Comparison of Spray Transfer and Penetration of Different Hydraulic Nozzles at Low Application Volume
Year 2019,
, 67 - 75, 30.06.2019
Bahadır Sayıncı
,
Bünyamin Demir
Rüçhan Çömlek
Gökalp Boydaş
Abstract
Seven hydraulic nozzle types (standard-ST;
hollow cone-KH; multirange-LU; standard with narrow angle-STD; antidrift-AD;
air-induction-IDK; twinjet air-induction-IDKT) were compared in terms of spray
transfer and drop penetration. Spray treatments were carried out at a constant
application volume of 90 L ha-1 with a linear-motion simulator. WSP’s
were placed onto metal poles and into artificial plant at both horizontal and
vertical planes. Two different operating pressures (250 and 500 kPa) and the
nozzle position angles (0º and 45º) were used in the experiments. Spray
transfer levels at vertical plane were quite lower than the spray transfer levels
at horizontal plane. The greatest spray coverage was achieved with LU and ST
nozzles producing fine droplets. The greatest drop penetration at vertical
plane was obtained from IDK nozzle. Only 25% of the drops transferred to the
open target reached the stem and root collar region of the plant canopy. With
increasing operating pressures, spray coverage increased by 1,17 times at
horizontal plane and 1,50 times at vertical plane. With increasing nozzle
position angles, spray coverage at vertical plane increased by 40%. The
greatest coverage was achieved on front surface of the vertical target and
drops reaching to side and rear surfaces were quite low.
Supporting Institution
Scientific Research Projects Department of Atatürk University
Project Number
FHD-2018-6643
Thanks
This study was supported by Scientific Research Projects Department of Atatürk University with the project number of FHD-2018-6643.
References
- Azimi A. H., Carpenter, T. G. and Reichard, D. L., 1985. Nozzle spray distribution for pesticide application. Transactions of the ASAE 28(5): 1410-1414
- Bode, L. E., Butler, B. J., Pearson, S. L. and Bouse, L. F., 1983. Characteristics of the micromax rotary atomizer. Transactions of the ASAE 24(4): 999-1004
- Coates, W. and Palumbo, J., 1997. Deposition, off-target movement, and efficacy of CaptureTM and ThiodanTM applied to cantaloupes using five sprayers. Applied Engineering in Agriculture 13(2): 181-188
- Foqué, D. and Nuyttens, D., 2011. Effect of air support and spray angle on coarse droplet sprays in ivy pot plants. Transactions of the ASABE 54(2): 409-416
- Guler, H., Zhu, H., Ozkan, H. E., Derksen, R. C., Yu, Y., and Krause, C. R., 2006. Spray characteristics and wind tunnel evaluation of drift reduction potential with air induction and conventional flat fan nozzle. In 2006 ASAE Annual Meeting (p. 1). American Society of Agricultural and Biological Engineers
- Hoffmann, W. C. and Salyani, M., 1996. Spray deposition on citrus canopies under different meteorological conditions. Transactions of the ASAE 39(1): 17-32
Lechler®, 2018. Agricultural Spray Nozzles, 2018 US Catalog. http://www.lechler.de (Available from: April 2018)
- Malneršič, A., Dular, M., Širok, B., Oberti, R., and Hočevar, M., 2016. Close-range air-assisted precision spot-spraying for robotic applications: Aerodynamics and spray coverage analysis. Biosystems Engineering 146: 216-226
- Piché, M., Panneton, B. and Thériault, R., 2000. Reduced drift from air-assisted spraying. Canadian Agricultural Engineering 43(3): 117-122
- Reed, J. T. and Smith, D. B., 2001. Droplet size and spray volume effects on insecticide deposit and mortality of Heliothine (Lepidoptera: Noctuidae) larvae in cotton. Journal of Economic Entomology 94(3): 640-647
- Salyani, M. and Whitney, J. D., 1988. Evaluation of methodologies for field studies of spray deposition. Transactions of the ASAE 31(2): 390-395
- Salyani, M., Zhu, H., Sweeb, R. D. and Pai, N., 2013. Assessment of spray distribution with water-sensitive paper. Agric Eng Int: CIGR Journal 15(2): 101-111
- Sanchez-Hermosilla, J. and Medina, R., 2004. Adaptive threshold for droplet spot analysis using water-sensitive paper. Applied Engineering in Agriculture 20(5): 547-551
- Sayıncı, B. and Bastaban, S., 2009. İlaç uygulama performansının değerlendirilmesinde kalitatif ve kantitatif analiz yöntemlerinin değerlendirilmesi, Anadolu Tarım Bilimleri Dergisi 24(2): 133-140 (in Turkish)
- Sayinci, B. and Bastaban, S., 2011. Spray distribution uniformity of different types of nozzles and its spray deposition in potato plant. African Journal of Agricultural Research 6(2): 352-362
- Sayıncı, B., 2016. The influence of strainer types on the flow and droplet velocity characteristics of ceramic flat - fan nozzles. Turkish Journal of Agriculture and Forestry 40(1): 25-37
- Serim, A. T. and Özdemir, Y. G., 2012. Herbisit uygulamalarında kullanılan pülverizatör memelerinin damla büyüklük dağılımlarının belirlenmesi. Tarım Bilimleri Araştırma Dergisi 5(2): 172-175 (in Turkish)
- Whitney, J. D., Salyani, M., Churchill, D. B., Knapp, J. L., Whiteside, J. O. and Linell, R. C., 1989. A field investigation to examine the effects of spray type, ground speed, and volume rate on spray deposition in Florida citrus. Journal of Agricultural Research Engineering 42(4): 275-283
- Wolf, R. E., 2005. Comparing downwind spray droplet deposits of four flat-fan nozzle types measured in a wind tunnel and analyzed using DropletScan™ software. Applied Engineering in Agriculture. 21(2): 173-177
- Zhu, H., Dorner, J. W., Rowland, D. L., Derksen, R. C., Ozkan, H. E., 2004. Spray penetration into peanut canopies with hydraulic nozzle tips. Biosystems Engineering 87(3): 275-273
- Zhu, H., Rowland, D. L., Dorner, J. W., Derksen, R. C. and Sorensen, R. B., 2002. Influence of plant structure, orifice size, and nozzle inclination on spray penetration into peanut canopy. Transactions of the ASAE 45(5): 1295-1301
Year 2019,
, 67 - 75, 30.06.2019
Bahadır Sayıncı
,
Bünyamin Demir
Rüçhan Çömlek
Gökalp Boydaş
Project Number
FHD-2018-6643
References
- Azimi A. H., Carpenter, T. G. and Reichard, D. L., 1985. Nozzle spray distribution for pesticide application. Transactions of the ASAE 28(5): 1410-1414
- Bode, L. E., Butler, B. J., Pearson, S. L. and Bouse, L. F., 1983. Characteristics of the micromax rotary atomizer. Transactions of the ASAE 24(4): 999-1004
- Coates, W. and Palumbo, J., 1997. Deposition, off-target movement, and efficacy of CaptureTM and ThiodanTM applied to cantaloupes using five sprayers. Applied Engineering in Agriculture 13(2): 181-188
- Foqué, D. and Nuyttens, D., 2011. Effect of air support and spray angle on coarse droplet sprays in ivy pot plants. Transactions of the ASABE 54(2): 409-416
- Guler, H., Zhu, H., Ozkan, H. E., Derksen, R. C., Yu, Y., and Krause, C. R., 2006. Spray characteristics and wind tunnel evaluation of drift reduction potential with air induction and conventional flat fan nozzle. In 2006 ASAE Annual Meeting (p. 1). American Society of Agricultural and Biological Engineers
- Hoffmann, W. C. and Salyani, M., 1996. Spray deposition on citrus canopies under different meteorological conditions. Transactions of the ASAE 39(1): 17-32
Lechler®, 2018. Agricultural Spray Nozzles, 2018 US Catalog. http://www.lechler.de (Available from: April 2018)
- Malneršič, A., Dular, M., Širok, B., Oberti, R., and Hočevar, M., 2016. Close-range air-assisted precision spot-spraying for robotic applications: Aerodynamics and spray coverage analysis. Biosystems Engineering 146: 216-226
- Piché, M., Panneton, B. and Thériault, R., 2000. Reduced drift from air-assisted spraying. Canadian Agricultural Engineering 43(3): 117-122
- Reed, J. T. and Smith, D. B., 2001. Droplet size and spray volume effects on insecticide deposit and mortality of Heliothine (Lepidoptera: Noctuidae) larvae in cotton. Journal of Economic Entomology 94(3): 640-647
- Salyani, M. and Whitney, J. D., 1988. Evaluation of methodologies for field studies of spray deposition. Transactions of the ASAE 31(2): 390-395
- Salyani, M., Zhu, H., Sweeb, R. D. and Pai, N., 2013. Assessment of spray distribution with water-sensitive paper. Agric Eng Int: CIGR Journal 15(2): 101-111
- Sanchez-Hermosilla, J. and Medina, R., 2004. Adaptive threshold for droplet spot analysis using water-sensitive paper. Applied Engineering in Agriculture 20(5): 547-551
- Sayıncı, B. and Bastaban, S., 2009. İlaç uygulama performansının değerlendirilmesinde kalitatif ve kantitatif analiz yöntemlerinin değerlendirilmesi, Anadolu Tarım Bilimleri Dergisi 24(2): 133-140 (in Turkish)
- Sayinci, B. and Bastaban, S., 2011. Spray distribution uniformity of different types of nozzles and its spray deposition in potato plant. African Journal of Agricultural Research 6(2): 352-362
- Sayıncı, B., 2016. The influence of strainer types on the flow and droplet velocity characteristics of ceramic flat - fan nozzles. Turkish Journal of Agriculture and Forestry 40(1): 25-37
- Serim, A. T. and Özdemir, Y. G., 2012. Herbisit uygulamalarında kullanılan pülverizatör memelerinin damla büyüklük dağılımlarının belirlenmesi. Tarım Bilimleri Araştırma Dergisi 5(2): 172-175 (in Turkish)
- Whitney, J. D., Salyani, M., Churchill, D. B., Knapp, J. L., Whiteside, J. O. and Linell, R. C., 1989. A field investigation to examine the effects of spray type, ground speed, and volume rate on spray deposition in Florida citrus. Journal of Agricultural Research Engineering 42(4): 275-283
- Wolf, R. E., 2005. Comparing downwind spray droplet deposits of four flat-fan nozzle types measured in a wind tunnel and analyzed using DropletScan™ software. Applied Engineering in Agriculture. 21(2): 173-177
- Zhu, H., Dorner, J. W., Rowland, D. L., Derksen, R. C., Ozkan, H. E., 2004. Spray penetration into peanut canopies with hydraulic nozzle tips. Biosystems Engineering 87(3): 275-273
- Zhu, H., Rowland, D. L., Dorner, J. W., Derksen, R. C. and Sorensen, R. B., 2002. Influence of plant structure, orifice size, and nozzle inclination on spray penetration into peanut canopy. Transactions of the ASAE 45(5): 1295-1301