Effect of extraction conditions on measured total polyphenol contents and antioxidant and antibacterial activities of black tea. Molecules, 12(3), 484-496. https://doi.org/10.3390/12030484.
There are 18 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Furkan Burak Şen 0000-0001-6857-392X

Early Pub Date November 13, 2025
Publication Date November 14, 2025
Submission Date January 10, 2025
Acceptance Date June 14, 2025
Published in Issue Year 2025 Volume: 25 Issue: 6

Cite

APA Şen, F. B. (2025). Modeling and Optimizing Homogenizator-Assisted Extraction of Antioxidant Compounds from Linden and Characterization by HPLC-PDA. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(6), 1407-1415.
AMA Şen FB. Modeling and Optimizing Homogenizator-Assisted Extraction of Antioxidant Compounds from Linden and Characterization by HPLC-PDA. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. November 2025;25(6):1407-1415.
Chicago Şen, Furkan Burak. “Modeling and Optimizing Homogenizator-Assisted Extraction of Antioxidant Compounds from Linden and Characterization by HPLC-PDA”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, no. 6 (November 2025): 1407-15.
EndNote Şen FB (November 1, 2025) Modeling and Optimizing Homogenizator-Assisted Extraction of Antioxidant Compounds from Linden and Characterization by HPLC-PDA. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 6 1407–1415.
IEEE F. B. Şen, “Modeling and Optimizing Homogenizator-Assisted Extraction of Antioxidant Compounds from Linden and Characterization by HPLC-PDA”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 6, pp. 1407–1415, 2025.
ISNAD Şen, Furkan Burak. “Modeling and Optimizing Homogenizator-Assisted Extraction of Antioxidant Compounds from Linden and Characterization by HPLC-PDA”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/6 (November2025), 1407-1415.
JAMA Şen FB. Modeling and Optimizing Homogenizator-Assisted Extraction of Antioxidant Compounds from Linden and Characterization by HPLC-PDA. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:1407–1415.
MLA Şen, Furkan Burak. “Modeling and Optimizing Homogenizator-Assisted Extraction of Antioxidant Compounds from Linden and Characterization by HPLC-PDA”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 6, 2025, pp. 1407-15.
Vancouver Şen FB. Modeling and Optimizing Homogenizator-Assisted Extraction of Antioxidant Compounds from Linden and Characterization by HPLC-PDA. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(6):1407-15.