Research Article
BibTex RIS Cite

İnsan kaynakları süreçlerinde yapay zekâ modellerinin uygulanmasına bir örnek

Year 2024, Volume: 26 Issue: Özel Sayı, 101 - 116, 21.10.2024
https://doi.org/10.33707/akuiibfd.1443940

Abstract

İş ilanı oluşturmak ve bu iş ilanları arasından uygun adayları seçmek zorlu bir süreçtir. Bu süreç insan kaynaklarının iş yükünü arttırmakta, sürecin yavaş ilerlemesine neden olmaktadır. İnsan kaynakları departmanlarının etkin bir şekilde iş ilanı oluşturabilmesi ve bu ilanlara yapılan başvuruların özgeçmişlerinin değerlendirilmesi süreçlerinde bilgi işlem teknolojilerinden yararlanılması büyük bir öneme sahiptir. Bu çalışma, insan kaynaklarına yardımcı olabilecek, iki farklı teknolojinin tanıtımını ve analizini yapmaktadır. Bilgi işlem teknolojileri alanında iş ilanlarının hazırlanması sürecinde, ilk aşamada kelime bulutu yöntemi kullanılarak ilan metinlerinde hangi anahtar kelimelerin vurgulanması gerektiğine karar verilir. İkinci aşamada, başvuran adayların özgeçmişleri, sınıflandırma amacıyla CNN (Convolutional Neural Network), GRU (Gated Recurrent Unit) ve LSTM (Long Short-Term Memory) gibi üç farklı derin öğrenme modeli kullanılarak analiz edilmiştir. Bu modellerin performansları, doğruluk, MCC, F_1 score ve MSE gibi metrikler kullanılarak değerlendirilirken, açıklanabilir yapay zekâ ile modellerin karar verme süreçleri de incelenmiştir. Bu çerçevede, %99'luk bir doğruluk başarısı sergileyen GRU modeli, bu çalışma kapsamında ve literatürde elde edilen en üstün sonucu sağlamıştır. Bu araştırma, derin öğrenme modellerinin, insan kaynakları alanında özgeçmiş sınıflandırma ve aday eşleştirme süreçlerinde yüksek doğruluk oranları ve verimlilik sağladığını göstermektedir. Ayrıca, kelime bulutu yöntemi kullanılarak en uygun anahtar kelimelerin belirlenerek ilanların oluşturulabileceğini de anlatmaktadır.

References

  • Ali, I., Mughal, N., Khand, Z. K., Ahmed, J., & Mujtaba, G. (2022). Resume classification system using natural language processing and machine learning techniques. Mehran University Research Journal Of Engineering & Technology, 41(1), 65-79.
  • Anusha, K. O. V., Dhar, A., Dixit, S., Saraf, A., & Lonial, I. A. N. (2023). Automated personality-based candidate shortlisting using machine learning and natural language processing. 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS), Trichy, India, 2023, pp. 1179-1184. https://doi.org/10.1109/ICAISS58487.2023.10250633
  • Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A. F., & Nielsen, H. (2000). Assessing the accuracy of prediction algorithms for classification: An overview. Bioinformatics, 16(5), 412-424.
  • Bharadwaj, S., Varun, R., Aditya, P. S., Nikhil, M., & Babu, G. C. (2022). Resume screening using NLP and LSTM. 2022 International Conference on Inventive Computation Technologies (ICICT), Nepal, 2022, pp. 238-241. https://doi.org/10.1109/ICICT54344.2022.9850889
  • Cho, K., Merriënboer, B. V., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724-1734. https://doi.org/10.3115/v1/D14-1179
  • Haddad, R., & Mercier-Laurent, E. (2021). Curriculum vitae (CVs) evaluation using machine learning approach. In E. Mercier-Laurent, M. Ö. Kayalica, & M. L. Owoc (Eds.), Artificial intelligence for knowledge management (Vol. 614). Springer, Cham. https://doi.org/10.1007/978-3-030-80847-1_4
  • Harsha, T. M., Moukthika, G. S., Sai, D. S., Pravallika, M. N. R., Anamalamudi, S., & Enduri, M. (2022). Automated resume screener using natural language processing (NLP). 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 2022, pp. 1772-1777. https://doi.org/10.1109/ICOEI53556.2022.9777194
  • Hossin, H., & M. N., S. (2015). A review on evaluation metrics for data classification evaluations. International Journal of Data Mining & Knowledge Management Process, 5, 01–11. https://doi.org/10.5121/ijdkp.2015.5201
  • Goutte, C., & Gaussier, E. (2005). A probabilistic interpretation of precision, recall, and F-score, with implication for evaluation. Advances in Information Retrieval, pp. 345-359.
  • Mezhoudi, N., Aşghamdi, R., Aljunaid, R., Krichna, G., & Düştegör, D. (2021). Employability prediction: A survey of current approaches, research challenges and applications. Journal of Ambient Intelligence and Humanized Computing, 14, 1489-1505. https://doi.org/10.1007/s12652-021-03276-9
  • Mzali, W. (2023, February 27). Resume dataset. Retrieved on 18 December 2023 from https://www.kaggle.com/datasets/wahib04/multilabel-resume-dataset
  • Pal, R., Shaikh, S., Satpute, S., & Bhagwat, S. (2022). Resume classification using various machine learning algorithms. In ITM Web Conf. https://doi.org/10.1051/itmconf/20224403011
  • Pant, D., Pokhrel, D., & Poudyal, R. (2022). Automatic software engineering position resume screening using natural language processing, word matching, character positioning, and regex. 2022 5th International Conference on Advanced Systems and Emergent Technologies (ICASET), Hammamet, Tunisia, 2022, pp. 44-48. https://doi.org/10.1109/IC_ASET53395.2022.9765916
  • Pudasaini, S., Shakya, S., Lamichhane, S., Adhikari, S., Tamang, A., & Adhikari, S. (2022). Scoring of resume and job description using Word2vec and matching them using Gale–Shapley algorithm. In I. Jeena Jacob, F. M. Gonzalez-Longatt, S. Kolandapalayam Shanmugam, & I. Izonin (Eds.), Expert clouds and applications (Vol. 209). Springer, Singapore. https://doi.org/10.1007/978-981-16-2126-0_55
  • Reza, Md. T., & Zaman, Md. S. (2022). Analyzing CV/resume using natural language processing and machine learning.
  • Roy, P. K., Chowdhary, S. S., & Bhatia, R. (2020). A machine learning approach for automation of resume recommendation system. Procedia Computer Science, 167, 2318-2327. https://doi.org/10.1016/j.procs.2020.03.284
  • Smith, J. D. (2021). Recruitment strategy. In A. B. Johnson & C. D. Lee (Eds.), The Oxford Handbook of Human Resource Management (pp. 123-145). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198833783.001.0001
  • Poulose, S., Bhattacharjee, B., & Chakravorty, A. (2024). Determinants and drivers of change for digital transformation and digitalization in human resource management: A systematic literature review and conceptual framework building. Management Review Quarterly. https://doi.org/10.1007/s11301-024-00423-2
  • Valdez-Almada, R., Rodriguez-Elias, O. M., Rose-Gomez, C. E., Velazquez-Mendoza, M. D. J., & Gonzalez-Lopez, S. (2017). Natural language processing and text mining to identify knowledge profiles for software engineering positions: Generating knowledge profiles from resumes. 2017 5th International Conference in Software Engineering Research and Innovation (CONISOFT), Merida, Mexico, 2017, pp. 97-106. https://doi.org/10.1109/CONISOFT.2017.00019
  • Wallach, D., & Goffinet, B. (1989). Mean squared error of prediction as a criterion for evaluating and comparing system models. Ecological Modelling, 44(3-4), 299-306. https://doi.org/10.1016/0304-3800(89)90035-5
  • Weerasinghe, R. L., Perera, N. N., Warusawithana, S. P., Hindakaraldeniya, T. M., & Ganegoda, G. U. (2023). 2023 8th International Conference on Information Technology Research (ICITR). 2023 8th International Conference on Information Technology Research (ICITR), Colombo, Sri Lanka, 2023, pp. 1-6. https://doi.org/10.1109/ICITR61062.2023.10382755

An example of the application of artificial intelligence models in human resources processes

Year 2024, Volume: 26 Issue: Özel Sayı, 101 - 116, 21.10.2024
https://doi.org/10.33707/akuiibfd.1443940

Abstract

Creating job postings and selecting suitable candidates among these job postings is a challenging process. This process increases the workload of human resources and causes the process to proceed slowly. It is of great importance for human resources departments to utilize information processing technologies to create job postings effectively and to evaluate the CVs of applicants to these postings. This study introduces and analyzes two different technologies that can help human resources. In the process of preparing job advertisements in the field of IT, in the first stage, the word cloud method is used to decide which keywords should be emphasized in the advertisement texts. In the second stage, the resumes of the applicants are analyzed using three different deep learning models such as CNN (Convolutional Neural Network), GRU (Gated Recurrent Unit), and LSTM (Long Short-Term Memory) for classification purposes. While the performance of these models is evaluated using metrics such as accuracy, MCC, F_1 score, and MSE, the decision-making processes of the models with explainable artificial intelligence are also analyzed. In this context, the GRU model, which achieved an accuracy of 99%, provided the most superior result in this study and the literature. This research shows that deep learning models provide high accuracy rates and efficiency in human resources resume classification and candidate matching processes. It also explains that using the word cloud method, the most appropriate keywords can be identified, and advertisements can be created.

References

  • Ali, I., Mughal, N., Khand, Z. K., Ahmed, J., & Mujtaba, G. (2022). Resume classification system using natural language processing and machine learning techniques. Mehran University Research Journal Of Engineering & Technology, 41(1), 65-79.
  • Anusha, K. O. V., Dhar, A., Dixit, S., Saraf, A., & Lonial, I. A. N. (2023). Automated personality-based candidate shortlisting using machine learning and natural language processing. 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS), Trichy, India, 2023, pp. 1179-1184. https://doi.org/10.1109/ICAISS58487.2023.10250633
  • Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A. F., & Nielsen, H. (2000). Assessing the accuracy of prediction algorithms for classification: An overview. Bioinformatics, 16(5), 412-424.
  • Bharadwaj, S., Varun, R., Aditya, P. S., Nikhil, M., & Babu, G. C. (2022). Resume screening using NLP and LSTM. 2022 International Conference on Inventive Computation Technologies (ICICT), Nepal, 2022, pp. 238-241. https://doi.org/10.1109/ICICT54344.2022.9850889
  • Cho, K., Merriënboer, B. V., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724-1734. https://doi.org/10.3115/v1/D14-1179
  • Haddad, R., & Mercier-Laurent, E. (2021). Curriculum vitae (CVs) evaluation using machine learning approach. In E. Mercier-Laurent, M. Ö. Kayalica, & M. L. Owoc (Eds.), Artificial intelligence for knowledge management (Vol. 614). Springer, Cham. https://doi.org/10.1007/978-3-030-80847-1_4
  • Harsha, T. M., Moukthika, G. S., Sai, D. S., Pravallika, M. N. R., Anamalamudi, S., & Enduri, M. (2022). Automated resume screener using natural language processing (NLP). 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 2022, pp. 1772-1777. https://doi.org/10.1109/ICOEI53556.2022.9777194
  • Hossin, H., & M. N., S. (2015). A review on evaluation metrics for data classification evaluations. International Journal of Data Mining & Knowledge Management Process, 5, 01–11. https://doi.org/10.5121/ijdkp.2015.5201
  • Goutte, C., & Gaussier, E. (2005). A probabilistic interpretation of precision, recall, and F-score, with implication for evaluation. Advances in Information Retrieval, pp. 345-359.
  • Mezhoudi, N., Aşghamdi, R., Aljunaid, R., Krichna, G., & Düştegör, D. (2021). Employability prediction: A survey of current approaches, research challenges and applications. Journal of Ambient Intelligence and Humanized Computing, 14, 1489-1505. https://doi.org/10.1007/s12652-021-03276-9
  • Mzali, W. (2023, February 27). Resume dataset. Retrieved on 18 December 2023 from https://www.kaggle.com/datasets/wahib04/multilabel-resume-dataset
  • Pal, R., Shaikh, S., Satpute, S., & Bhagwat, S. (2022). Resume classification using various machine learning algorithms. In ITM Web Conf. https://doi.org/10.1051/itmconf/20224403011
  • Pant, D., Pokhrel, D., & Poudyal, R. (2022). Automatic software engineering position resume screening using natural language processing, word matching, character positioning, and regex. 2022 5th International Conference on Advanced Systems and Emergent Technologies (ICASET), Hammamet, Tunisia, 2022, pp. 44-48. https://doi.org/10.1109/IC_ASET53395.2022.9765916
  • Pudasaini, S., Shakya, S., Lamichhane, S., Adhikari, S., Tamang, A., & Adhikari, S. (2022). Scoring of resume and job description using Word2vec and matching them using Gale–Shapley algorithm. In I. Jeena Jacob, F. M. Gonzalez-Longatt, S. Kolandapalayam Shanmugam, & I. Izonin (Eds.), Expert clouds and applications (Vol. 209). Springer, Singapore. https://doi.org/10.1007/978-981-16-2126-0_55
  • Reza, Md. T., & Zaman, Md. S. (2022). Analyzing CV/resume using natural language processing and machine learning.
  • Roy, P. K., Chowdhary, S. S., & Bhatia, R. (2020). A machine learning approach for automation of resume recommendation system. Procedia Computer Science, 167, 2318-2327. https://doi.org/10.1016/j.procs.2020.03.284
  • Smith, J. D. (2021). Recruitment strategy. In A. B. Johnson & C. D. Lee (Eds.), The Oxford Handbook of Human Resource Management (pp. 123-145). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198833783.001.0001
  • Poulose, S., Bhattacharjee, B., & Chakravorty, A. (2024). Determinants and drivers of change for digital transformation and digitalization in human resource management: A systematic literature review and conceptual framework building. Management Review Quarterly. https://doi.org/10.1007/s11301-024-00423-2
  • Valdez-Almada, R., Rodriguez-Elias, O. M., Rose-Gomez, C. E., Velazquez-Mendoza, M. D. J., & Gonzalez-Lopez, S. (2017). Natural language processing and text mining to identify knowledge profiles for software engineering positions: Generating knowledge profiles from resumes. 2017 5th International Conference in Software Engineering Research and Innovation (CONISOFT), Merida, Mexico, 2017, pp. 97-106. https://doi.org/10.1109/CONISOFT.2017.00019
  • Wallach, D., & Goffinet, B. (1989). Mean squared error of prediction as a criterion for evaluating and comparing system models. Ecological Modelling, 44(3-4), 299-306. https://doi.org/10.1016/0304-3800(89)90035-5
  • Weerasinghe, R. L., Perera, N. N., Warusawithana, S. P., Hindakaraldeniya, T. M., & Ganegoda, G. U. (2023). 2023 8th International Conference on Information Technology Research (ICITR). 2023 8th International Conference on Information Technology Research (ICITR), Colombo, Sri Lanka, 2023, pp. 1-6. https://doi.org/10.1109/ICITR61062.2023.10382755
There are 21 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence (Other)
Journal Section Research Articles
Authors

Selim Sürücü 0000-0002-8754-3846

Berk Küçük 0009-0005-3500-4540

Mustafa Kemal Aydın 0009-0000-0306-9730

Early Pub Date September 16, 2024
Publication Date October 21, 2024
Submission Date February 27, 2024
Acceptance Date August 31, 2024
Published in Issue Year 2024 Volume: 26 Issue: Özel Sayı

Cite

APA Sürücü, S., Küçük, B., & Aydın, M. K. (2024). An example of the application of artificial intelligence models in human resources processes. Afyon Kocatepe Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 26(Özel Sayı), 101-116. https://doi.org/10.33707/akuiibfd.1443940

download