Research Article
BibTex RIS Cite

Kripto Paraların Enerji Tüketiminin Yeşil Bilişim Kapsamında Deneysel Çalışma Yaklaşımıyla Karşılaştırmalı Analizi

Year 2024, Volume: 26 Issue: 3, 1229 - 1243, 27.09.2024
https://doi.org/10.32709/akusosbil.1213732

Abstract

Bilişim teknolojilerinde meydana gelen büyük ilerlemeler ile birlikte birçok teknolojik gelişme hayatımıza girmektedir. Bu teknolojik gelişmeler hayatımızı doğrudan etkilemekte ve değiştirmektedir. İnsanların eğilimlerine bakıldığı zaman kripto para biriminin günümüzdeki en popüler teknoloji olduğu söylenebilir. Bir para birimi ve kriptoloji karışımı olan bu teknoloji, tüm dünyada artan bir ivme ile kullanılmaktadır. Dolayısıyla kripto para teknolojisi hala bankasız ödeme yapmak için kullanılmakta ve sanal para birimi olarak kabul edilmektedir. Kripto para biriminin sağladığı fırsatların yanı sıra, birkaç zorluğunun da olduğu belirtilmelidir. Çevre için en tehlikeli ve kritik durum, kripto para madenciliği için gerekli olan enerji tüketimidir. Blockchain, madencilik sürecinde kullanılan ve giderek daha fazla enerji tüketen bir teknolojidir. Bu kritik duruma göre, popüler kripto para birimlerinden biri olan Ethereum, enerji tüketimini analiz etmek için deneysel bir çalışmada kullanılmıştır. Bu deneyde, 30 Mart 2017 ile 30 Aralık 2019 tarihleri arasındaki verileri incelenmiştir. Elde edilen veriler, çevre için daha iyi olanı bulmak amacıyla bir başka popüler kripto para birimi olan bitcoin ile karşılaştırılmıştır. Bu çalışmada 196 GPU'dan gelen veriler incelenerek elektrik tüketimi ve kazancı analiz edilmiştir. Toplamda 3 farklı GPU markası kullanılmış ve sırasıyla ünitelerin markası, tüketilen güç ve testin yapıldığı ülkedeki elektrik birim fiyatı analiz edilmiştir.

References

  • Albrecht, S., Reichert, S., Schmid, J., Strüker, J., Neumann, D., & Fridgen, G. (2018). Dynamics of blockchain implementation-a case study from the energy sector. In Proceedings of the 51st Hawaii International Conference on System Sciences.
  • Awasthi, D. (2015). Barter to bitcoin: the changing visage of transactions. Elk Asia Pacific Journal of Finance and Risk Management, 6(4).
  • Bae, J., & Lim, H. (2018). Random mining group selection to prevent 51% attacks on bitcoin. In 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W) (pp. 81-82). IEEE.
  • Bai, C. A., Cordeiro, J., & Sarkis, J. (2020). Blockchain technology: Business, strategy, the environment, and sustainability. Bus. Strategy Environ, 29(1), 321-322.
  • Bevand, M. (2017). Electricity consumption of Bitcoin: a market-based and technical analysis. Retrieved February 4, 2019, from mrb’s blog: http://blog. zorinaq. com/bitcoin-electricity-consumption.
  • Bogner, A., Chanson, M., & Meeuw, A. (2016). A decentralised sharing app running a smart contract on the ethereum blockchain. In Proceedings of the 6th International Conference on the Internet of Things (pp. 177-178).
  • Burgwinkel, D. (Ed.). (2016). Blockchain technology: Einführung für business-und IT manager. Walter de Gruyter GmbH & Co KG.
  • Buterin, V. (2014). A next-generation smart contract and decentralized application platform. white paper, 3(37).
  • Buterin, V. (2015). On public and private blockchains. Ethereum blog, 7(1).
  • Castellanos, J. A. F., Coll-Mayor, D., & Notholt, J. A. (2017). Cryptocurrency as guarantees of origin: Simulating a green certificate market with the Ethereum Blockchain. In 2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE) (pp. 367-372). IEEE.
  • Catalini, C. (2017). How blockchain applications will move beyond finance. Harvard Business Rev, 2.
  • Chaum, D. (1983). Blind signatures for untraceable payments. In Advances in cryptology (pp. 199-203). Springer, Boston, MA.
  • Chitchyan, R., & Murkin, J. (2018). Review of blockchain technology and its expectations: Case of the energy sector. arXiv preprint arXiv:1803.03567.
  • CoinMarketCap. (2023). Cryptocurrency Prices, Charts and Market Capitalizations.
  • Das, D., & Dutta, A. (2020). Bitcoin’s energy consumption: Is it the Achilles heel to miner’s revenue?. Economics Letters, 186, 108530.
  • De Vries, A. (2018). Bitcoin's growing energy problem. Joule, 2(5), 801-805.
  • Durmuş, S. (2018). Sanal para bitcoin. Kafkas Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 9(18), 659-673.
  • Foroglou, G., & Tsilidou, A. L. (2015). Further applications of the blockchain. In 12th student conference on managerial science and technology (pp. 1-8).
  • Garcia, D., Tessone, C. J., Mavrodiev, P., & Perony, N. (2014). The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy. Journal of the Royal Society Interface, 11(99), 20140623.
  • Gauer, M. Bitcoin Miners True Energy Consumption 2017.
  • Gencer, A. E., Basu, S., Eyal, I., Van Renesse, R., & Sirer, E. G. (2018). Decentralization in bitcoin and ethereum networks. In International Conference on Financial Cryptography and Data Security (pp. 439-457). Springer, Berlin, Heidelberg.
  • Greenberg, A. (2011). Crypto Currency-Money you can't trace. Forbes, 40.
  • Hayes, A. S. (2017). Cryptocurrency value formation: An empirical study leading to a cost of production model for valuing bitcoin. Telematics and Informatics, 34(7), 1308-1321.
  • Howson, P. (2019). Tackling climate change with blockchain. Nature Climate Change, 9(9), 644-645. Huynh, A. N. Q., Duong, D., Burggraf, T., Luong, H. T. T., & Bui, N. H. (2022). Energy consumption and Bitcoin market. Asia-Pacific Financial Markets, 29(1), 79-93.
  • Imbault, F., Swiatek, M., De Beaufort, R., & Plana, R. (2017). The green blockchain: Managing decentralized energy production and consumption. In 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1-5). IEEE.
  • Index, B. E. C. (2017). Digiconomist.—[Electronic resource]. Mode of Access: https://digiconomist. net/bitcoin-energyconsumption.—Date of ac-cess, 8.
  • Jacquet, P., & Mans, B. (2019). Green mining: toward a less energetic impact of cryptocurrencies. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (pp. 210-215). IEEE.
  • Jeyanthi, P. M. (2020). Theorıes Of Cryptocurrency, Blockchaın And Dıstrıbuted Systems And Envıronmental Implıcatıons. Cryptocurrencies and Blockchain Technology Applications, 215-238.
  • Kohli, V., Chakravarty, S., Chamola, V., Sangwan, K. S., & Zeadally, S. (2023). An analysis of energy consumption and carbon footprints of cryptocurrencies and possible solutions. Digital Communications and Networks, 9(1), 79-89.
  • Kovilage, M. P. (2021). Influence of lean–green practices on organizational sustainable performance. Journal of Asian Business and Economic Studies, 28(2), 121-142.
  • Krause, M. J., & Tolaymat, T. (2018). Quantification of energy and carbon costs for mining cryptocurrencies. Nature Sustainability, 1(11), 711-718.
  • Küfeoğlu, S., & Özkuran, M. (2019). Bitcoin mining: A global review of energy and power demand. Energy Research & Social Science, 58, 101273.
  • Laurence, T. (2019). Blockchain for dummies. John Wiley & Sons.
  • Li, J., Li, N., Peng, J., Cui, H., & Wu, Z. (2019). Energy consumption of cryptocurrency mining: A study of electricity consumption in mining cryptocurrencies. Energy, 168, 160-168.
  • Mills, N., & Mills, E. (2016). Taming the energy use of gaming computers. Energy Efficiency, 9(2), 321-338. Mora, C., Rollins, R. L., Taladay, K., Kantar, M. B., Chock, M. K., Shimada, M., & Franklin, E. C. (2018). Bitcoin emissions alone could push global warming above 2 C. Nature Climate Change, 8(11), 931-933.
  • Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, 21260. Noda, S., Okumura, K., & Hashimoto, Y. (2019). An economic analysis of difficulty adjustment algorithms in proof-of-work blockchain systems. Available at SSRN 3410460.
  • O'Dwyer, K. J., & Malone, D. (2014). Bitcoin mining and its energy footprint.
  • Patel, H., & Burla, S. (2020). Impact of Bitcoin on the World Economy: Opportunities and Challenges. Transforming Businesses With Bitcoin Mining and Blockchain Applications, 166-171.
  • Rusovs, D., Jaundālders, S., & Stanka, P. (2018). Blockchain mining of cryptocurrencies as challenge and opportunity for renewable energy. In 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON) (pp. 1-5). IEEE.
  • Schinckus, C. (2020). Crypto-currencies trading and energy consumption. International Journal of Energy Economics and Policy.
  • Sharma, N., Afzal, M., & Dixit, A. (2020). Blockchain-Blockcerts based Birth/Death Certificate Registration and Validation. International Journal of Information Technology (IJIT), 6(2).
  • Shrimali, B., & Patel, H. B. (2022). Blockchain state-of-the-art: architecture, use cases, consensus, challenges and opportunities. Journal of King Saud University-Computer and Information Sciences, 34(9), 6793-6807.
  • Singuluri, P. K., Basha, S. L. J., Ahamed, S. K., & Nithya, M. (2021). An Educated Peer Discovery Expanding Blockchain Framework. In Journal of Physics: Conference Series (Vol. 1964, No. 4). IOP Publishing.
  • Sovbetov, Y. (2018). Factors influencing cryptocurrency prices: Evidence from bitcoin, ethereum, dash, litcoin, and monero. Journal of Economics and Financial Analysis, 2(2), 1-27.
  • Symitsi, E., & Chalvatzis, K. J. (2018). Return, volatility and shock spillovers of Bitcoin with energy and technology companies. Economics Letters, 170, 127-130.
  • Teufel, B., Sentic, A., & Barmet, M. (2019). Blockchain energy: Blockchain in future energy systems. Journal of Electronic Science and Technology, 17(4), 100011.
  • Truby, J. (2018). Decarbonizing Bitcoin: Law and policy choices for reducing the energy consumption of Blockchain technologies and digital currencies. Energy research & social science, 44, 399-410.
  • Vranken, H. (2017). Sustainability of bitcoin and blockchains. Current opinion in environmental sustainability, 28, 1-9.
  • Wang, B., Chen, S., Yao, L., Liu, B., Xu, X., & Zhu, L. (2018). A simulation approach for studying behavior and quality of blockchain networks. In International Conference on Blockchain (pp. 18-31). Springer, Cham.
  • Zamyatin, A., Wolter, K., Werner, S., Harrison, P. G., Mulligan, C. E., & Knottenbelt, W. J. (2017). Swimming with fishes and sharks: Beneath the surface of queue-based ethereum mining pools. In 2017 IEEE 25th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS) (pp. 99-109). IEEE.

Comparative Analysis of Energy Consumption of Cryptocurrencies with Experimental Study Approach in the Scope of Green Computing

Year 2024, Volume: 26 Issue: 3, 1229 - 1243, 27.09.2024
https://doi.org/10.32709/akusosbil.1213732

Abstract

Many technologies enter our lives with the great advancement in information technology. These technological developments affect and change our life directly. According to affection of our life, cryptocurrency is the most popular technology. This technology, which is a relatively mixture of currency and cryptology, is used all over the world with increasing acceleration. So, cryptocurrency technology is still used to make payments without banks and is considered as virtual currency. Besides of this opportunity, cryptocurrency has few challenges. Most dangerous and critical challenge for environment is energy consumption in mining of cryptocurrency. Blockchain is the technology which is used in mining process and it consumes more and more energy. According to this critical challenge, Ethereum which is one of the popular cryptocurrencies, was used in an experimental study to analyze energy consumption. Experiment examined the data from Mar 30, 2017 to Dec 30, 2019. These data were compared with another popular cryptocurrency which is bitcoin in order to find the better one for environment. In this study, the data from 196 GPUs were examined and electricity consumption and gain were analyzed. Totally, 3 different types of GPU brands were used, and the brand of the units, the power consumed, and the electricity unit price in the country where it was tested were analyzed respectively.

References

  • Albrecht, S., Reichert, S., Schmid, J., Strüker, J., Neumann, D., & Fridgen, G. (2018). Dynamics of blockchain implementation-a case study from the energy sector. In Proceedings of the 51st Hawaii International Conference on System Sciences.
  • Awasthi, D. (2015). Barter to bitcoin: the changing visage of transactions. Elk Asia Pacific Journal of Finance and Risk Management, 6(4).
  • Bae, J., & Lim, H. (2018). Random mining group selection to prevent 51% attacks on bitcoin. In 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W) (pp. 81-82). IEEE.
  • Bai, C. A., Cordeiro, J., & Sarkis, J. (2020). Blockchain technology: Business, strategy, the environment, and sustainability. Bus. Strategy Environ, 29(1), 321-322.
  • Bevand, M. (2017). Electricity consumption of Bitcoin: a market-based and technical analysis. Retrieved February 4, 2019, from mrb’s blog: http://blog. zorinaq. com/bitcoin-electricity-consumption.
  • Bogner, A., Chanson, M., & Meeuw, A. (2016). A decentralised sharing app running a smart contract on the ethereum blockchain. In Proceedings of the 6th International Conference on the Internet of Things (pp. 177-178).
  • Burgwinkel, D. (Ed.). (2016). Blockchain technology: Einführung für business-und IT manager. Walter de Gruyter GmbH & Co KG.
  • Buterin, V. (2014). A next-generation smart contract and decentralized application platform. white paper, 3(37).
  • Buterin, V. (2015). On public and private blockchains. Ethereum blog, 7(1).
  • Castellanos, J. A. F., Coll-Mayor, D., & Notholt, J. A. (2017). Cryptocurrency as guarantees of origin: Simulating a green certificate market with the Ethereum Blockchain. In 2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE) (pp. 367-372). IEEE.
  • Catalini, C. (2017). How blockchain applications will move beyond finance. Harvard Business Rev, 2.
  • Chaum, D. (1983). Blind signatures for untraceable payments. In Advances in cryptology (pp. 199-203). Springer, Boston, MA.
  • Chitchyan, R., & Murkin, J. (2018). Review of blockchain technology and its expectations: Case of the energy sector. arXiv preprint arXiv:1803.03567.
  • CoinMarketCap. (2023). Cryptocurrency Prices, Charts and Market Capitalizations.
  • Das, D., & Dutta, A. (2020). Bitcoin’s energy consumption: Is it the Achilles heel to miner’s revenue?. Economics Letters, 186, 108530.
  • De Vries, A. (2018). Bitcoin's growing energy problem. Joule, 2(5), 801-805.
  • Durmuş, S. (2018). Sanal para bitcoin. Kafkas Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 9(18), 659-673.
  • Foroglou, G., & Tsilidou, A. L. (2015). Further applications of the blockchain. In 12th student conference on managerial science and technology (pp. 1-8).
  • Garcia, D., Tessone, C. J., Mavrodiev, P., & Perony, N. (2014). The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy. Journal of the Royal Society Interface, 11(99), 20140623.
  • Gauer, M. Bitcoin Miners True Energy Consumption 2017.
  • Gencer, A. E., Basu, S., Eyal, I., Van Renesse, R., & Sirer, E. G. (2018). Decentralization in bitcoin and ethereum networks. In International Conference on Financial Cryptography and Data Security (pp. 439-457). Springer, Berlin, Heidelberg.
  • Greenberg, A. (2011). Crypto Currency-Money you can't trace. Forbes, 40.
  • Hayes, A. S. (2017). Cryptocurrency value formation: An empirical study leading to a cost of production model for valuing bitcoin. Telematics and Informatics, 34(7), 1308-1321.
  • Howson, P. (2019). Tackling climate change with blockchain. Nature Climate Change, 9(9), 644-645. Huynh, A. N. Q., Duong, D., Burggraf, T., Luong, H. T. T., & Bui, N. H. (2022). Energy consumption and Bitcoin market. Asia-Pacific Financial Markets, 29(1), 79-93.
  • Imbault, F., Swiatek, M., De Beaufort, R., & Plana, R. (2017). The green blockchain: Managing decentralized energy production and consumption. In 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1-5). IEEE.
  • Index, B. E. C. (2017). Digiconomist.—[Electronic resource]. Mode of Access: https://digiconomist. net/bitcoin-energyconsumption.—Date of ac-cess, 8.
  • Jacquet, P., & Mans, B. (2019). Green mining: toward a less energetic impact of cryptocurrencies. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (pp. 210-215). IEEE.
  • Jeyanthi, P. M. (2020). Theorıes Of Cryptocurrency, Blockchaın And Dıstrıbuted Systems And Envıronmental Implıcatıons. Cryptocurrencies and Blockchain Technology Applications, 215-238.
  • Kohli, V., Chakravarty, S., Chamola, V., Sangwan, K. S., & Zeadally, S. (2023). An analysis of energy consumption and carbon footprints of cryptocurrencies and possible solutions. Digital Communications and Networks, 9(1), 79-89.
  • Kovilage, M. P. (2021). Influence of lean–green practices on organizational sustainable performance. Journal of Asian Business and Economic Studies, 28(2), 121-142.
  • Krause, M. J., & Tolaymat, T. (2018). Quantification of energy and carbon costs for mining cryptocurrencies. Nature Sustainability, 1(11), 711-718.
  • Küfeoğlu, S., & Özkuran, M. (2019). Bitcoin mining: A global review of energy and power demand. Energy Research & Social Science, 58, 101273.
  • Laurence, T. (2019). Blockchain for dummies. John Wiley & Sons.
  • Li, J., Li, N., Peng, J., Cui, H., & Wu, Z. (2019). Energy consumption of cryptocurrency mining: A study of electricity consumption in mining cryptocurrencies. Energy, 168, 160-168.
  • Mills, N., & Mills, E. (2016). Taming the energy use of gaming computers. Energy Efficiency, 9(2), 321-338. Mora, C., Rollins, R. L., Taladay, K., Kantar, M. B., Chock, M. K., Shimada, M., & Franklin, E. C. (2018). Bitcoin emissions alone could push global warming above 2 C. Nature Climate Change, 8(11), 931-933.
  • Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, 21260. Noda, S., Okumura, K., & Hashimoto, Y. (2019). An economic analysis of difficulty adjustment algorithms in proof-of-work blockchain systems. Available at SSRN 3410460.
  • O'Dwyer, K. J., & Malone, D. (2014). Bitcoin mining and its energy footprint.
  • Patel, H., & Burla, S. (2020). Impact of Bitcoin on the World Economy: Opportunities and Challenges. Transforming Businesses With Bitcoin Mining and Blockchain Applications, 166-171.
  • Rusovs, D., Jaundālders, S., & Stanka, P. (2018). Blockchain mining of cryptocurrencies as challenge and opportunity for renewable energy. In 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON) (pp. 1-5). IEEE.
  • Schinckus, C. (2020). Crypto-currencies trading and energy consumption. International Journal of Energy Economics and Policy.
  • Sharma, N., Afzal, M., & Dixit, A. (2020). Blockchain-Blockcerts based Birth/Death Certificate Registration and Validation. International Journal of Information Technology (IJIT), 6(2).
  • Shrimali, B., & Patel, H. B. (2022). Blockchain state-of-the-art: architecture, use cases, consensus, challenges and opportunities. Journal of King Saud University-Computer and Information Sciences, 34(9), 6793-6807.
  • Singuluri, P. K., Basha, S. L. J., Ahamed, S. K., & Nithya, M. (2021). An Educated Peer Discovery Expanding Blockchain Framework. In Journal of Physics: Conference Series (Vol. 1964, No. 4). IOP Publishing.
  • Sovbetov, Y. (2018). Factors influencing cryptocurrency prices: Evidence from bitcoin, ethereum, dash, litcoin, and monero. Journal of Economics and Financial Analysis, 2(2), 1-27.
  • Symitsi, E., & Chalvatzis, K. J. (2018). Return, volatility and shock spillovers of Bitcoin with energy and technology companies. Economics Letters, 170, 127-130.
  • Teufel, B., Sentic, A., & Barmet, M. (2019). Blockchain energy: Blockchain in future energy systems. Journal of Electronic Science and Technology, 17(4), 100011.
  • Truby, J. (2018). Decarbonizing Bitcoin: Law and policy choices for reducing the energy consumption of Blockchain technologies and digital currencies. Energy research & social science, 44, 399-410.
  • Vranken, H. (2017). Sustainability of bitcoin and blockchains. Current opinion in environmental sustainability, 28, 1-9.
  • Wang, B., Chen, S., Yao, L., Liu, B., Xu, X., & Zhu, L. (2018). A simulation approach for studying behavior and quality of blockchain networks. In International Conference on Blockchain (pp. 18-31). Springer, Cham.
  • Zamyatin, A., Wolter, K., Werner, S., Harrison, P. G., Mulligan, C. E., & Knottenbelt, W. J. (2017). Swimming with fishes and sharks: Beneath the surface of queue-based ethereum mining pools. In 2017 IEEE 25th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS) (pp. 99-109). IEEE.
There are 50 citations in total.

Details

Primary Language English
Journal Section Economics and Administrative Sciences
Authors

Ersin Çağlar 0000-0002-2175-5141

Mustafa Bal 0000-0002-6173-2569

Publication Date September 27, 2024
Submission Date December 4, 2022
Published in Issue Year 2024 Volume: 26 Issue: 3

Cite

APA Çağlar, E., & Bal, M. (2024). Comparative Analysis of Energy Consumption of Cryptocurrencies with Experimental Study Approach in the Scope of Green Computing. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 26(3), 1229-1243. https://doi.org/10.32709/akusosbil.1213732

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Please Click for all Issues of the Journal.