Research Article
BibTex RIS Cite

Investigation of the Bakırçay and Kırkağaç Basins Using Gravity Data

Year 2025, Volume: 25 Issue: 6, 1458 - 1469

Abstract

Bakırçay and Kırkağaç basins, located in NW Turkiye, are defined with a complex development process due to being affected both from the strike–slip nature of the North Anatolian Fault and the three–phase extensional regime of the Aegean Extensional Province. In this study, boundary analysis methods are applied on Bouguer gravity anomalies along with analytical continuation methods to reveal lineations and geological contacts, and three–dimensional modeling is applied to estimate basin depths. The results indicate several NE–SW extending lineations cutting the basins, which are interpreted to be paleo–structure boundaries, reactivated as faults with normal components which are important features for earthquake hazard assessments for the region. The depth of the Soma coal basin is determined to be 1 km and the depth extent of the Bakırçay and Kırkağaç basins is estimated to be ~2 km maximally near the W–SW boundary faults. The lowest density contrast values are observed throughout W–SW boundaries of these basins, indicating higher groundwater potential.

References

  • Alçiçek, M. C., Kazancı, N., & Özkul, M., 2005. Multiple rifting pulses and sedimentation pattern in the Çameli Basin, southwestern Anatolia, Turkey. Sedimentary Geology, 173(1-4), 409-431. https://doi.org/10.1016/j.sedgeo.2003.12.012
  • Altinoğlu, F. F., Sari, M., & Aydin, A., 2015. Detection of lineaments in Denizli basin of western Anatolia region using Bouguer gravity data. Pure and Applied Geophysics, 172, 415-425. https://doi.org/10.1007/s00024-014-0911-y
  • Aydoğan, D., 2011. Extraction of lineaments from gravity anomaly maps using the gradient calculation: Application to Central Anatolia. Earth, Planets and Space, 63, 903-913. https://doi.org/10.5047/eps.2011.04.003
  • Bal, O. T., 2022. 2B ve 3B Yorumlama Teknikleriyle Tuz Gölü’nün Güneybatısında Toplanmış Gravite Verilerinin İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 24(70), 233-245.
  • Bhattacharyya, B. K., 1967. Some general properties of potential fields in space and frequency domain: a review. Geoexploration, 5(3), 127-143.
  • Bódi, J., Vajda, P., Pašteka, R., Pánisová, J., Papčo, J., Zahorec, P., & Fernández, J., 2025. Applicability of Growth inversion in microgravimetry for archeological prospection and sinkhole hazard detection: Jur, Koš and Senec case studies. Journal of Applied Geophysics, 238, 105718. https://doi.org/10.1016/j.jappgeo.2025.105718
  • Camacho, A. G., Montesinos, F. G., & Vieira, R., 1997. A three‐dimensional gravity inversion applied to Sao Miguel Island (Azores). Journal of Geophysical Research: Solid Earth, 102(B4), 7717-7730. https://doi.org/10.1029/96JB03667
  • Camacho, A. G., Fernández, J., & Gottsmann, J., 2011a. The 3-D gravity inversion package GROWTH2. 0 and its application to Tenerife Island, Spain. Computers & Geosciences, 37(4), 621-633. https://doi.org/10.1016/j.cageo.2010.12.003
  • Camacho, A. G., Fernández, J., & Gottsmann, J., 2011b. A new gravity inversion method for multiple subhorizontal discontinuity interfaces and shallow basins. Journal of Geophysical Research: Solid Earth, 116(B2).
  • Camacho, A. G., Carmona, E., García-Jerez, A., Sánchez-Martos, F., Prieto, J. F., Fernández, J., & Luzón, F., 2015. Structure of alluvial valleys from 3-D gravity inversion: the Low Andarax Valley (Almería, Spain) test case. Pure and Applied Geophysics, 172, 3107-3121. https://doi.org/10.1007/s00024-014-0914-8
  • Camacho, A. G., Prieto, J. F., Aparicio, A., Ancochea, E., & Fernández, J., 2021. Upgraded GROWTH 3.0 software for structural gravity inversion and application to El Hierro (Canary Islands). Computers & Geosciences, 150, 104720. https://doi.org/10.1016/j.cageo.2021.104720
  • Camacho, A. G., Vajda, P., & Fernández, J., 2024. GROWTH-23: an integrated code for inversion of complete Bouguer gravity anomaly or temporal gravity changes. Computers & Geosciences, 182, 105495. https://doi.org/10.1016/j.cageo.2023.105495
  • Cordell, L., & Grauch, V. J. S., 1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico, in W. J. Hinze, ed., The utility of regional gravity and magnetic anomaly maps: SEG, 181-197. https://doi.org/10.1190/1.0931830346.ch16
  • Ekinci, Y. L., Balkaya, Ç., Göktürkler, G., & Özyalın, Ş., 2021. Gravity data inversion for the basement relief delineation through global optimization: a case study from the Aegean Graben System, western Anatolia, Turkey. Geophysical Journal International, 224(2), 923-944. https://doi.org/10.1093/gji/ggaa492
  • Ekinci, Y. L., Balkaya, Ç., Göktürkler, G., & Ai, H., 2023. 3-D gravity inversion for the basement relief reconstruction through modified success-history-based adaptive differential evolution. Geophysical Journal International, 235(1), 377-400. https://doi.org/10.1093/gji/ggad222
  • Eshaghzadeh, A., Dehghanpour, A., & Kalantari, R. A., 2018. Application of the tilt angle of the balanced total horizontal derivative filter for the interpretation of potential field data. Bollettino di Geofisica Teorica ed Applicata, 59(2).
  • Gürer, Ö.F., Sanğu, E., and Özburan, M., 2006, Neotectonics of the SW Marmara region, NW Anatolia. Geological Magazine, 143(2), 229–241. https://doi.org/10.1017/S0016756805001469.
  • Gürer, A., Gürer, Ö. F., & Sangu, E., 2019. Compound geotourism and mine tourism potentiality of Soma region, Turkey. Arabian Journal of Geosciences, 12, 1-14. https://doi.org/10.1007/s12517-019-4927-6
  • Gürer, Ö. F. , 2023. A new look at the origin of NS trending young basins of western Anatolia. Bulletin of the Mineral Research and Exploration, 170(170), 117-146.
  • Hautmann, S., Camacho, A. G., Gottsmann, J., Odbert, H. M., & Syers, R. T., 2013. The shallow structure beneath Montserrat (West Indies) from new Bouguer gravity data. Geophysical Research Letters, 40(19), 5113-5118. https://doi.org/10.1002/grl.51003
  • Işık, M., & Şenel, H., 2009. 3D gravity modeling of Büyük Menderes basin in Western Anatolia using parabolic density function. Journal of Asian Earth Sciences, 34(3), 317-325. https://doi.org/10.1016/j.jseaes.2008.05.013
  • İnci, U., 1998. Lignite and carbonate deposition in Middle Lignite succession of the Soma Formation, Soma coalfield, western Turkey. International Journal of Coal Geology, 37(3-4), 287-313. https://doi.org/10.1016/S0166-5162(98)00010-X
  • İnci, U., Koçyiğit, A., Bozkurt, E., & Arpalıyiğit, İ., 2003. Soma ve Kırkağaç Grabenlerinin Kuvaterner Jeolojisi, Batı Anadolu. İTÜ Avrasya Yerbilimleri Enstitüsü Kuvaterner Çalıştayı IV, 84-100.
  • Kobayashi, T., Matsuo, K., Ando, R., Nakano, T., & Watanuki, G., 2025. High-resolution image on terminus of fault rupture: relationship with volcanic hydrothermal structure. Geophysical Journal International, 240(2), 1196-1214. https://doi.org/10.1093/gji/ggae435
  • Koçyiğit, A., 2005. The Denizli graben-horst system and the eastern limit of western Anatolian continental extension: basin fill, structure, deformational mode, throw amount and episodic evolutionary history, SW Turkey. Geodinamica Acta, 18(3-4), 167-208. https://doi.org/10.3166/ga.18.167-208
  • Koçyiğit A. and Deveci Ş., 2007. A NS-trending active extensional structure, the Şuhut (Afyon) graben: commencement age of the extensional neotectonic period in the Isparta Angle, SW Turkey. Turkish Journal of Earth Sciences, 16, 391-416.
  • Li, Y., & Oldenburg, D. W., 1996. 3-D inversion of magnetic data. Geophysics, 61(2), 394-408. https://doi.org/10.1190/1.1443968
  • Li, Y. & Oldenburg, D.W., 1998 3-D inversion of gravity data. Geophysics, 63(1):109–119. https://doi.org/10.1190/1.1444302
  • Liu, J., Li, S., Jiang, S., Wang, X., & Zhang, J., 2023. Tools for edge detection of gravity data: comparison and application to tectonic boundary mapping in the Molucca Sea. Surveys in Geophysics, 44(6), 1781-1810. https://doi.org/10.1007/s10712-023-09784-x
  • Maresca, R., & Berrino, G., 2016. Investigation of the buried structure of the Volturara Irpina Basin (southern Italy) by microtremor and gravimetric data. Journal of Applied Geophysics, 128, 96-109. https://doi.org/10.1016/j.jappgeo.2016.03.010
  • Marotta, E., Berrino, G., de Vita, S., Di Vito, M., & Camacho, A. G., 2024. Structural setting of the Ischia resurgent caldera (southern Tyrrhenian Sea, Italy) by integrated 3D gravity inversion and geological models, Volcanic Island: from Hazard Assessment to Risk Mitigation, E. Marotta, L. D'Auria, F. Zaniboni, R. Nave. https://doi.org/10.1144/SP519-2022-129
  • Melouah, O., & Pham, L. T., 2021. An improved ILTHG method for edge enhancement of geological structures: application to gravity data from the Oued Righ valley. Journal of African Earth Sciences, 177, 104162. https://doi.org/10.1016/j.jafrearsci.2021.104162
  • Miller, H. G., Singh, V., 1994. Potential field tilt-a new concept for location of potential field sources. Journal of Applied Geophysics, 32(2-3), 213-217,1994. https://doi.org/10.1016/0926-9851(94)90022-1
  • Nabighian, M. N., 1972. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation. Geophysics, 37, 507–517. https://doi.org/10.1190/1.1440276
  • Nabighian, M. N., Ander, M. E., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., Pearson, W.C., Peirce, J.W, Philips, J.D., Ruder, M. E., 2005. Historical development of the gravity method in exploration. Geophysics, 70(6), 63-89. https://doi.org/10.1190/1.2133785
  • Nguyen, T. N., Van Kha, T., Van Nam, B., & Nguyen, H. T. T., 2020. Sedimentary basement structure of the Southwest Sub-basin of the East Vietnam Sea by 3D direct gravity inversion. Marine Geophysical Research, 41(1), 7. https://doi.org/10.1007/s11001-020-09406-w
  • Okay, A. I., Tansel, I., Tuysuz, O., 2001. Obduction, subduction and collision as reflected in the Upper Cretaceous–Lower Eocene sedimentary record of western Turkey. Geological Magazine, 138(2), 117-142. https://doi.org/10.1017/S0016756801005088
  • Oruç, B, & Keskinsezer, A., 2008. Structural setting of the northeastern Biga Peninsula (Turkey) from tilt derivatives of gravity gradient tensors and magnitude of horizontal gravity components. Pure and Applied Geophysics, 165(9), 1913-1927. https://doi.org/10.1007/s00024-008-0407-8
  • Oruç, B., 2011. Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı-Central Anatolia Region, Turkey. Pure and Applied Geophysics, 168(10), 1769-1780. https://doi.org/10.1007/s00024-010-0211-0
  • Oruç, B., 2013. Yeraltı Kaynak Aramalarında Gravite Yöntemi (Matlab Kodları ve Çözümlü Örnekler). Umuttepe Yayınları, ISBN: 6055100070, Kocaeli, Türkiye.
  • Oruç, B., Sertçelik, İ., Kafadar, Ö., & Selim, H. H., 2013. Structural interpretation of the Erzurum Basin, eastern Turkey, using curvature gravity gradient tensor and gravity inversion of basement relief. Journal of Applied Geophysics, 88, 105-113. https://doi.org/10.1016/j.jappgeo.2012.10.006
  • Oruç, B., & Balkan, E., 2021. Stress field estimation by the geoid undulations of the Samos-Kuşadası Bay and implications for seismogenic behavior. Acta Geophysica, 69, 1137-1149. https://doi.org/10.1007/s11600-021-00604-7
  • Özyalın, Ş., Pamukçu, O., Gönenç, T., Yurdakul, A., & Sözbilir, H., 2012. Application of boundary analysis and modeling methods on Bouguer gravity data of the Gediz Graben and surrounding area in Western Anatolia and its tectonic implications. The Journal of the Balkan Geophysical Society, 15, 19-30.
  • Pallero, J. L. G., Fernández-Martínez, J. L., Bonvalot, S., & Fudym, O. , 2017. 3D gravity inversion and uncertainty assessment of basement relief via particle swarm optimization. Journal of Applied Geophysics, 139, 338-350. https://doi.org/10.1016/j.jappgeo.2017.02.004
  • Parker, R.L., 1977. Understanding inverse theory. The Annual Review of Earth and Planetary Sciences, 5, 35–64
  • Roest, W. R., Verhoef, J., & Pilkington, M., 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics, 57(1), 116-125. https://doi.org/10.1190/1.1443174
  • Saibi, H., Bloushi, K. A., & Gabr, A., 2021. Cavity extension investigations from gravity and electrical surveys at Mountain Hafeet (Al-Ain, UAE). In Sixth International Conference on Engineering Geophysics, Virtual, 25–28 October 2021 (pp. 321-324). Society of Exploration Geophysicists. https://doi.org/10.1190/iceg2021-081.1
  • Sangu, E., Gürer, Ö. F., & Gürer, A., 2020. Fault kinematic and Plio-Quaternary paleostress evolution of the Bakırçay basin, western Turkey. International Geology Review, 62(10), 1245-1261. https://doi.org/10.1080/00206814.2019.1642148
  • Sarı, C., & Şalk, M., 2006. Sediment thicknesses of the western Anatolia graben structures determined by 2D and 3D analysis using gravity data. Journal of Asian Earth Sciences, 26(1), 39-48. https://doi.org/10.1016/j.jseaes.2004.09.011
  • Tikhonov, A. N., 1977. Solutions of Ill-Posed Problems. VH Winston and Sons.
  • Uluğtekin, M., Gönenç, T., & Özdağ, Ö. C., 2022. Examining several edge detection techniques in gravity method together with 3D bedrock topography: A case study from the northern part of the İzmir/Turkey. Journal of Earth System Science, 131(3), 144. https://doi.org/10.1007/s12040-022-01891-4
  • Westerweel, J., Uzel, B., Langereis, C. G., Kaymakci, N., & Sözbilir, H., 2020. Paleomagnetism of the Miocene Soma basin and its structural implications on the central sector of a crustal-scale transfer zone in western Anatolia (Turkey). Journal of Asian Earth Sciences, 193, 104305. https://doi.org/10.1016/j.jseaes.2020.104305
  • Witter, J.B., Siler, D.L., Faulds, J.E., Hinz, N.H., 2016. 3D geophysical inversion modeling of gravity data to test the 3D geologic model of the Bradys geothermal area, Nevada, USA. Geothermal Energy, 4(1):14. https://doi.org/10.1186/s40517-016-0056-6
  • Yang, X., Becker, F., Knitter, D., & Schütt, B., 2021. An overview of the geomorphological characteristics of the Pergamon micro-region (Bakırçay and Madra River catchments, Aegean region, West Turkey). Land, 10(7), 667. https://doi.org/10.3390/land10070667
  • Yerli, B., 2022. Soma-Kırkağaç fayının paleosismolojisi ve uzun/kısa dönem kayma hızının değerlendirilmesi, Manisa, Batı Anadolu. Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi, İzmir, Türkiye, 177.
  • Yılmaz, Y., Çemen, İ., & Yılmaz, Y., 2017. Morphotectonic development of Anatolia and the surrounding regions. In Active global seismology: neotectonics and earthquake potential of the Eastern Mediterranean Region. American Geophysical Union Geophysical Monograph, 225, pp. 11-91
  • Yin, X., Yao, C., Wang, J., Xu, W., Zheng, Y., Li, Z., & Mu, W., 2024. A constrained 3D gravity inversion for complex density distributions: Application to Brazil rifted continental margin. Tectonophysics, 874, 230236. https://doi.org/10.1016/j.tecto.2024.230236

Bakırçay ve Kırkağaç Basenlerinin Gravite Verileriyle İncelenmesi

Year 2025, Volume: 25 Issue: 6, 1458 - 1469

Abstract

Türkiye’nin KB bölümünde bulunan Bakırçay ve Kırkağaç basenleri hem Kuzey Anadolu Fayı’nın doğrultu atımlı doğasından hem de Ege Genişleme Bölgesi’nin üç fazlı gerilmeli rejiminden etkilendiği için karmaşık bir tektonik sürece sahiptir. Bu çalışmada, Bouguer gravite anomalilerine sınır belirleme yöntemleri analitik uzanımlarla uygulanarak çizgisellikler jeolojik sınırlar tespit edilmiş ve düz çözüm tabanlı bir üç–boyutlu modelleme yöntemiyle basen derinlikleri yaklaşık olarak belirlenmiştir. Elde edilen sonuçlarda, basenleri kesen KD–GB uzanımlı birçok çizgiselliğin varlığı gözlenmiştir. Bu çizgisellikler, neotektonik dönemde normal bileşenli faylar olarak yeniden aktifleşmiş paleo–yapı sınırları olarak yorumlanmıştır ve bölge depremselliği açısından önemlidir. Soma kömür baseninin derinliği yaklaşık 1 km olarak belirlenmiştir. Bakırçay ve Kırkağaç basenlerinin derinlikleriyse, B–GB doğrultusunda uzanan fayların çevresinde yaklaşık 2 km olarak belirlenmiştir. En düşük yoğunluk karşıtlığı değerleri de bu basenlerin B–GB sınırları boyunca izlenmiştir ve bu bölgelerde yeraltı suyu potansiyelinin daha fazla olduğunu göstermektedir.

Ethical Statement

Yazar, bu çalışmada bütün etik standartlara uyduğunu beyan eder.

Thanks

Çalışma alanında toplanmış gravite verilerini kullanmamıza izin veren Türkiye Petrolleri’ne ve verileri bize ileten değerleri hocamız Prof.Dr. İbrahim KARA’ya teşekkürlerimi sunarım. Ayrıca, bu makaleyi inceleyerek iyileştirilmesini sağlayan editör ve hakemlere teşekkür ederim.

References

  • Alçiçek, M. C., Kazancı, N., & Özkul, M., 2005. Multiple rifting pulses and sedimentation pattern in the Çameli Basin, southwestern Anatolia, Turkey. Sedimentary Geology, 173(1-4), 409-431. https://doi.org/10.1016/j.sedgeo.2003.12.012
  • Altinoğlu, F. F., Sari, M., & Aydin, A., 2015. Detection of lineaments in Denizli basin of western Anatolia region using Bouguer gravity data. Pure and Applied Geophysics, 172, 415-425. https://doi.org/10.1007/s00024-014-0911-y
  • Aydoğan, D., 2011. Extraction of lineaments from gravity anomaly maps using the gradient calculation: Application to Central Anatolia. Earth, Planets and Space, 63, 903-913. https://doi.org/10.5047/eps.2011.04.003
  • Bal, O. T., 2022. 2B ve 3B Yorumlama Teknikleriyle Tuz Gölü’nün Güneybatısında Toplanmış Gravite Verilerinin İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 24(70), 233-245.
  • Bhattacharyya, B. K., 1967. Some general properties of potential fields in space and frequency domain: a review. Geoexploration, 5(3), 127-143.
  • Bódi, J., Vajda, P., Pašteka, R., Pánisová, J., Papčo, J., Zahorec, P., & Fernández, J., 2025. Applicability of Growth inversion in microgravimetry for archeological prospection and sinkhole hazard detection: Jur, Koš and Senec case studies. Journal of Applied Geophysics, 238, 105718. https://doi.org/10.1016/j.jappgeo.2025.105718
  • Camacho, A. G., Montesinos, F. G., & Vieira, R., 1997. A three‐dimensional gravity inversion applied to Sao Miguel Island (Azores). Journal of Geophysical Research: Solid Earth, 102(B4), 7717-7730. https://doi.org/10.1029/96JB03667
  • Camacho, A. G., Fernández, J., & Gottsmann, J., 2011a. The 3-D gravity inversion package GROWTH2. 0 and its application to Tenerife Island, Spain. Computers & Geosciences, 37(4), 621-633. https://doi.org/10.1016/j.cageo.2010.12.003
  • Camacho, A. G., Fernández, J., & Gottsmann, J., 2011b. A new gravity inversion method for multiple subhorizontal discontinuity interfaces and shallow basins. Journal of Geophysical Research: Solid Earth, 116(B2).
  • Camacho, A. G., Carmona, E., García-Jerez, A., Sánchez-Martos, F., Prieto, J. F., Fernández, J., & Luzón, F., 2015. Structure of alluvial valleys from 3-D gravity inversion: the Low Andarax Valley (Almería, Spain) test case. Pure and Applied Geophysics, 172, 3107-3121. https://doi.org/10.1007/s00024-014-0914-8
  • Camacho, A. G., Prieto, J. F., Aparicio, A., Ancochea, E., & Fernández, J., 2021. Upgraded GROWTH 3.0 software for structural gravity inversion and application to El Hierro (Canary Islands). Computers & Geosciences, 150, 104720. https://doi.org/10.1016/j.cageo.2021.104720
  • Camacho, A. G., Vajda, P., & Fernández, J., 2024. GROWTH-23: an integrated code for inversion of complete Bouguer gravity anomaly or temporal gravity changes. Computers & Geosciences, 182, 105495. https://doi.org/10.1016/j.cageo.2023.105495
  • Cordell, L., & Grauch, V. J. S., 1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico, in W. J. Hinze, ed., The utility of regional gravity and magnetic anomaly maps: SEG, 181-197. https://doi.org/10.1190/1.0931830346.ch16
  • Ekinci, Y. L., Balkaya, Ç., Göktürkler, G., & Özyalın, Ş., 2021. Gravity data inversion for the basement relief delineation through global optimization: a case study from the Aegean Graben System, western Anatolia, Turkey. Geophysical Journal International, 224(2), 923-944. https://doi.org/10.1093/gji/ggaa492
  • Ekinci, Y. L., Balkaya, Ç., Göktürkler, G., & Ai, H., 2023. 3-D gravity inversion for the basement relief reconstruction through modified success-history-based adaptive differential evolution. Geophysical Journal International, 235(1), 377-400. https://doi.org/10.1093/gji/ggad222
  • Eshaghzadeh, A., Dehghanpour, A., & Kalantari, R. A., 2018. Application of the tilt angle of the balanced total horizontal derivative filter for the interpretation of potential field data. Bollettino di Geofisica Teorica ed Applicata, 59(2).
  • Gürer, Ö.F., Sanğu, E., and Özburan, M., 2006, Neotectonics of the SW Marmara region, NW Anatolia. Geological Magazine, 143(2), 229–241. https://doi.org/10.1017/S0016756805001469.
  • Gürer, A., Gürer, Ö. F., & Sangu, E., 2019. Compound geotourism and mine tourism potentiality of Soma region, Turkey. Arabian Journal of Geosciences, 12, 1-14. https://doi.org/10.1007/s12517-019-4927-6
  • Gürer, Ö. F. , 2023. A new look at the origin of NS trending young basins of western Anatolia. Bulletin of the Mineral Research and Exploration, 170(170), 117-146.
  • Hautmann, S., Camacho, A. G., Gottsmann, J., Odbert, H. M., & Syers, R. T., 2013. The shallow structure beneath Montserrat (West Indies) from new Bouguer gravity data. Geophysical Research Letters, 40(19), 5113-5118. https://doi.org/10.1002/grl.51003
  • Işık, M., & Şenel, H., 2009. 3D gravity modeling of Büyük Menderes basin in Western Anatolia using parabolic density function. Journal of Asian Earth Sciences, 34(3), 317-325. https://doi.org/10.1016/j.jseaes.2008.05.013
  • İnci, U., 1998. Lignite and carbonate deposition in Middle Lignite succession of the Soma Formation, Soma coalfield, western Turkey. International Journal of Coal Geology, 37(3-4), 287-313. https://doi.org/10.1016/S0166-5162(98)00010-X
  • İnci, U., Koçyiğit, A., Bozkurt, E., & Arpalıyiğit, İ., 2003. Soma ve Kırkağaç Grabenlerinin Kuvaterner Jeolojisi, Batı Anadolu. İTÜ Avrasya Yerbilimleri Enstitüsü Kuvaterner Çalıştayı IV, 84-100.
  • Kobayashi, T., Matsuo, K., Ando, R., Nakano, T., & Watanuki, G., 2025. High-resolution image on terminus of fault rupture: relationship with volcanic hydrothermal structure. Geophysical Journal International, 240(2), 1196-1214. https://doi.org/10.1093/gji/ggae435
  • Koçyiğit, A., 2005. The Denizli graben-horst system and the eastern limit of western Anatolian continental extension: basin fill, structure, deformational mode, throw amount and episodic evolutionary history, SW Turkey. Geodinamica Acta, 18(3-4), 167-208. https://doi.org/10.3166/ga.18.167-208
  • Koçyiğit A. and Deveci Ş., 2007. A NS-trending active extensional structure, the Şuhut (Afyon) graben: commencement age of the extensional neotectonic period in the Isparta Angle, SW Turkey. Turkish Journal of Earth Sciences, 16, 391-416.
  • Li, Y., & Oldenburg, D. W., 1996. 3-D inversion of magnetic data. Geophysics, 61(2), 394-408. https://doi.org/10.1190/1.1443968
  • Li, Y. & Oldenburg, D.W., 1998 3-D inversion of gravity data. Geophysics, 63(1):109–119. https://doi.org/10.1190/1.1444302
  • Liu, J., Li, S., Jiang, S., Wang, X., & Zhang, J., 2023. Tools for edge detection of gravity data: comparison and application to tectonic boundary mapping in the Molucca Sea. Surveys in Geophysics, 44(6), 1781-1810. https://doi.org/10.1007/s10712-023-09784-x
  • Maresca, R., & Berrino, G., 2016. Investigation of the buried structure of the Volturara Irpina Basin (southern Italy) by microtremor and gravimetric data. Journal of Applied Geophysics, 128, 96-109. https://doi.org/10.1016/j.jappgeo.2016.03.010
  • Marotta, E., Berrino, G., de Vita, S., Di Vito, M., & Camacho, A. G., 2024. Structural setting of the Ischia resurgent caldera (southern Tyrrhenian Sea, Italy) by integrated 3D gravity inversion and geological models, Volcanic Island: from Hazard Assessment to Risk Mitigation, E. Marotta, L. D'Auria, F. Zaniboni, R. Nave. https://doi.org/10.1144/SP519-2022-129
  • Melouah, O., & Pham, L. T., 2021. An improved ILTHG method for edge enhancement of geological structures: application to gravity data from the Oued Righ valley. Journal of African Earth Sciences, 177, 104162. https://doi.org/10.1016/j.jafrearsci.2021.104162
  • Miller, H. G., Singh, V., 1994. Potential field tilt-a new concept for location of potential field sources. Journal of Applied Geophysics, 32(2-3), 213-217,1994. https://doi.org/10.1016/0926-9851(94)90022-1
  • Nabighian, M. N., 1972. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation. Geophysics, 37, 507–517. https://doi.org/10.1190/1.1440276
  • Nabighian, M. N., Ander, M. E., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., Pearson, W.C., Peirce, J.W, Philips, J.D., Ruder, M. E., 2005. Historical development of the gravity method in exploration. Geophysics, 70(6), 63-89. https://doi.org/10.1190/1.2133785
  • Nguyen, T. N., Van Kha, T., Van Nam, B., & Nguyen, H. T. T., 2020. Sedimentary basement structure of the Southwest Sub-basin of the East Vietnam Sea by 3D direct gravity inversion. Marine Geophysical Research, 41(1), 7. https://doi.org/10.1007/s11001-020-09406-w
  • Okay, A. I., Tansel, I., Tuysuz, O., 2001. Obduction, subduction and collision as reflected in the Upper Cretaceous–Lower Eocene sedimentary record of western Turkey. Geological Magazine, 138(2), 117-142. https://doi.org/10.1017/S0016756801005088
  • Oruç, B, & Keskinsezer, A., 2008. Structural setting of the northeastern Biga Peninsula (Turkey) from tilt derivatives of gravity gradient tensors and magnitude of horizontal gravity components. Pure and Applied Geophysics, 165(9), 1913-1927. https://doi.org/10.1007/s00024-008-0407-8
  • Oruç, B., 2011. Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı-Central Anatolia Region, Turkey. Pure and Applied Geophysics, 168(10), 1769-1780. https://doi.org/10.1007/s00024-010-0211-0
  • Oruç, B., 2013. Yeraltı Kaynak Aramalarında Gravite Yöntemi (Matlab Kodları ve Çözümlü Örnekler). Umuttepe Yayınları, ISBN: 6055100070, Kocaeli, Türkiye.
  • Oruç, B., Sertçelik, İ., Kafadar, Ö., & Selim, H. H., 2013. Structural interpretation of the Erzurum Basin, eastern Turkey, using curvature gravity gradient tensor and gravity inversion of basement relief. Journal of Applied Geophysics, 88, 105-113. https://doi.org/10.1016/j.jappgeo.2012.10.006
  • Oruç, B., & Balkan, E., 2021. Stress field estimation by the geoid undulations of the Samos-Kuşadası Bay and implications for seismogenic behavior. Acta Geophysica, 69, 1137-1149. https://doi.org/10.1007/s11600-021-00604-7
  • Özyalın, Ş., Pamukçu, O., Gönenç, T., Yurdakul, A., & Sözbilir, H., 2012. Application of boundary analysis and modeling methods on Bouguer gravity data of the Gediz Graben and surrounding area in Western Anatolia and its tectonic implications. The Journal of the Balkan Geophysical Society, 15, 19-30.
  • Pallero, J. L. G., Fernández-Martínez, J. L., Bonvalot, S., & Fudym, O. , 2017. 3D gravity inversion and uncertainty assessment of basement relief via particle swarm optimization. Journal of Applied Geophysics, 139, 338-350. https://doi.org/10.1016/j.jappgeo.2017.02.004
  • Parker, R.L., 1977. Understanding inverse theory. The Annual Review of Earth and Planetary Sciences, 5, 35–64
  • Roest, W. R., Verhoef, J., & Pilkington, M., 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics, 57(1), 116-125. https://doi.org/10.1190/1.1443174
  • Saibi, H., Bloushi, K. A., & Gabr, A., 2021. Cavity extension investigations from gravity and electrical surveys at Mountain Hafeet (Al-Ain, UAE). In Sixth International Conference on Engineering Geophysics, Virtual, 25–28 October 2021 (pp. 321-324). Society of Exploration Geophysicists. https://doi.org/10.1190/iceg2021-081.1
  • Sangu, E., Gürer, Ö. F., & Gürer, A., 2020. Fault kinematic and Plio-Quaternary paleostress evolution of the Bakırçay basin, western Turkey. International Geology Review, 62(10), 1245-1261. https://doi.org/10.1080/00206814.2019.1642148
  • Sarı, C., & Şalk, M., 2006. Sediment thicknesses of the western Anatolia graben structures determined by 2D and 3D analysis using gravity data. Journal of Asian Earth Sciences, 26(1), 39-48. https://doi.org/10.1016/j.jseaes.2004.09.011
  • Tikhonov, A. N., 1977. Solutions of Ill-Posed Problems. VH Winston and Sons.
  • Uluğtekin, M., Gönenç, T., & Özdağ, Ö. C., 2022. Examining several edge detection techniques in gravity method together with 3D bedrock topography: A case study from the northern part of the İzmir/Turkey. Journal of Earth System Science, 131(3), 144. https://doi.org/10.1007/s12040-022-01891-4
  • Westerweel, J., Uzel, B., Langereis, C. G., Kaymakci, N., & Sözbilir, H., 2020. Paleomagnetism of the Miocene Soma basin and its structural implications on the central sector of a crustal-scale transfer zone in western Anatolia (Turkey). Journal of Asian Earth Sciences, 193, 104305. https://doi.org/10.1016/j.jseaes.2020.104305
  • Witter, J.B., Siler, D.L., Faulds, J.E., Hinz, N.H., 2016. 3D geophysical inversion modeling of gravity data to test the 3D geologic model of the Bradys geothermal area, Nevada, USA. Geothermal Energy, 4(1):14. https://doi.org/10.1186/s40517-016-0056-6
  • Yang, X., Becker, F., Knitter, D., & Schütt, B., 2021. An overview of the geomorphological characteristics of the Pergamon micro-region (Bakırçay and Madra River catchments, Aegean region, West Turkey). Land, 10(7), 667. https://doi.org/10.3390/land10070667
  • Yerli, B., 2022. Soma-Kırkağaç fayının paleosismolojisi ve uzun/kısa dönem kayma hızının değerlendirilmesi, Manisa, Batı Anadolu. Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi, İzmir, Türkiye, 177.
  • Yılmaz, Y., Çemen, İ., & Yılmaz, Y., 2017. Morphotectonic development of Anatolia and the surrounding regions. In Active global seismology: neotectonics and earthquake potential of the Eastern Mediterranean Region. American Geophysical Union Geophysical Monograph, 225, pp. 11-91
  • Yin, X., Yao, C., Wang, J., Xu, W., Zheng, Y., Li, Z., & Mu, W., 2024. A constrained 3D gravity inversion for complex density distributions: Application to Brazil rifted continental margin. Tectonophysics, 874, 230236. https://doi.org/10.1016/j.tecto.2024.230236
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Geological Sciences and Engineering (Other)
Journal Section Articles
Authors

Oya Tarhan Bal 0000-0003-3170-7052

Early Pub Date November 13, 2025
Publication Date November 14, 2025
Submission Date April 7, 2025
Acceptance Date July 18, 2025
Published in Issue Year 2025 Volume: 25 Issue: 6

Cite

APA Tarhan Bal, O. (2025). Bakırçay ve Kırkağaç Basenlerinin Gravite Verileriyle İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(6), 1458-1469.
AMA Tarhan Bal O. Bakırçay ve Kırkağaç Basenlerinin Gravite Verileriyle İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. November 2025;25(6):1458-1469.
Chicago Tarhan Bal, Oya. “Bakırçay Ve Kırkağaç Basenlerinin Gravite Verileriyle İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, no. 6 (November 2025): 1458-69.
EndNote Tarhan Bal O (November 1, 2025) Bakırçay ve Kırkağaç Basenlerinin Gravite Verileriyle İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 6 1458–1469.
IEEE O. Tarhan Bal, “Bakırçay ve Kırkağaç Basenlerinin Gravite Verileriyle İncelenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 6, pp. 1458–1469, 2025.
ISNAD Tarhan Bal, Oya. “Bakırçay Ve Kırkağaç Basenlerinin Gravite Verileriyle İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/6 (November2025), 1458-1469.
JAMA Tarhan Bal O. Bakırçay ve Kırkağaç Basenlerinin Gravite Verileriyle İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:1458–1469.
MLA Tarhan Bal, Oya. “Bakırçay Ve Kırkağaç Basenlerinin Gravite Verileriyle İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 6, 2025, pp. 1458-69.
Vancouver Tarhan Bal O. Bakırçay ve Kırkağaç Basenlerinin Gravite Verileriyle İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(6):1458-69.