Derleme
BibTex RIS Kaynak Göster

Matematik Öğrenme Güçlüğü ve Sayı Hissi

Yıl 2022, Cilt: 1 Sayı: 1, 105 - 127, 29.07.2022

Öz

Sayı hissi, bir kişinin sayı ve işlemlere ilişkin genel anlayışının yanı sıra bu anlayışı esnek yollarla matematiksel yargılarda bulunmak ve sayılar ve işlemlerle başa çıkmak için yararlı stratejiler geliştirmek için kullanma yeteneği ve eğilimini ifade eder. Matematik öğrenme güçlüğü (Diskalkuli), normal ve normalüstü zekâya, duygusal istikrara, eğitsel fırsatlara ve motivasyona rağmen aritmetik becerilerin edinimini etkileyen, netice olarak bireyin başarısının beklenen performans düzeyinin altında kalması olarak kendini gösteren özel bir öğrenme güçlüğü olarak tanımlanabilir. Diskalkulik çocuklar matematiksel düşünmeyle meşgul olurken, sayı hissi kendini çeşitli şekillerde gösterir. Özellikle, çocukların yazılı hesaplama, zihinsel hesaplama, hesap makineleri ve tahmin dahil olmak üzere hesaplama yöntemlerini seçmesi, geliştirmesi ve kullanmasında önemli bir etkendir. Bu araştırma ile matematik öğrenme güçlüğü ile sayı hissi arasındaki ilişkiyi açıklamak amaçlanmıştır. Araştırma kapsamında 1-8. Sınıfa devam eden matematik öğrenme güçlüğü olan veya matematik öğrenme güçlüğü olma riski altında olan çocukların sayı hislerinin geliştirmesine yönelik müdahalelerin yer aldığı üç araştırma incelenmiştir.

Kaynakça

  • Ashcraft, M. H. 1982. The development of mental arithmetic: A chronometric approach. Developmental Review 2 (3) (September): 213–236. https://doi.org/10.1016/0273-2297(82)90012-0
  • Berch, D. B. (2005). Making sense of number sense: Implications for children with mathematical disabilities. Journal of learning disabilities, 38(4), 333-339. https://doi.org/10.1177/00222194050380040901
  • Bruner, J. (1997). Celebrating divergence: Piaget and Vygotsky. Human development, 40(2), 63-73. https://doi.org/10.1159/000278705
  • Butterworth, B. (2018). Dyscalculia: From science to education. London: Routledge. https://doi.org/10.4324/9781315538112
  • Butterworth, B. (2005). The development of arithmetical abilities. Journal of child psychology and psychiatry, 46(1), 3-18. https://doi.org/10.1111/j.1469-7610.2004.00374.x
  • Büttner, G., & Hasselhorn, M. (2011). Learning disabilities: debates on definitions, causes, subtypes, and responses. International Journal of Disability, Development and Education, 58(1), 75 87. https://doi.org/10.1080/1034912X.2011.548476
  • Case, R. (1998, April). A psychological model of number sense and its development. In annual meeting of the American Educational Research Association, San Diego.
  • Dehaene, S. (2011). The number sense. Oxford University Press.
  • Dehaene, S. (2003). The neural basis of the Weber–Fechner law: a logarithmic mental number line. Trends in cognitive sciences, 7(4), 145-147. https://doi.org/10.1016/S1364 6613(03)00055-X
  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3), 487–506. doi: 10.1080/02643290244000239
  • Dehaene, S. (2001). Précis of the number sense. Mind & language, 16(1), 16-36. https://doi.org/10.1111/1468 0017.00154
  • Frances, A., First, M. B., & Pincus, H. A. (1995). DSM-IV guidebook. American Psychiatric Association.: Psychiatric Pub Inc.
  • Geary, D.C. (2006). Dyscalculia at an early age: characteristics and potential influence on socio emotional development. Encyclopedia on Early Childhood Development, 15, 1-4.
  • Geary, D. C., & Hoard, M. K. (2005). Learning disabilities in arithmetic and mathematics. Handbook of mathematical cognition, Newyork: Psychology Press, 253-268. https://doi.org/10.4324/9780203998045
  • Geary, D. C. (2004). Mathematics and learning disabilities. Journal of learning disabilities, 37(1), 4-15. https://doi.org/10.1177/00222194040370010201
  • Geary, D. C., Hamson, C. O., & Hoard, M. K. (2000). Numerical and arithmetical cognition: A longitudinal study of process and concept deficits in children with learning disability. Journal of experimental child psychology, 77(3), 236-263.
  • Geary, D. C., Hoard, M. K., & Hamson, C. O. (1999). Numerical and arithmetical cognition: Patterns of functions and deficits in children at risk for a mathematical disability. Journal of experimental child psychology, 74(3), 213-239. https://doi.org/10.1006/jecp.2000.2561
  • Geary, D. C. (1995). Reflections of evolution and culture in children's cognition: Implications for mathematical development and instruction. American psychologist, 50(1), 24.
  • Geary, D. C., Brown, S. C., & Samaranayake, V. A. (1991). Cognitive addition: A short longitudinal study of strategy choice and speed-of-processing differences in normal and mathematically disabled children. Developmental psychology, 27(5), 787. https://doi.org/10.1037/00121649.27.5.787
  • Gersten, R., & Chard, D. (1999). Number sense: Rethinking arithmetic instruction for students with mathematical disabilities. The Journal of special education, 33(1), 18-28. https://doi.org/10.1177/002246699903300102
  • Hain, L. A., Hale, J. B., & Kendorski, J. G. (2009). The comorbidity of psychopathology in cognitive and academic SLD subtypes. In S. G. Feifer & G. Rattan (Eds.), Emotional disorders: A neuropsychological, psychopharmacological, and educational perspective (pp. 199–225). School Neuropsych Press.
  • Hanich, L. B., Jordan, N. C., Kaplan, D., & Dick, J. (2001). Performance across different areas of mathematical cognition in children with learning difficulties. Journal of educational psychology, 93(3),615. https://doi.org/10.1037/0022-0663.93.3.615
  • Jordan, N. C., & Levine, S. C. (2009). Socioeconomic variation, number competence, and mathematics learning difficulties in young children. Developmental disabilities research reviews, 15(1),6068. https://doi.org/10.1002/ddrr.46
  • Jordan, N. C., & Hanich, L. B. (2003). Characteristics of children with moderate mathematics deficiencies: A longitudinal perspective. Learning Disabilities Research & Practice, 18(4), 213-221. https://doi.org/10.1111/1540-5826.00076
  • Karande, S., & Kulkarni, M. (2005). Poor school performance. The Indian Journal of Pediatrics, 72(11),961-967.
  • Kirk, S. A., & Bateman, B. (1962). Diagnosis and remediation of learning disabilities. Exceptional children, 29(2), 73-78. https://doi.org/10.1177/001440296202900204
  • Koontz, K. L. (1996). Identifying simple numerical stimuli: Processing inefficiencies exhibited by arithmetic learning disabled children. Mathematical Cognition, 2(1), 1-24. https://doi.org/10.1080/135467996387525
  • Kucian, K., & von Aster, M. (2015). Developmental dyscalculia. European journal of pediatrics, 174(1), 1-13. https://doi.org/10.1007/s00431-014-2455-7
  • Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93(2), 99-125. https://doi.org/10.1016/j.cognition.2003.11.004
  • Mabbott, D. J., & Bisanz, J. (2008). Computational skills, working memory, and conceptual knowledge in older children with mathematics learning disabilities. Journal of Learning Disabilities, 41, 15–28. https://doi.org/10.1177/0022219407311003
  • Macke, T. J., & Case, D. A. (1998). Modeling unusual nucleic acid structures. https://doi.org/10.1021/bk-1998-0682.ch024
  • Mazzocco, M. M., Devlin, K. T., & McKenney, S. J. (2008). Is it a fact? Timed arithmetic performance of children with mathematical learning disabilities (MLD) varies as a function of how MLD is defined. Developmental neuropsychology, 33(3), 318-344. https://doi.org/10.1080/87565640801982403
  • Mercer, C. D., & Pullen, P.C. (2005). Students with learning disabilities (6th ed.). NJ: Pearson. https://doi.org/10.4324/9780203837306
  • Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215(5109), 1519-1520.
  • Mussolin, C., Mejias, S., & Noël, M. P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115(1), 10-25. https://doi.org/10.1016/j.cognition.2009.10.006
  • Örgütü, D. S. (1992). ICD-10 Ruhsal ve davranışsal bozukluklar sınıflandırması, (Çev.F. Çuhadaroğlu ve ark.). Türkiye Sinir ve Ruh Sağlığı Derneği Yayınları.
  • Öztürk, M., Durmaz, B., & Derya, C. A. N. (2019). Sayı konuşmalarının diskalkulik ortaokul öğrencilerinin sayı duyularına etkisi. Kastamonu Eğitim Dergisi, 27(6), 2467-2480. https://doi.org/10.24106/kefdergi.3337
  • Passolunghi, M. C., & Siegel, L. S. (2004). Working memory and access to numerical information inchildren with disability in mathematics. Journal of experimental child psychology, 88(4), 348 367. https://doi.org/10.1016/j.jecp.2004.04.002
  • Price, G. R., & Ansari, D. (2013). Dyscalculia: Characteristics, causes, and treatments. Numeracy, 6(1), 1-16. http://dx.doi.org/10.5038/1936-4660.6.1.2
  • Robinson, C., Menchetti, B., & Torgesen, J. (2002). Toward a two-factor theory of one type of mathematics disabilities. Learning Disabilities Research & Practice, 17, 81–89. https://doi.org/10.1111/1540-5826.00035
  • Rotem, A., & Henik, A. (2020). Multiplication facts and number sense in children with mathematics learning disabilities and typical achievers. Cognitive Development, 54, 100866. https://doi.org/10.1016/j.cogdev.2020.100866
  • Rousselle, L., & Noël, M.-P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361–395. https://doi.org/10.1016/j.cognition.2006.01.005
  • Rubinsten O, Henik A (2009) Developmental dyscalculia: heterogeneity might not mean different mechanisms. Trends Cogn Sci 13(2):92–99 https://doi.org/10.1016/j.tics.2008.11.002
  • Rubinsten, O., & Henik, A. (2005). Automatic activation of internal magnitudes: a study of developmental dyscalculia. Neuropsychology, 19(5), 641. https://doi.org/10.1037/0894-4105.19.5.641
  • Shalev, R. S. (2004). Developmental dyscalculia. Journal of child neurology, 19(10), 765-771. https://doi.org/10.1177/08830738040190100601
  • Von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental medicine & child neurology, 49(11), 868-873. https://doi.org/10.1111/j.1469-8749.2007.00868.x
  • Van der Sluis, S., De Jong, P. F., & Van der Leij, A. (2004). Inhibition and shifting in children with learning deficits in arithmetic and reading. Journal of experimental child psychology, 87(3), 239-266. https://doi.org/10.1016/j.jecp.2003.12.002
  • Wong, T. T. Y., Ho, C. S. H., & Tang, J. (2017). Defective number sense or impaired access? Differential impairments in different subgroups of children with mathematics difficulties. Journal of learning disabilities, 50(1), 49-61. https://doi.org/10.1177/0022219415588851
  • World Health Organization. (1992). The ICD-10 classification of mental and behavioral disorders: Clinical descriptions and diagnostic guidelines. Geneva, Switzerland.

Mathematics Learning Disability and Number Sense

Yıl 2022, Cilt: 1 Sayı: 1, 105 - 127, 29.07.2022

Öz

Number sense refers to a person's general understanding of numbers and operations, as well as the ability and disposition to use this understanding to make mathematical judgments in flexible ways and to develop useful strategies for dealing with numbers and operations. Mathematics learning disability (Dyscalculia) can be defined as a special learning disability that affects the acquisition of arithmetic skills despite normal and high intelligence, emotional stability, educational opportunities and motivation, and as a result, the success of the individual is below the expected performance level. As children with dyscalculia engage in mathematical thinking, the sense of number manifests itself in various ways. In particular, it is an important factor in children's selection, development, and use of computational methods, including written calculation, mental calculation, calculators, and estimation. The aim of this research is to explain the relationship between math learning disability and number sense. Within the scope of the research, three studies that included interventions for the development of number sense of children with mathematics learning disability or at risk of having mathematics learning disability who is 1-8 grades were examined. 

Kaynakça

  • Ashcraft, M. H. 1982. The development of mental arithmetic: A chronometric approach. Developmental Review 2 (3) (September): 213–236. https://doi.org/10.1016/0273-2297(82)90012-0
  • Berch, D. B. (2005). Making sense of number sense: Implications for children with mathematical disabilities. Journal of learning disabilities, 38(4), 333-339. https://doi.org/10.1177/00222194050380040901
  • Bruner, J. (1997). Celebrating divergence: Piaget and Vygotsky. Human development, 40(2), 63-73. https://doi.org/10.1159/000278705
  • Butterworth, B. (2018). Dyscalculia: From science to education. London: Routledge. https://doi.org/10.4324/9781315538112
  • Butterworth, B. (2005). The development of arithmetical abilities. Journal of child psychology and psychiatry, 46(1), 3-18. https://doi.org/10.1111/j.1469-7610.2004.00374.x
  • Büttner, G., & Hasselhorn, M. (2011). Learning disabilities: debates on definitions, causes, subtypes, and responses. International Journal of Disability, Development and Education, 58(1), 75 87. https://doi.org/10.1080/1034912X.2011.548476
  • Case, R. (1998, April). A psychological model of number sense and its development. In annual meeting of the American Educational Research Association, San Diego.
  • Dehaene, S. (2011). The number sense. Oxford University Press.
  • Dehaene, S. (2003). The neural basis of the Weber–Fechner law: a logarithmic mental number line. Trends in cognitive sciences, 7(4), 145-147. https://doi.org/10.1016/S1364 6613(03)00055-X
  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3), 487–506. doi: 10.1080/02643290244000239
  • Dehaene, S. (2001). Précis of the number sense. Mind & language, 16(1), 16-36. https://doi.org/10.1111/1468 0017.00154
  • Frances, A., First, M. B., & Pincus, H. A. (1995). DSM-IV guidebook. American Psychiatric Association.: Psychiatric Pub Inc.
  • Geary, D.C. (2006). Dyscalculia at an early age: characteristics and potential influence on socio emotional development. Encyclopedia on Early Childhood Development, 15, 1-4.
  • Geary, D. C., & Hoard, M. K. (2005). Learning disabilities in arithmetic and mathematics. Handbook of mathematical cognition, Newyork: Psychology Press, 253-268. https://doi.org/10.4324/9780203998045
  • Geary, D. C. (2004). Mathematics and learning disabilities. Journal of learning disabilities, 37(1), 4-15. https://doi.org/10.1177/00222194040370010201
  • Geary, D. C., Hamson, C. O., & Hoard, M. K. (2000). Numerical and arithmetical cognition: A longitudinal study of process and concept deficits in children with learning disability. Journal of experimental child psychology, 77(3), 236-263.
  • Geary, D. C., Hoard, M. K., & Hamson, C. O. (1999). Numerical and arithmetical cognition: Patterns of functions and deficits in children at risk for a mathematical disability. Journal of experimental child psychology, 74(3), 213-239. https://doi.org/10.1006/jecp.2000.2561
  • Geary, D. C. (1995). Reflections of evolution and culture in children's cognition: Implications for mathematical development and instruction. American psychologist, 50(1), 24.
  • Geary, D. C., Brown, S. C., & Samaranayake, V. A. (1991). Cognitive addition: A short longitudinal study of strategy choice and speed-of-processing differences in normal and mathematically disabled children. Developmental psychology, 27(5), 787. https://doi.org/10.1037/00121649.27.5.787
  • Gersten, R., & Chard, D. (1999). Number sense: Rethinking arithmetic instruction for students with mathematical disabilities. The Journal of special education, 33(1), 18-28. https://doi.org/10.1177/002246699903300102
  • Hain, L. A., Hale, J. B., & Kendorski, J. G. (2009). The comorbidity of psychopathology in cognitive and academic SLD subtypes. In S. G. Feifer & G. Rattan (Eds.), Emotional disorders: A neuropsychological, psychopharmacological, and educational perspective (pp. 199–225). School Neuropsych Press.
  • Hanich, L. B., Jordan, N. C., Kaplan, D., & Dick, J. (2001). Performance across different areas of mathematical cognition in children with learning difficulties. Journal of educational psychology, 93(3),615. https://doi.org/10.1037/0022-0663.93.3.615
  • Jordan, N. C., & Levine, S. C. (2009). Socioeconomic variation, number competence, and mathematics learning difficulties in young children. Developmental disabilities research reviews, 15(1),6068. https://doi.org/10.1002/ddrr.46
  • Jordan, N. C., & Hanich, L. B. (2003). Characteristics of children with moderate mathematics deficiencies: A longitudinal perspective. Learning Disabilities Research & Practice, 18(4), 213-221. https://doi.org/10.1111/1540-5826.00076
  • Karande, S., & Kulkarni, M. (2005). Poor school performance. The Indian Journal of Pediatrics, 72(11),961-967.
  • Kirk, S. A., & Bateman, B. (1962). Diagnosis and remediation of learning disabilities. Exceptional children, 29(2), 73-78. https://doi.org/10.1177/001440296202900204
  • Koontz, K. L. (1996). Identifying simple numerical stimuli: Processing inefficiencies exhibited by arithmetic learning disabled children. Mathematical Cognition, 2(1), 1-24. https://doi.org/10.1080/135467996387525
  • Kucian, K., & von Aster, M. (2015). Developmental dyscalculia. European journal of pediatrics, 174(1), 1-13. https://doi.org/10.1007/s00431-014-2455-7
  • Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93(2), 99-125. https://doi.org/10.1016/j.cognition.2003.11.004
  • Mabbott, D. J., & Bisanz, J. (2008). Computational skills, working memory, and conceptual knowledge in older children with mathematics learning disabilities. Journal of Learning Disabilities, 41, 15–28. https://doi.org/10.1177/0022219407311003
  • Macke, T. J., & Case, D. A. (1998). Modeling unusual nucleic acid structures. https://doi.org/10.1021/bk-1998-0682.ch024
  • Mazzocco, M. M., Devlin, K. T., & McKenney, S. J. (2008). Is it a fact? Timed arithmetic performance of children with mathematical learning disabilities (MLD) varies as a function of how MLD is defined. Developmental neuropsychology, 33(3), 318-344. https://doi.org/10.1080/87565640801982403
  • Mercer, C. D., & Pullen, P.C. (2005). Students with learning disabilities (6th ed.). NJ: Pearson. https://doi.org/10.4324/9780203837306
  • Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215(5109), 1519-1520.
  • Mussolin, C., Mejias, S., & Noël, M. P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115(1), 10-25. https://doi.org/10.1016/j.cognition.2009.10.006
  • Örgütü, D. S. (1992). ICD-10 Ruhsal ve davranışsal bozukluklar sınıflandırması, (Çev.F. Çuhadaroğlu ve ark.). Türkiye Sinir ve Ruh Sağlığı Derneği Yayınları.
  • Öztürk, M., Durmaz, B., & Derya, C. A. N. (2019). Sayı konuşmalarının diskalkulik ortaokul öğrencilerinin sayı duyularına etkisi. Kastamonu Eğitim Dergisi, 27(6), 2467-2480. https://doi.org/10.24106/kefdergi.3337
  • Passolunghi, M. C., & Siegel, L. S. (2004). Working memory and access to numerical information inchildren with disability in mathematics. Journal of experimental child psychology, 88(4), 348 367. https://doi.org/10.1016/j.jecp.2004.04.002
  • Price, G. R., & Ansari, D. (2013). Dyscalculia: Characteristics, causes, and treatments. Numeracy, 6(1), 1-16. http://dx.doi.org/10.5038/1936-4660.6.1.2
  • Robinson, C., Menchetti, B., & Torgesen, J. (2002). Toward a two-factor theory of one type of mathematics disabilities. Learning Disabilities Research & Practice, 17, 81–89. https://doi.org/10.1111/1540-5826.00035
  • Rotem, A., & Henik, A. (2020). Multiplication facts and number sense in children with mathematics learning disabilities and typical achievers. Cognitive Development, 54, 100866. https://doi.org/10.1016/j.cogdev.2020.100866
  • Rousselle, L., & Noël, M.-P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361–395. https://doi.org/10.1016/j.cognition.2006.01.005
  • Rubinsten O, Henik A (2009) Developmental dyscalculia: heterogeneity might not mean different mechanisms. Trends Cogn Sci 13(2):92–99 https://doi.org/10.1016/j.tics.2008.11.002
  • Rubinsten, O., & Henik, A. (2005). Automatic activation of internal magnitudes: a study of developmental dyscalculia. Neuropsychology, 19(5), 641. https://doi.org/10.1037/0894-4105.19.5.641
  • Shalev, R. S. (2004). Developmental dyscalculia. Journal of child neurology, 19(10), 765-771. https://doi.org/10.1177/08830738040190100601
  • Von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental medicine & child neurology, 49(11), 868-873. https://doi.org/10.1111/j.1469-8749.2007.00868.x
  • Van der Sluis, S., De Jong, P. F., & Van der Leij, A. (2004). Inhibition and shifting in children with learning deficits in arithmetic and reading. Journal of experimental child psychology, 87(3), 239-266. https://doi.org/10.1016/j.jecp.2003.12.002
  • Wong, T. T. Y., Ho, C. S. H., & Tang, J. (2017). Defective number sense or impaired access? Differential impairments in different subgroups of children with mathematics difficulties. Journal of learning disabilities, 50(1), 49-61. https://doi.org/10.1177/0022219415588851
  • World Health Organization. (1992). The ICD-10 classification of mental and behavioral disorders: Clinical descriptions and diagnostic guidelines. Geneva, Switzerland.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Alan Eğitimleri
Bölüm Araştırma Makalesi
Yazarlar

Sıla Doğmaz Tunalı

Vesile Yıldız Demirtaş

Erken Görünüm Tarihi 29 Temmuz 2022
Yayımlanma Tarihi 29 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 1 Sayı: 1

Kaynak Göster

APA Doğmaz Tunalı, S., & Yıldız Demirtaş, V. (2022). Matematik Öğrenme Güçlüğü ve Sayı Hissi. Akdeniz Üniversitesi Eğitim Fakültesi Dergisi, 1(1), 105-127.
An international peer-reviewed journal-EDUCATIONE-Uluslararası hakemli dergi