Research Article
BibTex RIS Cite

Investigation of The Effect of Accelerated Quenching Process and Quenching Parameters on The Strength of Low-Carbon Railway Forged Steel

Year 2025, Volume: 25 Issue: 6, 1439 - 1446

Abstract

This study examined the impact of the 'Accelerated Cooling and Self-Tempering (AC-ST)' heat treatment on the mechanical and microstructural properties of S355J2 grade steel forgings, specifically the component known as the 'Lower Side Bearer.' The AC-ST heat treatment was conducted under 12 bar air pressure for a specific cooling duration. In the microstructure of untreated samples, a Ferrite+Pearlite phase was observed. With an increase in the cooling rate, the structure transformed into polygonal ferrite and/or acicular ferrite, followed by the formation of sorbite and/or upper bainite, and finally, martensite and/or lower bainite phases. It was noted that with an increasing cooling rate, martensite and bainite phases coexisted within the structure. At even higher cooling rates, the structure fully transformed into martensite. Additionally, the applied heat treatment was found to enhance the mechanical properties of the material. Especially, the highest value was obtained with 377 HB hardness value in the edge region of the sample with the highest cooling rate (1-fold distance). Similarly, the highest tensile strength (1002 N/mm²) and yield strength (663.93 N/mm²) were obtained in the 1-fold distance sample. However, in the 2-fold distance sample with lower hardness, the impact energy exhibited the highest value as 81.22 J at room temperature and 95.38 J at -20°C.

Supporting Institution

Karabuk University

Project Number

KBÜBAP-21-YL-046

Thanks

This study was financially supported by Karabük University, Scientific Research Projects Unit (KBÜBAP) with the number KBÜBAP-21-YL-046

References

  • Abdullah, T., Miskeen, A. B. and Al-Madani, M. A. 2022. The Effect of Quenching Media on the Hardness of Low Carbon Steel. Journal of Pure & Applied Sciences, 21(4), 199–205. https://doi.org/10.51984/jopas.v21i4.2152
  • Cao, Z., Wang, J., Zhou, S. and Yan, H. 2024. Effect of Cooling Process on Microstructure and Properties of Low Carbon Bainite Steel. Materials Science, 30(1), 14–25. https://doi.org/10.5755/j02.ms.34199
  • Chu, X., Chen, W., Liu, J., Pan, Y., Sun, H. and Zhao, Z. 2023. Effect of Quenching Temperature on the Strengthening Mechanism of Low-Carbon Microalloyed Quenching and Partitioning Steel. steel research international, 94(1), 2200601. https://doi.org/10.1002/srin.202200601
  • Hassan, A., Almtori, S. and Nema, A. 2022. Study the Effect of Quenching and Tempering Conditions on the Fatigue Coefficients for Low Carbon Steel. Basrah journal for engineering science, 22, 27–32. https://doi.org/10.33971/bjes.22.2.5
  • Hnizdil, M. and Chabicovsky, M. 2018. Experimental study of in-line heat treatment of 1.0577 structural steel. Procedia Manufacturing, 15, 1596–1603. https://doi.org/10.1016/j.promfg.2018.07.305
  • Kang, S. S., Bolouri, A. and Kang, C.-G. 2012. The effect of heat treatment on the mechanical properties of a low carbon steel (0.1%) for offshore structural application. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 226(3), 242–251. https://doi.org/10.1177/1464420712438502
  • Kominek, J., Pohanka, M. and Ondrouskova, J. 2013. Determination of Temperature Dependent Cooling Intensity for the Simulation of In-line Heat Treatment. Brno, 34–40.
  • Koo, B. S. 2021. A theoretical approach for estimating the effect of water-jet quenching on low-carbon steel beams. Scientific Reports, 11(1), 15401. https://doi.org/10.1038/s41598-021-94819-9
  • Kotrbacek, P. 2016. Improvement of S355J2 Steel Mechanical Properties by Heat Treatment. Lee, C.-H., Shin, H.-S. and Park, K.-T. 2012. Evaluation of high strength TMCP steel weld for use in cold regions. Journal of Constructional Steel Research, 74, 134–139. https://doi.org/10.1016/j.jcsr.2012.02.012
  • Meester, B. de. 1997. The Weldability of Modern Structural TMCP Steels. ISIJ International, 37(6), 537–551. https://doi.org/10.2355/isijinternational.37.537
  • Mladenović, S. and Petrović, J. 2022. The effect of different heat treatments on the mechanical properties of the steel forgings. Machines. Technologies. Materials., 16(2), 54–57.
  • Nasibullina, O. and Tyusenkov, A. 2020. Effect of annealing temperature on corrosion resistance of metal steel samples St52-3. Journal of Physics: Conference Series, 1582, 012066. https://doi.org/10.1088/1742-6596/1582/1/012066
  • Özlü, B., Akgün, M. and Demi̇R, H. 2023. Orta karbonlu DIN 41Cr4 çeliğin mikroyapısı, sertliği ve işlenebilirliği üzerine sıcak dövme ve soğutma koşullarının etkisinin değerlendirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(1), 231–244. https://doi.org/10.17341/gazimmfd.952713
  • Özlü, B., Demir, H., Türkmen, M. and Gündüz, S. 2021. Examining the machinability of 38MnVS6 microalloyed steel, cooled in different mediums after hot forging with the coated carbide and ceramic tool. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(22), 6228–6239. https://doi.org/10.1177/0954406220984498
  • Penha, R. N., Vatavuk, J., Couto, A. A., Pereira, S. A. de L., de Sousa, S. A. and Canale, L. de C. F. 2015. Effect of chemical banding on the local hardenability in AISI 4340 steel bar. Engineering Failure Analysis, 53, 59–68. https://doi.org/10.1016/j.engfailanal.2015.03.024
  • Rodrigues, P. C. M., Pereloma, E. V. and Santos, D. B. 2000. Mechanical properities of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling. Materials Science and Engineering: A, 283(1), 136–143. https://doi.org/10.1016/S0921-5093(99)00795-9
  • Ufuah, E. and Ikhayere, J. 2013. Elevated Temperature Mechanical Properties of Butt-Welded Connections Made with High Strength Steel Grades S355 and S460M. In Design, Fabrication and Economy of Metal Structures (Jármai, K. and Farkas, J., eds). Springer, Berlin, Heidelberg, 407–412. https://doi.org/10.1007/978-3-642-36691-8_62
  • Wang, Y., Wang, R., Yu, W. and Gao, Y. 2023. Effect of Heat Treatment Parameters on the Modification of Nano Residual Austenite of Low-Carbon Medium-Chromium Steel. Nanomaterials, 13(21), 2829. https://doi.org/10.3390/nano13212829
  • Zavdoveev, A., Poznyakov, V., Baudin, T., Rogante, M., Kim, H. S., Heaton, M., et al. 2021. Effect of heat treatment on the mechanical properties and microstructure of HSLA steels processed by various technologies. Materials Today Communications, 28, 102598. https://doi.org/10.1016/j.mtcomm.2021.102598
  • Zengin, H., Ahlatci, H., Oner, S., Demirkazik, M. E., Ozcelik, S., Turen, Y., et al. 2019. The Effect of Accelerated Cooling on Microstructure and Impact Strength of S355J2 Quality Steels Used in Power Transmission Line Construction. Universal Journal of Materials Science, 7(1), 1–5. https://doi.org/10.13189/ujms.2018.070101

Düşük Karbonlu Demiryolu Dövme Çeliğine Uygulanan Hızlandırılmış Su Verme İşlemi ve Su Verme Parametrelerinin Dayanıma Etkisinin İncelenmesi

Year 2025, Volume: 25 Issue: 6, 1439 - 1446

Abstract

Bu araştırmada, S355J2 kalite çelikten üretilen ve “Alt Oturma” olarak adlandırılan dövme parçaya, üretim sonrası uygulanan “Hızlandırılmış Soğutma ve Kendi Kendini Temperleme (HS-KT)” ısıl işleminin mikroyapısal ve mekanik özellikler üzerindeki etkisi değerlendirilmiştir. HS-KT ısıl işlemi, 12 bar hava basıncı altında belirli bir soğutma süresi boyunca gerçekleştirilmiştir. Isıl işlem uygulanmamış numunelerin mikroyapısında Ferrit+Perlit fazları tespit edilirken, soğutma hızı etkisi ile yapı, önce poligonal ferrit ve/veya iğnemsi ferrit, ardından sorbit ve/veya üst beynit, son olarak ise martenzit ve/veya alt beynit fazlarına dönüşmüştür. Soğutma hızının artmasıyla birlikte martenzit ve beynit fazlarının birlikte oluştuğu gözlemlenmiştir. Daha yüksek soğutma hızlarında ise yapının tamamen martenzite dönüştüğü belirlenmiştir. Ayrıca uygulanan ısıl işlemin, malzemenin mekanik özellikleri üzerinde olumlu yönde etkiler meydana getirdiği tespit edilmiştir. Özellikle en yüksek soğuma hızına (1 kat mesafe) sahip numunenin kenar bölgesinde 377 HB sertlik değeri ile en yüksek değer elde edilmiştir. Aynı şekilde en yüksek çekme dayanımı (1002 N/mm²) ve akma dayanımı (663,93 N/mm²) 1 kat mesafeli numunede elde edilmiştir. Fakat, daha düşük sertliğe sahip 2 kat mesafeli numunede darbe enerjisi oda sıcaklığında 81,22 J, -20°C'de 95,38 J olarak en büyük değeri sergilemiştir.

Supporting Institution

Karabük Üniversitesi

Project Number

KBÜBAP-21-YL-046

Thanks

Bu çalışma Karabük Üniversitesi Bilimsel Araştırma Projeleri Birimi (KBÜBAP) tarafından KBÜBAP-21-YL-046 numarasıyla finansal olarak desteklenmiştir.

References

  • Abdullah, T., Miskeen, A. B. and Al-Madani, M. A. 2022. The Effect of Quenching Media on the Hardness of Low Carbon Steel. Journal of Pure & Applied Sciences, 21(4), 199–205. https://doi.org/10.51984/jopas.v21i4.2152
  • Cao, Z., Wang, J., Zhou, S. and Yan, H. 2024. Effect of Cooling Process on Microstructure and Properties of Low Carbon Bainite Steel. Materials Science, 30(1), 14–25. https://doi.org/10.5755/j02.ms.34199
  • Chu, X., Chen, W., Liu, J., Pan, Y., Sun, H. and Zhao, Z. 2023. Effect of Quenching Temperature on the Strengthening Mechanism of Low-Carbon Microalloyed Quenching and Partitioning Steel. steel research international, 94(1), 2200601. https://doi.org/10.1002/srin.202200601
  • Hassan, A., Almtori, S. and Nema, A. 2022. Study the Effect of Quenching and Tempering Conditions on the Fatigue Coefficients for Low Carbon Steel. Basrah journal for engineering science, 22, 27–32. https://doi.org/10.33971/bjes.22.2.5
  • Hnizdil, M. and Chabicovsky, M. 2018. Experimental study of in-line heat treatment of 1.0577 structural steel. Procedia Manufacturing, 15, 1596–1603. https://doi.org/10.1016/j.promfg.2018.07.305
  • Kang, S. S., Bolouri, A. and Kang, C.-G. 2012. The effect of heat treatment on the mechanical properties of a low carbon steel (0.1%) for offshore structural application. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 226(3), 242–251. https://doi.org/10.1177/1464420712438502
  • Kominek, J., Pohanka, M. and Ondrouskova, J. 2013. Determination of Temperature Dependent Cooling Intensity for the Simulation of In-line Heat Treatment. Brno, 34–40.
  • Koo, B. S. 2021. A theoretical approach for estimating the effect of water-jet quenching on low-carbon steel beams. Scientific Reports, 11(1), 15401. https://doi.org/10.1038/s41598-021-94819-9
  • Kotrbacek, P. 2016. Improvement of S355J2 Steel Mechanical Properties by Heat Treatment. Lee, C.-H., Shin, H.-S. and Park, K.-T. 2012. Evaluation of high strength TMCP steel weld for use in cold regions. Journal of Constructional Steel Research, 74, 134–139. https://doi.org/10.1016/j.jcsr.2012.02.012
  • Meester, B. de. 1997. The Weldability of Modern Structural TMCP Steels. ISIJ International, 37(6), 537–551. https://doi.org/10.2355/isijinternational.37.537
  • Mladenović, S. and Petrović, J. 2022. The effect of different heat treatments on the mechanical properties of the steel forgings. Machines. Technologies. Materials., 16(2), 54–57.
  • Nasibullina, O. and Tyusenkov, A. 2020. Effect of annealing temperature on corrosion resistance of metal steel samples St52-3. Journal of Physics: Conference Series, 1582, 012066. https://doi.org/10.1088/1742-6596/1582/1/012066
  • Özlü, B., Akgün, M. and Demi̇R, H. 2023. Orta karbonlu DIN 41Cr4 çeliğin mikroyapısı, sertliği ve işlenebilirliği üzerine sıcak dövme ve soğutma koşullarının etkisinin değerlendirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(1), 231–244. https://doi.org/10.17341/gazimmfd.952713
  • Özlü, B., Demir, H., Türkmen, M. and Gündüz, S. 2021. Examining the machinability of 38MnVS6 microalloyed steel, cooled in different mediums after hot forging with the coated carbide and ceramic tool. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(22), 6228–6239. https://doi.org/10.1177/0954406220984498
  • Penha, R. N., Vatavuk, J., Couto, A. A., Pereira, S. A. de L., de Sousa, S. A. and Canale, L. de C. F. 2015. Effect of chemical banding on the local hardenability in AISI 4340 steel bar. Engineering Failure Analysis, 53, 59–68. https://doi.org/10.1016/j.engfailanal.2015.03.024
  • Rodrigues, P. C. M., Pereloma, E. V. and Santos, D. B. 2000. Mechanical properities of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling. Materials Science and Engineering: A, 283(1), 136–143. https://doi.org/10.1016/S0921-5093(99)00795-9
  • Ufuah, E. and Ikhayere, J. 2013. Elevated Temperature Mechanical Properties of Butt-Welded Connections Made with High Strength Steel Grades S355 and S460M. In Design, Fabrication and Economy of Metal Structures (Jármai, K. and Farkas, J., eds). Springer, Berlin, Heidelberg, 407–412. https://doi.org/10.1007/978-3-642-36691-8_62
  • Wang, Y., Wang, R., Yu, W. and Gao, Y. 2023. Effect of Heat Treatment Parameters on the Modification of Nano Residual Austenite of Low-Carbon Medium-Chromium Steel. Nanomaterials, 13(21), 2829. https://doi.org/10.3390/nano13212829
  • Zavdoveev, A., Poznyakov, V., Baudin, T., Rogante, M., Kim, H. S., Heaton, M., et al. 2021. Effect of heat treatment on the mechanical properties and microstructure of HSLA steels processed by various technologies. Materials Today Communications, 28, 102598. https://doi.org/10.1016/j.mtcomm.2021.102598
  • Zengin, H., Ahlatci, H., Oner, S., Demirkazik, M. E., Ozcelik, S., Turen, Y., et al. 2019. The Effect of Accelerated Cooling on Microstructure and Impact Strength of S355J2 Quality Steels Used in Power Transmission Line Construction. Universal Journal of Materials Science, 7(1), 1–5. https://doi.org/10.13189/ujms.2018.070101
There are 20 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Halime Kirtiş 0009-0002-6202-2048

Levent Elen 0000-0001-8740-7900

Yunus Türen 0000-0001-8755-1865

Project Number KBÜBAP-21-YL-046
Early Pub Date November 13, 2025
Publication Date November 14, 2025
Submission Date May 1, 2025
Acceptance Date July 15, 2025
Published in Issue Year 2025 Volume: 25 Issue: 6

Cite

APA Kirtiş, H., Elen, L., & Türen, Y. (2025). Investigation of The Effect of Accelerated Quenching Process and Quenching Parameters on The Strength of Low-Carbon Railway Forged Steel. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(6), 1439-1446.
AMA Kirtiş H, Elen L, Türen Y. Investigation of The Effect of Accelerated Quenching Process and Quenching Parameters on The Strength of Low-Carbon Railway Forged Steel. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. November 2025;25(6):1439-1446.
Chicago Kirtiş, Halime, Levent Elen, and Yunus Türen. “Investigation of The Effect of Accelerated Quenching Process and Quenching Parameters on The Strength of Low-Carbon Railway Forged Steel”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, no. 6 (November 2025): 1439-46.
EndNote Kirtiş H, Elen L, Türen Y (November 1, 2025) Investigation of The Effect of Accelerated Quenching Process and Quenching Parameters on The Strength of Low-Carbon Railway Forged Steel. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 6 1439–1446.
IEEE H. Kirtiş, L. Elen, and Y. Türen, “Investigation of The Effect of Accelerated Quenching Process and Quenching Parameters on The Strength of Low-Carbon Railway Forged Steel”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 6, pp. 1439–1446, 2025.
ISNAD Kirtiş, Halime et al. “Investigation of The Effect of Accelerated Quenching Process and Quenching Parameters on The Strength of Low-Carbon Railway Forged Steel”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/6 (November2025), 1439-1446.
JAMA Kirtiş H, Elen L, Türen Y. Investigation of The Effect of Accelerated Quenching Process and Quenching Parameters on The Strength of Low-Carbon Railway Forged Steel. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:1439–1446.
MLA Kirtiş, Halime et al. “Investigation of The Effect of Accelerated Quenching Process and Quenching Parameters on The Strength of Low-Carbon Railway Forged Steel”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 6, 2025, pp. 1439-46.
Vancouver Kirtiş H, Elen L, Türen Y. Investigation of The Effect of Accelerated Quenching Process and Quenching Parameters on The Strength of Low-Carbon Railway Forged Steel. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(6):1439-46.