Effect of Titanium Dioxide Nanoparticle Dose and Photoperiod on Oxidative Stress and Growth of Chlorella vulgaris Microalgae
Year 2025,
Volume: 25 Issue: 6, 1261 - 1271
Nazire Pınar Tanattı
,
Meryem Aksu
,
Gamze Katircioğlu Sinmaz
,
Büşra Erden
,
Ahsen Akbulut Uludağ
,
Füsun Boysan
,
İsmail Ayhan Şengil
Abstract
In this study, the effects of TiO2 nanoparticles on various biochemical and physiological growth of Chlorella vulgaris microalgae were investigated. The effects of different n.TiO2 concentrations (2.5, 5, 10, 25, 50, 75 mg/L) and different photoperiods (6L:1DK, 12L:12D, 18L:6D and 24L:0D) on SOD and APX antioxidant enzyme activities, MDA and H2O2 amounts, Chl-a and Chl-b pigments, TSS and lipid were evaluated. While an increase in SOD and MDA amounts was observed in the control group at high n.TiO2 doses, a decrease in APOD and H2O2 amounts was observed. It was determined that oxidative stress occurred in C. ulgari microalgae cells exposed to high nanoparticle concentrations. Chl-a, Chl-b and TSS parameters varied depending on the n.TiO2 dose and increased between 10 and 50 mg/L n.TiO2 doses. The change in lipid amount was found to decrease at low n.TiO2 doses. It was observed that oxidative stress increased at different photoperiods, while toxic effects were partially reduced at 12L:12D photoperiod. Changes in MDA and H2O2 amounts were determined at 12L:12D and 18L:6D photoperiods. Significant changes in chlorophyll pigments, TSS and lipid amounts compared to the control group were observed as significant increases at 12L:12D and 24L:0D photoperiods. This study contributes to the understanding of the complex interactions between the metabolic processes of C. vulgaris at different n.TiO2 particle doses and different photoperiods, and to the understanding of microalgae responses in nanoparticle-based environments and their potential applications in sustainable biotechnology.
Project Number
SUBÜ BAPK- 019-2020
References
-
Ahn, H.J., Ahn, Y., Kurade, M.B., Patil, S.M., Ha, G.S., Bankole, P.O., Khan, M.A., Chang, S.W., Abdellattif, M.H., Yadav, K.K. ve Jeon, B.H., 2022. The comprehensive effects of aluminum oxide nanoparticles on the physiology of freshwater microalga Scenedesmus obliquus and it’s phycoremediation performance for the removal of sulfacetamide. Environmental Research, 215, 114314.
https://doi.org/10.1016/J.ENVRES.2022.114314
-
Aksu, M., Has, M., Tanattı, N.P., Erden, B., Sınmaz, G. K., Boysan, F. ve Şengil, A., 2022. Assessment of photocatalytic n-TiO2 /UV and n-TiO2 /H2 O2 /UV methods to treat DB 86, RY 145 and AV 90 dye mix containing wastewater. Desalination and Water Treatment, 266, 226–235.
https://doi.org/10.5004/DWT.2022.28656
-
Angelini, F., Bellini, E., Marchetti, A., Salvatori, G., Villano, M., Pontiggia, D. ve Ferrari, S., 2024. Efficient utilization of monosaccharides from agri-food byproducts supports Chlorella vulgaris biomass production under mixotrophic conditions. Algal Research, 77, 103358.
https://doi.org/10.1016/J.ALGAL.2023.103358
-
APHA, 2017. Standard Methods for the Examination of Water and Wastewater. Standard Methods, 541.
https://doi.org/ISBN 9780875532356
-
Barari, F., Gabrabad, M.E. ve Bonyadi, Z., 2024. Recent progress on the toxic effects of microplastics on Chlorella sp. in aquatic environments, Heliyon, 10,32881.
https://doi.org/10.1016/j.heliyon.2024.e32881
-
Barbero, F., Mayall, C., Drobne, D., Saiz-Poseu, J., Bastús, N. G. ve Puntes, V., 2021. Formation and evolution of the nanoparticle environmental corona: The case of Au and humic acid. Science of The Total Environment, 768, 144792. https://doi.org/10.1016/J.SCITOTENV.2020.144792
-
Beyer, W.F. ve Fridovich, I., 1987. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559–566.
https://doi.org/10.1016/0003-2697(87)90489-1
-
Canli, E. G. ve Canli, M., 2020. Effects of aluminum, copper and titanium nanoparticles on the liver antioxidant enzymes of the Nile fish (Oreochromis niloticus). Energy Reports, 6, 62–67.
https://doi.org/10.1016/J.EGYR.2020.10.047
-
Chen, L., Zhou, L., Liu, Y., Deng, S., Wu, H. ve Wang, G., 2012. Toxicological effects of nanometer titanium dioxide (nano-TiO 2) on Chlamydomonas reinhardtii. Ecotoxicology and Environmental Safety, 84, 155–162.
https://doi.org/10.1016/j.ecoenv.2012.07.019
-
Chen, W., Liu, J., Chu, G., Wang, Q., Zhang, Y., Gao, C. ve Gao, M.,2023. Comparative evaluation of four Chlorella species treating mariculture wastewater under different photoperiods: Nitrogen removal performance, enzyme activity, and antioxidant response. Bioresource Technology, 386 (2023) 129511.
https://doi.org/10.1016/j.biortech.2023.129511
-
Dalai, S., Pakrashi, S., Bhuvaneshwari, M., Iswarya, V., Chandrasekaran, N. ve Mukherjee, A., 2014. Toxic effect of Cr(VI) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae. Aquatic Toxicology, 146, 28–37.
https://doi.org/10.1016/j.aquatox.2013.10.029
-
Deng, X.Y., Cheng, J., Hu, X.L., Wang, L., Li, D. ve Gao, K., 2017. Biological effects of TiO2 and CeO2 nanoparticles on the growth, photosynthetic activity, and cellular components of a marine diatom Phaeodactylum tricornutum. Science of the Total Environment, 575, 87–96.
https://doi.org/10.1016/j.scitotenv.2016.10.003
-
Federici, G., Shaw, B. J. ve Handy, R.D., 2007, Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquatic Toxicology, 84 (4), 415–430.
-
Gao, K., Xue, C., Yang, M., Li, L., Qian, P., Gao, Z., Gao, Z. ve Deng, X., Optimization of light intensity and photoperiod for growing Chlorella sorokiniana on cooking cocoon wastewater in a bubble-column bioreactor. Algal Research, 62,102612.
https://doi.org/10.1016/j.algal.2021.102612
-
Gauthier, M.R., Senhorinho, G.N.A. ve Scott, J.A., 2020. Microalgae under environmental stress as a source of antioxidants. Algal Research, 52, 102104.
-
Gong, N., Shao, K., Che, C. ve Sun, Y., 2019. Stability of nickel oxide nanoparticles and its influence on toxicity to marine algae Chlorella vulgaris. Marine Pollution Bulletin, 149,110532.
https://doi.org/10.1016/j.marpolbul.2019.110532
-
Gunawan, C., Sirimanoonphan, A., Teoh, W.Y., Marquis, C.P. ve Amal, R., 2013. Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii. Journal of Hazardous Materials, 260, 984–992.
https://doi.org/10.1016/J.JHAZMAT.2013.06.067
-
Hasanuzzaman, M., Bhuyan, M.H.M.B., Parvin, K., Bhuiyan, T.F., Anee, T.I., Nahar, K., Hossen, M.S., Zulfiqar, F., Alam, M.M. ve Fujita, M., 2020. Regulation of ROS metabolism in plants under environmental stress: a review of recent experimental evidence. International Journal of Molecular Science, 21 (22), 8695.
-
Hartmann, N.B., Von der Kammer, F., Hofmann, T., Baalousha, M., Ottofuelling, S. ve Baun, A. 2010. Algal testing of titanium dioxide nanoparticles – testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology, 269 (2–3), 190–197.
-
He, Q., Yang, H., Wu, L. ve Hu, C., 2015. Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresource Technology, 191, 219–228.
-
Hund-Rinke, K. ve Simon, M., 2006. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environmental Science and Pollution Research, 13 (4), 225–232.
-
Iannelli, M.A., Bellini, A., Venditti, I., Casentini, B., Battocchio, C., Scalici, M.ve Ceschin, S., 2022. Differential phytotoxic effect of silver nitrate (AgNO3) and bifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) on Lemna plants (duckweeds). Aquatic Toxicology, 250, 106260.
https://doi.org/10.1016/j.aquatox.2022.106260
-
Kalitsov, A., Zermatten, P.J., Bonell, F., Mitra, A., Mohapatra, J. ve Aslam, M., 2024. Magnetic and electronic properties of anisotropic magnetite nanoparticles. Materials Research Express, 11(2), 022002.
https://doi.org/10.1088/2053-1591/AD2A84
-
Katırcıoğlu Sınmaz, G., Erden, B. Ve Şengil, İ.A,. 2023. Cultivation of Chlorella vulgaris in alkaline condition for biodiesel feedstock after biological treatment of poultry slaughterhouse wastewater. International Journal of Environmental Science and Technology, 20(3), 3237–3246.
https://doi.org/10.1007/s13762-022-04137-4
-
Li, F., Liang, Z., Zheng, X., Zhao, W., Wu, M. ve Wang, Z., 2015. Toxicity of nano-TiO2on algae and the site of reactive oxygen speciesproduction. Aquatic Toxicology, 158, 1–13.
http://dx.doi.org/10.1016/j.aquatox.2014.10.014
-
Li, J., a, Sun, Z.Z., Chen, Y.P. ve Jing Wang, J., 2024. Behavior and toxicity of silver nanoparticles to Chlorella vulgaris: A new perspective based on surface charges. Journal of Environmental Chemical Engineering, 12, 111673.
https://doi.org/10.1016/j.jece.2023.111673
-
Liu, S., Han, J., Ma, X., Zhu, X., Qu, H., Xin, G. ve Huang, X., 2024.Repeated release of cerium oxide nanoparticles altered algal responses: Growth, photosynthesis, and photosynthetic gene expression. Eco-Environment & Health, 3, 290-299.
https://doi.org/10.1016/j.eehl.2024.04.002
-
Liu, X., Wang, X., Zhang, F., Yao, X., Qiao, Z., Deng, J., Jiao, Q., Gong, L. ve Jiang, X., 2022. Toxic effects of fludioxonil on the growth, photosynthetic activity, oxidative stress, cell morphology, apoptosis, and metabolism of Chlorella vulgaris. Science of The Total Environment, 838, 156069.
https://doi.org/10.1016/J.SCITOTENV.2022.156069
-
Mahana, A., Guliy, O.I. ve Mehta, S.K., 2021. Accumulation and cellular toxicity of engineered metallic nanoparticle in freshwater microalgae: Current status and future challenges. Ecotoxicology and Environmental Safety, 208, 111662,
https://doi.org/10.1016/j.ecoenv.2020.111662
-
Malik, S., Muhammad, K. ve Waheed, Y., 2023. Nanotechnology: A Revolution in Modern Industry. Molecules 2023, Vol. 28, Page 661, 28(2), 661.
https://doi.org/10.3390/MOLECULES28020661
-
Markou, G. ve Nerantzis, E., 2013. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnology Advances, 31(8), 1532–1542.
https://doi.org/10.1016/j.biotechadv.2013.07.011
-
Matouke, M.M., Elewa, D.T. ve Abdullahi, K., 2018. Binary effect of titanium dioxide nanoparticles (nTiO2) and phosphorus on microalgae (Chlorella ‘Ellipsoides Gerneck, 1907). Aquatic Toxicology, 198, 40–48.
https://doi.org/10.1016/j.aquatox.2018.02.009
-
Narayanan, M., Srinivasan, S., Gnanasekaran, C., Ramachandran, G., Chelliah, C.K., Rajivgandhi, G., Maruthupandy, M., Quero, F., Li W.J., Hayder, G., Khaled, J.M., Arunachalam, A. Ve Manoharan, N., 2024. Synthesis and characterization of marine seagrass (Cymodocea serrulata) mediated titanium dioxide nanoparticles for antibacterial, antibiofilm and antioxidant properties. Microbial Pathogenesis, 189, 106595,
https://doi.org/10.1016/j.micpath.2024.106595
-
Narayanan, M., Rajagopal, D.B., Krishnamoorthi, V. Gnanasekaran, C., Palanisamy, B., Manoharan, N., Ramachandran, G., Rajivgandhi, G., Bhaviripudi, V.R. ve Quero, F., 2025. Synthesis of TiO2 nanoparticles using endophytic Streptomyces zaomyceticus MNDV: Characterization and evaluation of antibacterial, antioxidant, antidiabetic and photocatalytic properties. Inorganic Chemistry Communications, 171, 113560.
https://doi.org/10.1016/j.inoche.2024.113560
-
Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A.J., Quigg, A., Santschi, P.H. ve Sigg, L., 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17 (5), 372–386.
-
Noori, A., Hasanuzzaman, M., Roychowdhury, R., Sarraf, M., Afzal, S., Das, S. ve Rastogi, A., 2024. Silver nanoparticles in plant health: Physiological response to phytotoxicity and oxidative stress. Plant Physiology and Biochemistry, 209, 108538.
https://doi.org/10.1016/J.PLAPHY.2024.108538
-
Nurkiewicz, T.R., Porter, D.W., Hubbs, A.F., Cumpston, J.L., Chen, B.T., Frazer, D.G. ve Castranova,V., 2008. Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Particle and Fibre Toxicology, 5, 1–12.
https://doi.org/10.1186/1743-8977-5-1
-
Porra, R.J., 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research, 73(1), 149–156.
https://doi.org/10.1023/A:1020470224740
-
Rezayian, M., Niknam, V. ve Ebrahimzadeh, H., 2019. Oxidative damage and antioxidative system in algae. Toxicology Reports, 6, 1309–1313.
https://doi.org/10.1016/J.TOXREP.2019.10.001
-
Sachdev, S. ve Ahmad, S., 2021. Role of nanomaterials in regulating oxidative stress in plants. In Nanobiotechnology: Mitigation of Abiotic Stress in Plants (pp. 305–326). Springer International Publishing.
https://doi.org/10.1007/978-3-030-73606-4_13
-
Service, R.F., 2005. Calls rise for more research on toxicology of nanomaterials. Science, 310 (5754), 1609.
https://doi.org/10.1126/science.310.5754.1609
-
Sezer, M., Tanattı, N.P. ve İ.A.,c, Interaction of TiO2 nanoparticles with the C. vulgaris: oxidative stress, lipid peroxidation and lipid amount. Water Science & Technology, 86 - 8, 2020
https://doi.org/10.2166/wst.2022.335
-
Shi, H., Magaye, R., Castranova, V. ve Zhao, J. 2013. Titanium dioxide nanoparticles: a review of current toxicological data. Particle and FibreToxicology, 10 (1), 15.
-
Simeonidis, K. ve Mourdikoudis, S., 2023. Nanoparticles as Sustainable Environmental Remediation Agents. In Nanoparticles as Sustainable Environmental Remediation Agents.
https://doi.org/10.1039/9781837670215
-
Sizochenko, N., Mikolajczyk, A., Syzochenko, M., Puzyn, T. ve Leszczynski, J., 2021. Zeta potentials (ζ) of metal oxide nanoparticles: A meta-analysis of experimental data and a predictive neural networks modeling. NanoImpact, 22, 100317.
https://doi.org/10.1016/J.IMPACT.2021.100317
-
Tekbaba, A., Özpınar, S.Ç., Tunca, H., Sevindik, T.O., Doğru, A., Günsel, A., Bilgiçli, A.T. ve Yarasir, M.N,. 2021. Synthesis, characterization and investigation of algal oxidative effects of water-soluble copper phthalocyanine containing sulfonate groups. Journal of Biological Inorganic Chemistry, 26(2–3), 355–365.
https://doi.org/10.1007/s00775-021-01860-0
-
Tunca, H., Dogru, A., Kockar, F., Onem, B. ve Sevindik, T.O., 2020. Evaluation of Azadirachtin on Arthrospira plantensis Gomont growth parameters and antioxidant enzymes. Annales de Limnologie - International Journal of Limnology, 56, 8.
https://doi.org/10.1051/LIMN/2020008
-
Türkmen, E.U., Arslan, P., Erkoç, F., Günal, A. Ç. ve Duran, H., 2024. The cerium oxide nanoparticles toxicity induced physiological, histological and biochemical alterations in freshwater mussels, Unio crassus. Journal of Trace Elements in Medicine and Biology, 83, 127371.
https://doi.org/10.1016/J.JTEMB.2023.127371
-
Van Nerom, S., Buyse, K., Van Immerseel, F., Robbens, J. ve Delezie, E., 2024. Pulsed electric field (PEF) processing of microalga Chlorella vulgaris and its digestibility in broiler feed. Poultry Science, 103(6), 103721.
https://doi.org/10.1016/J.PSJ.2024.103721
-
Vazquez-Muñoz, R., Meza-Villezcas, A., Fournier, P.G.J., Soria-Castro, E., Juarez-Moreno, K., Gallego-Hernandez, A.L., Bogdanchikova, N., Vazquez-Duhalt, R. ve Huerta-Saquero, A., 2019. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane, Plos One, 8,
https://doi.org/10.1371/journal.pone.0224904
-
Wang, S.Y., Jiao, H.J. ve Faust, M., 1991. Changes in ascorbate, glutathione, and related enzyme activities during thidiazuron-induced bud break of apple. Physiologia Plantarum, 82(2), 231–236.
https://doi.org/10.1111/J.1399-3054.1991.TB00086.X
-
Wang, Y.L., Lee, Y.H., Chou, C.L., Chang, Y.S., Liu, W.C. ve Chiu, H.W., 2024. Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. Environmental Pollution, 346, 123617.
https://doi.org/10.1016/J.ENVPOL.2024.123617
-
Xiong, D., Fang, T., Yu, L., Sima, X. ve Zhu,W. 2011 Effects of nano-scale TiO2, ZnO and their bulk counter parts on zebrafish: acutetoxicity, oxidative stress and oxidative damage. Science of the Total Environment, 409, 1444–1452.
-
Yahyaee, A., Vatankhah, P. ve Sørensen, H., 2024. Effects of nanoparticle size on surface dynamics and thermal performance in film boiling of Al2O3 water-based nanofluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 134267.
https://doi.org/10.1016/J.COLSURFA.2024.134267
-
Yang, W., Zhang, H., Yang, S., Xiao, Y., Ye, K., He, R., Liu, Y., Hu, Z., Guo, W., Zhang, Q., Qu, H. ve Mao, Y., 2024. Combined effects of microplastics and pharmaceutical and personal care products on algae: A critical review. Environmental Pollution, 358, 124478.
https://doi.org/10.1016/j.envpol.2024.124478
-
Zhang, J., Xie, X., Li, Q., Wang, J. ve Zhang, S.,2023. Combined toxic effects of TiO2 nanoparticles and organochlorines on Chlorella pyrenoidosa in karst area natural waters, Aquatic Toxicology, 257, 106442.
https://doi.org/10.1016/j.aquatox.2023.106442
-
Zhu, X., Chang, Y. ve Chen, Y., 2010. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere, 78 (3), 209–215
Chlorella vulgaris Mikroalginin Oksidatif Stres ve Büyümesi Üzerine Titanyum Dioksit Nanopartikül Dozu ve Fotoperiyotun Etkisi
Year 2025,
Volume: 25 Issue: 6, 1261 - 1271
Nazire Pınar Tanattı
,
Meryem Aksu
,
Gamze Katircioğlu Sinmaz
,
Büşra Erden
,
Ahsen Akbulut Uludağ
,
Füsun Boysan
,
İsmail Ayhan Şengil
Abstract
Bu çalışmada, TiO2 nanopartikülünün Chlorella vulgaris mikroalgindeki çeşitli biyokimyasal ve fizyolojik büyümesi üzerine etkileri incelenmiştir. Farklı n.TiO2 konsantrasyonlarının (2,5, 5, 10, 25, 50, 75 mg/L) ve farklı fotoperiyodun (6A:18K, 12A:12K, 18A:6K ve 24A:0K) SOD ve APOD antioksidan enzim aktiviteleri, MDA ve H2O2 miktarları, Chl-a ve Chl-b pigmentleri, AKM ve lipid üzerindeki etkisi değerlendirilmiştir. Yüksek n.TiO2 dozlarında kontrol grubuna SOD ve MDA miktarında artış gözlemlenirken APOD ve H2O2 miktarlarında azalma gözlemlenmiştir. Yüksek nanopartikül konsantrasyonlarına maruz kalan C. vulgaris mikroalg hücrelerinde oksidatif stres oluştuğu belirlenmiştir. Chl-a, Chl-b ve AKM parametreleri n.TiO2 dozuna bağlı olarak değişkenlik göstermekte olup 10 ve 50 mg/L n.TiO2 dozları aralığında artış göstermiştir. Lipid miktarındaki değişim ise düşük n.TiO2 dozlarında azalma eğilimde olduğu bulunmuştur. Farklı fotoperiyotlarda oksidatif stresin arttığı, 12A:12K fotoperiyotta ise toksik etkileri kısmen azaldığı gözlemlenmiştir. MDA ve H2O2 miktarılarındaki değişim 12A:12K ve 18A:6K fotoperiyorlarında olduğu belirlenmiştir. Klorofil pigmentleri, AKM ve lipid miktarında kontrol grubuna göre anlamlı değişim 12A:12K ve 24A:0K fotoperiyotta belirgin artış şeklinde olmaktadır. Farklı n.TiO2 partikül dozlarının ve farklı fotoperiyotların C. vulgaris' in metabolik süreçleri arasındaki karmaşık etkileşimlere değerli sonuçlar sunarak, nanopartikül tabanlı ortamlardaki mikroalg tepkilerinin ve sürdürülebilir biyoteknolojideki potansiyel uygulamalarının anlaşılmasına bu çalışma ile katkıda bulunmaktadır.
Ethical Statement
Yazarlar tüm etik standartlara uyduklarını beyan ederler.
Supporting Institution
Sakarya Uygulamalı Bilimler Üniversitesi Bilimsel Araştırmalar Proje Koordinatörlüğü
Project Number
SUBÜ BAPK- 019-2020
References
-
Ahn, H.J., Ahn, Y., Kurade, M.B., Patil, S.M., Ha, G.S., Bankole, P.O., Khan, M.A., Chang, S.W., Abdellattif, M.H., Yadav, K.K. ve Jeon, B.H., 2022. The comprehensive effects of aluminum oxide nanoparticles on the physiology of freshwater microalga Scenedesmus obliquus and it’s phycoremediation performance for the removal of sulfacetamide. Environmental Research, 215, 114314.
https://doi.org/10.1016/J.ENVRES.2022.114314
-
Aksu, M., Has, M., Tanattı, N.P., Erden, B., Sınmaz, G. K., Boysan, F. ve Şengil, A., 2022. Assessment of photocatalytic n-TiO2 /UV and n-TiO2 /H2 O2 /UV methods to treat DB 86, RY 145 and AV 90 dye mix containing wastewater. Desalination and Water Treatment, 266, 226–235.
https://doi.org/10.5004/DWT.2022.28656
-
Angelini, F., Bellini, E., Marchetti, A., Salvatori, G., Villano, M., Pontiggia, D. ve Ferrari, S., 2024. Efficient utilization of monosaccharides from agri-food byproducts supports Chlorella vulgaris biomass production under mixotrophic conditions. Algal Research, 77, 103358.
https://doi.org/10.1016/J.ALGAL.2023.103358
-
APHA, 2017. Standard Methods for the Examination of Water and Wastewater. Standard Methods, 541.
https://doi.org/ISBN 9780875532356
-
Barari, F., Gabrabad, M.E. ve Bonyadi, Z., 2024. Recent progress on the toxic effects of microplastics on Chlorella sp. in aquatic environments, Heliyon, 10,32881.
https://doi.org/10.1016/j.heliyon.2024.e32881
-
Barbero, F., Mayall, C., Drobne, D., Saiz-Poseu, J., Bastús, N. G. ve Puntes, V., 2021. Formation and evolution of the nanoparticle environmental corona: The case of Au and humic acid. Science of The Total Environment, 768, 144792. https://doi.org/10.1016/J.SCITOTENV.2020.144792
-
Beyer, W.F. ve Fridovich, I., 1987. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559–566.
https://doi.org/10.1016/0003-2697(87)90489-1
-
Canli, E. G. ve Canli, M., 2020. Effects of aluminum, copper and titanium nanoparticles on the liver antioxidant enzymes of the Nile fish (Oreochromis niloticus). Energy Reports, 6, 62–67.
https://doi.org/10.1016/J.EGYR.2020.10.047
-
Chen, L., Zhou, L., Liu, Y., Deng, S., Wu, H. ve Wang, G., 2012. Toxicological effects of nanometer titanium dioxide (nano-TiO 2) on Chlamydomonas reinhardtii. Ecotoxicology and Environmental Safety, 84, 155–162.
https://doi.org/10.1016/j.ecoenv.2012.07.019
-
Chen, W., Liu, J., Chu, G., Wang, Q., Zhang, Y., Gao, C. ve Gao, M.,2023. Comparative evaluation of four Chlorella species treating mariculture wastewater under different photoperiods: Nitrogen removal performance, enzyme activity, and antioxidant response. Bioresource Technology, 386 (2023) 129511.
https://doi.org/10.1016/j.biortech.2023.129511
-
Dalai, S., Pakrashi, S., Bhuvaneshwari, M., Iswarya, V., Chandrasekaran, N. ve Mukherjee, A., 2014. Toxic effect of Cr(VI) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae. Aquatic Toxicology, 146, 28–37.
https://doi.org/10.1016/j.aquatox.2013.10.029
-
Deng, X.Y., Cheng, J., Hu, X.L., Wang, L., Li, D. ve Gao, K., 2017. Biological effects of TiO2 and CeO2 nanoparticles on the growth, photosynthetic activity, and cellular components of a marine diatom Phaeodactylum tricornutum. Science of the Total Environment, 575, 87–96.
https://doi.org/10.1016/j.scitotenv.2016.10.003
-
Federici, G., Shaw, B. J. ve Handy, R.D., 2007, Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquatic Toxicology, 84 (4), 415–430.
-
Gao, K., Xue, C., Yang, M., Li, L., Qian, P., Gao, Z., Gao, Z. ve Deng, X., Optimization of light intensity and photoperiod for growing Chlorella sorokiniana on cooking cocoon wastewater in a bubble-column bioreactor. Algal Research, 62,102612.
https://doi.org/10.1016/j.algal.2021.102612
-
Gauthier, M.R., Senhorinho, G.N.A. ve Scott, J.A., 2020. Microalgae under environmental stress as a source of antioxidants. Algal Research, 52, 102104.
-
Gong, N., Shao, K., Che, C. ve Sun, Y., 2019. Stability of nickel oxide nanoparticles and its influence on toxicity to marine algae Chlorella vulgaris. Marine Pollution Bulletin, 149,110532.
https://doi.org/10.1016/j.marpolbul.2019.110532
-
Gunawan, C., Sirimanoonphan, A., Teoh, W.Y., Marquis, C.P. ve Amal, R., 2013. Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii. Journal of Hazardous Materials, 260, 984–992.
https://doi.org/10.1016/J.JHAZMAT.2013.06.067
-
Hasanuzzaman, M., Bhuyan, M.H.M.B., Parvin, K., Bhuiyan, T.F., Anee, T.I., Nahar, K., Hossen, M.S., Zulfiqar, F., Alam, M.M. ve Fujita, M., 2020. Regulation of ROS metabolism in plants under environmental stress: a review of recent experimental evidence. International Journal of Molecular Science, 21 (22), 8695.
-
Hartmann, N.B., Von der Kammer, F., Hofmann, T., Baalousha, M., Ottofuelling, S. ve Baun, A. 2010. Algal testing of titanium dioxide nanoparticles – testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology, 269 (2–3), 190–197.
-
He, Q., Yang, H., Wu, L. ve Hu, C., 2015. Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresource Technology, 191, 219–228.
-
Hund-Rinke, K. ve Simon, M., 2006. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environmental Science and Pollution Research, 13 (4), 225–232.
-
Iannelli, M.A., Bellini, A., Venditti, I., Casentini, B., Battocchio, C., Scalici, M.ve Ceschin, S., 2022. Differential phytotoxic effect of silver nitrate (AgNO3) and bifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) on Lemna plants (duckweeds). Aquatic Toxicology, 250, 106260.
https://doi.org/10.1016/j.aquatox.2022.106260
-
Kalitsov, A., Zermatten, P.J., Bonell, F., Mitra, A., Mohapatra, J. ve Aslam, M., 2024. Magnetic and electronic properties of anisotropic magnetite nanoparticles. Materials Research Express, 11(2), 022002.
https://doi.org/10.1088/2053-1591/AD2A84
-
Katırcıoğlu Sınmaz, G., Erden, B. Ve Şengil, İ.A,. 2023. Cultivation of Chlorella vulgaris in alkaline condition for biodiesel feedstock after biological treatment of poultry slaughterhouse wastewater. International Journal of Environmental Science and Technology, 20(3), 3237–3246.
https://doi.org/10.1007/s13762-022-04137-4
-
Li, F., Liang, Z., Zheng, X., Zhao, W., Wu, M. ve Wang, Z., 2015. Toxicity of nano-TiO2on algae and the site of reactive oxygen speciesproduction. Aquatic Toxicology, 158, 1–13.
http://dx.doi.org/10.1016/j.aquatox.2014.10.014
-
Li, J., a, Sun, Z.Z., Chen, Y.P. ve Jing Wang, J., 2024. Behavior and toxicity of silver nanoparticles to Chlorella vulgaris: A new perspective based on surface charges. Journal of Environmental Chemical Engineering, 12, 111673.
https://doi.org/10.1016/j.jece.2023.111673
-
Liu, S., Han, J., Ma, X., Zhu, X., Qu, H., Xin, G. ve Huang, X., 2024.Repeated release of cerium oxide nanoparticles altered algal responses: Growth, photosynthesis, and photosynthetic gene expression. Eco-Environment & Health, 3, 290-299.
https://doi.org/10.1016/j.eehl.2024.04.002
-
Liu, X., Wang, X., Zhang, F., Yao, X., Qiao, Z., Deng, J., Jiao, Q., Gong, L. ve Jiang, X., 2022. Toxic effects of fludioxonil on the growth, photosynthetic activity, oxidative stress, cell morphology, apoptosis, and metabolism of Chlorella vulgaris. Science of The Total Environment, 838, 156069.
https://doi.org/10.1016/J.SCITOTENV.2022.156069
-
Mahana, A., Guliy, O.I. ve Mehta, S.K., 2021. Accumulation and cellular toxicity of engineered metallic nanoparticle in freshwater microalgae: Current status and future challenges. Ecotoxicology and Environmental Safety, 208, 111662,
https://doi.org/10.1016/j.ecoenv.2020.111662
-
Malik, S., Muhammad, K. ve Waheed, Y., 2023. Nanotechnology: A Revolution in Modern Industry. Molecules 2023, Vol. 28, Page 661, 28(2), 661.
https://doi.org/10.3390/MOLECULES28020661
-
Markou, G. ve Nerantzis, E., 2013. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnology Advances, 31(8), 1532–1542.
https://doi.org/10.1016/j.biotechadv.2013.07.011
-
Matouke, M.M., Elewa, D.T. ve Abdullahi, K., 2018. Binary effect of titanium dioxide nanoparticles (nTiO2) and phosphorus on microalgae (Chlorella ‘Ellipsoides Gerneck, 1907). Aquatic Toxicology, 198, 40–48.
https://doi.org/10.1016/j.aquatox.2018.02.009
-
Narayanan, M., Srinivasan, S., Gnanasekaran, C., Ramachandran, G., Chelliah, C.K., Rajivgandhi, G., Maruthupandy, M., Quero, F., Li W.J., Hayder, G., Khaled, J.M., Arunachalam, A. Ve Manoharan, N., 2024. Synthesis and characterization of marine seagrass (Cymodocea serrulata) mediated titanium dioxide nanoparticles for antibacterial, antibiofilm and antioxidant properties. Microbial Pathogenesis, 189, 106595,
https://doi.org/10.1016/j.micpath.2024.106595
-
Narayanan, M., Rajagopal, D.B., Krishnamoorthi, V. Gnanasekaran, C., Palanisamy, B., Manoharan, N., Ramachandran, G., Rajivgandhi, G., Bhaviripudi, V.R. ve Quero, F., 2025. Synthesis of TiO2 nanoparticles using endophytic Streptomyces zaomyceticus MNDV: Characterization and evaluation of antibacterial, antioxidant, antidiabetic and photocatalytic properties. Inorganic Chemistry Communications, 171, 113560.
https://doi.org/10.1016/j.inoche.2024.113560
-
Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A.J., Quigg, A., Santschi, P.H. ve Sigg, L., 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17 (5), 372–386.
-
Noori, A., Hasanuzzaman, M., Roychowdhury, R., Sarraf, M., Afzal, S., Das, S. ve Rastogi, A., 2024. Silver nanoparticles in plant health: Physiological response to phytotoxicity and oxidative stress. Plant Physiology and Biochemistry, 209, 108538.
https://doi.org/10.1016/J.PLAPHY.2024.108538
-
Nurkiewicz, T.R., Porter, D.W., Hubbs, A.F., Cumpston, J.L., Chen, B.T., Frazer, D.G. ve Castranova,V., 2008. Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Particle and Fibre Toxicology, 5, 1–12.
https://doi.org/10.1186/1743-8977-5-1
-
Porra, R.J., 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research, 73(1), 149–156.
https://doi.org/10.1023/A:1020470224740
-
Rezayian, M., Niknam, V. ve Ebrahimzadeh, H., 2019. Oxidative damage and antioxidative system in algae. Toxicology Reports, 6, 1309–1313.
https://doi.org/10.1016/J.TOXREP.2019.10.001
-
Sachdev, S. ve Ahmad, S., 2021. Role of nanomaterials in regulating oxidative stress in plants. In Nanobiotechnology: Mitigation of Abiotic Stress in Plants (pp. 305–326). Springer International Publishing.
https://doi.org/10.1007/978-3-030-73606-4_13
-
Service, R.F., 2005. Calls rise for more research on toxicology of nanomaterials. Science, 310 (5754), 1609.
https://doi.org/10.1126/science.310.5754.1609
-
Sezer, M., Tanattı, N.P. ve İ.A.,c, Interaction of TiO2 nanoparticles with the C. vulgaris: oxidative stress, lipid peroxidation and lipid amount. Water Science & Technology, 86 - 8, 2020
https://doi.org/10.2166/wst.2022.335
-
Shi, H., Magaye, R., Castranova, V. ve Zhao, J. 2013. Titanium dioxide nanoparticles: a review of current toxicological data. Particle and FibreToxicology, 10 (1), 15.
-
Simeonidis, K. ve Mourdikoudis, S., 2023. Nanoparticles as Sustainable Environmental Remediation Agents. In Nanoparticles as Sustainable Environmental Remediation Agents.
https://doi.org/10.1039/9781837670215
-
Sizochenko, N., Mikolajczyk, A., Syzochenko, M., Puzyn, T. ve Leszczynski, J., 2021. Zeta potentials (ζ) of metal oxide nanoparticles: A meta-analysis of experimental data and a predictive neural networks modeling. NanoImpact, 22, 100317.
https://doi.org/10.1016/J.IMPACT.2021.100317
-
Tekbaba, A., Özpınar, S.Ç., Tunca, H., Sevindik, T.O., Doğru, A., Günsel, A., Bilgiçli, A.T. ve Yarasir, M.N,. 2021. Synthesis, characterization and investigation of algal oxidative effects of water-soluble copper phthalocyanine containing sulfonate groups. Journal of Biological Inorganic Chemistry, 26(2–3), 355–365.
https://doi.org/10.1007/s00775-021-01860-0
-
Tunca, H., Dogru, A., Kockar, F., Onem, B. ve Sevindik, T.O., 2020. Evaluation of Azadirachtin on Arthrospira plantensis Gomont growth parameters and antioxidant enzymes. Annales de Limnologie - International Journal of Limnology, 56, 8.
https://doi.org/10.1051/LIMN/2020008
-
Türkmen, E.U., Arslan, P., Erkoç, F., Günal, A. Ç. ve Duran, H., 2024. The cerium oxide nanoparticles toxicity induced physiological, histological and biochemical alterations in freshwater mussels, Unio crassus. Journal of Trace Elements in Medicine and Biology, 83, 127371.
https://doi.org/10.1016/J.JTEMB.2023.127371
-
Van Nerom, S., Buyse, K., Van Immerseel, F., Robbens, J. ve Delezie, E., 2024. Pulsed electric field (PEF) processing of microalga Chlorella vulgaris and its digestibility in broiler feed. Poultry Science, 103(6), 103721.
https://doi.org/10.1016/J.PSJ.2024.103721
-
Vazquez-Muñoz, R., Meza-Villezcas, A., Fournier, P.G.J., Soria-Castro, E., Juarez-Moreno, K., Gallego-Hernandez, A.L., Bogdanchikova, N., Vazquez-Duhalt, R. ve Huerta-Saquero, A., 2019. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane, Plos One, 8,
https://doi.org/10.1371/journal.pone.0224904
-
Wang, S.Y., Jiao, H.J. ve Faust, M., 1991. Changes in ascorbate, glutathione, and related enzyme activities during thidiazuron-induced bud break of apple. Physiologia Plantarum, 82(2), 231–236.
https://doi.org/10.1111/J.1399-3054.1991.TB00086.X
-
Wang, Y.L., Lee, Y.H., Chou, C.L., Chang, Y.S., Liu, W.C. ve Chiu, H.W., 2024. Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. Environmental Pollution, 346, 123617.
https://doi.org/10.1016/J.ENVPOL.2024.123617
-
Xiong, D., Fang, T., Yu, L., Sima, X. ve Zhu,W. 2011 Effects of nano-scale TiO2, ZnO and their bulk counter parts on zebrafish: acutetoxicity, oxidative stress and oxidative damage. Science of the Total Environment, 409, 1444–1452.
-
Yahyaee, A., Vatankhah, P. ve Sørensen, H., 2024. Effects of nanoparticle size on surface dynamics and thermal performance in film boiling of Al2O3 water-based nanofluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 134267.
https://doi.org/10.1016/J.COLSURFA.2024.134267
-
Yang, W., Zhang, H., Yang, S., Xiao, Y., Ye, K., He, R., Liu, Y., Hu, Z., Guo, W., Zhang, Q., Qu, H. ve Mao, Y., 2024. Combined effects of microplastics and pharmaceutical and personal care products on algae: A critical review. Environmental Pollution, 358, 124478.
https://doi.org/10.1016/j.envpol.2024.124478
-
Zhang, J., Xie, X., Li, Q., Wang, J. ve Zhang, S.,2023. Combined toxic effects of TiO2 nanoparticles and organochlorines on Chlorella pyrenoidosa in karst area natural waters, Aquatic Toxicology, 257, 106442.
https://doi.org/10.1016/j.aquatox.2023.106442
-
Zhu, X., Chang, Y. ve Chen, Y., 2010. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere, 78 (3), 209–215