Research Article
BibTex RIS Cite

Optimizing the Synthesis of Folic Acid Conjugated Silver Nanoparticles by Box-Behnken Design to Target Breast Cancer Cells

Year 2023, , 100 - 117, 27.12.2023
https://doi.org/10.46740/alku.1326274

Abstract

In this study, the synthesis of folic acid conjugated silver nanoparticles (FA&AgNPs) was optimized. FA&AgNPs were synthesized by reduction of silver nitrate with folic acid, which is widely used to target folate receptors in cancer cells. Five independent variables (stirring speed, AgNO3 concentration, folic acid concentration, AgNO3 volume/folic acid volume, and temperature) that were effective on silver nanoparticle synthesis were determined. Based on the independent variables, an experimental plan consisting of 46 experiments was created using the Box-Behnken design (BBD). Nanoparticle formation, physical color change, UV-Vis absorption spectroscopy, Dynamic Light Scattering (DLS) analysis, and Fourier Transform Infrared (FTIR) analysis were evaluated. The mean particle size and zeta potential of FA&AgNPs produced under optimized conditions were measured as 207±4.3 nm and -51.6 mV±2.5, respectively. Cytotoxicity tests were performed to evaluate the anticancer activity of FA&AgNPs in breast cancer cell lines. The IC50 values for MDA-MB-231 breast cancer cells at 24 hours and 48 hours were 20.0 µg/mL and 16.9 µg/mL, respectively, and 26.3 µg/mL and 31.5 µg/mL for MCF-7 cells. The findings indicated that FA&AgNPs have the potential to be an effective anticancer agent in breast cancer cells.

Supporting Institution

TÜBİTAK

Project Number

TÜBİTAK-2209A-1919B012106589

Thanks

This study received support from the Turkish Scientific and Technical Research Council (TUBITAK) under grant number TUBITAK-2209A (Project number: 1919B012106589).

References

  • [1] Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. (2021). "Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries." CA: A Cancer Journal for Clinicians 71, 209-249. https://doi.org/10.3322/caac.21660
  • [2] Yao Y., Zhou Y., Liu L., Xu Y., Chen Q., Wang Y., Wu S., Deng Y., Zhang J., Shao A. (2020). "Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance." Front Mol Biosci 7, 193. 10.3389/fmolb.2020.00193
  • [3] Khan I., Saeed K., Khan I. (2019). "Nanoparticles: Properties, applications and toxicities." Arabian Journal of Chemistry 12, 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011
  • [4] Chandrakala V., Aruna V., Angajala G. (2022). "Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems." Emergent Materials 5, 1593-1615. 10.1007/s42247-021-00335-x
  • [5] Gökşen Tosun N., Kaplan Ö., Türkekul İ., Gökçe İ., Özgür A. (2022). "Green synthesis of silver nanoparticles using Schizophyllum commune and Geopora sumneriana extracts and evaluation of their anticancer and antimicrobial activities." Particulate Science and Technology 40, 801-811. 10.1080/02726351.2021.2010846
  • [6] Kaplan Ö., Gökşen Tosun N., İmamoğlu R., Türkekul İ., Gökçe İ., Özgür A. (2022). "Biosynthesis and characterization of silver nanoparticles from Tricholoma ustale and Agaricus arvensis extracts and investigation of their antimicrobial, cytotoxic, and apoptotic potentials." Journal of Drug Delivery Science and Technology 69, 103178. https://doi.org/10.1016/j.jddst.2022.103178
  • [7] Gökşen Tosun N., Kaplan Ö., Imamoğlu R., Türkekul İ., Gökçe İ., Özgür A. (2022). "Green synthesized silver nanoparticles with mushroom extracts of Paxina leucomelas and Rhizopogon luteolus induce ROS-Induced intrinsic apoptotic pathway in cancer cells." Inorganic and Nano-Metal Chemistry 1-10. 10.1080/24701556.2022.2081200
  • [8] Kaplan Ö., Gökşen Tosun N., Özgür A., Erden Tayhan S., Bilgin S., Türkekul İ., Gökce İ. (2021). "Microwave-assisted green synthesis of silver nanoparticles using crude extracts of Boletus edulis and Coriolus versicolor: Characterization, anticancer, antimicrobial and wound healing activities." Journal of Drug Delivery Science and Technology 64, 102641. https://doi.org/10.1016/j.jddst.2021.102641
  • [9] Rudrappa M., Kumar R.S., Nagaraja S.K., Hiremath H., Gunagambhire P.V., Almansour A.I., Perumal K., Nayaka S. (2023). "Myco-Nanofabrication of Silver Nanoparticles by Penicillium brasilianum NP5 and Their Antimicrobial, Photoprotective and Anticancer Effect on MDA-MB-231 Breast Cancer Cell Line." Antibiotics 12, 567
  • [10] Mikhailova E.O. (2020). "Silver Nanoparticles: Mechanism of Action and Probable Bio-Application." J Funct Biomater 11. 10.3390/jfb11040084
  • [11] Tagde P., Kulkarni G.T., Mishra D.K., Kesharwani P. (2020). "Recent advances in folic acid engineered nanocarriers for treatment of breast cancer." Journal of Drug Delivery Science and Technology 56, 101613. https://doi.org/10.1016/j.jddst.2020.101613
  • [12] Moffatt B.A., Ashihara H. (2002). "Purine and pyrimidine nucleotide synthesis and metabolism." Arabidopsis Book 1, e0018. 10.1199/tab.0018
  • [13] Zwicke G.L., Mansoori G.A., Jeffery C.J. (2012). "Utilizing the folate receptor for active targeting of cancer nanotherapeutics." Nano Rev 3. 10.3402/nano.v3i0.18496
  • [14] Martín-Sabroso C., Torres-Suárez A.I., Alonso-González M., Fernández-Carballido A., Fraguas-Sánchez A.I. (2021). "Active Targeted Nanoformulations via Folate Receptors: State of the Art and Future Perspectives." Pharmaceutics 14. 10.3390/pharmaceutics14010014
  • [15] Luong D., Kesharwani P., Alsaab H.O., Sau S., Padhye S., Sarkar F.H., Iyer A.K. (2017). "Folic acid conjugated polymeric micelles loaded with a curcumin difluorinated analog for targeting cervical and ovarian cancers." Colloids and Surfaces B: Biointerfaces 157, 490-502. https://doi.org/10.1016/j.colsurfb.2017.06.025
  • [16] Sabzichi M., Mohammadian J., Khosroushahi A.Y., Bazzaz R., Hamishehkar H. (2016). "Folate-Targeted Nanostructured Lipid Carriers (NLCs) Enhance (Letrozol) Efficacy in MCF-7 Breast Cancer Cells." Asian Pacific Journal of Cancer Prevention 17, 5185-5188. 10.22034/APJCP.2016.17.12.5185
  • [17] Xu L., Yang H., Folate-Decorated Polyamidoamine Dendrimer Nanoparticles for Head and Neck Cancer Gene Therapy, in: L. Dinesh Kumar (Ed.) RNA Interference and Cancer Therapy: Methods and Protocols, Springer New York, New York, NY, 2019, pp. 393-408.
  • [18] Ghaznavi H., Hosseini-Nami S., Kamrava S.K., Irajirad R., Maleki S., Shakeri-Zadeh A., Montazerabadi A. (2018). "Folic acid conjugated PEG coated gold–iron oxide core–shell nanocomplex as a potential agent for targeted photothermal therapy of cancer." Artificial Cells, Nanomedicine and Biotechnology 46, 1594-1604. 10.1080/21691401.2017.1384384
  • [19] Comşa Ş., Cimpean A.M., Raica M. (2015). "The story of MCF-7 breast cancer cell line: 40 years of experience in research." Anticancer research 35, 3147-3154
  • [20] Marshalek J.P., Sheeran P.S., Ingram P., Dayton P.A., Witte R.S., Matsunaga T.O. (2016). "Intracellular delivery and ultrasonic activation of folate receptor-targeted phase-change contrast agents in breast cancer cells in vitro." J Control Release 243, 69-77. 10.1016/j.jconrel.2016.09.010
  • [21] Gökşen Tosun N., Kaplan Ö. (2021). "Optimization of the green synthesis of silver nanoparticle with Box-Behnken design: Using Aloe vera plant extract as a reduction agent." Sakarya University Journal of Science 25, 774-787
  • [22] Lalegani Z., Seyyed Ebrahimi S.A. (2020). "Optimization of synthesis for shape and size controlled silver nanoparticles using response surface methodology." Colloids and Surfaces A: Physicochemical and Engineering Aspects 595, 124647. https://doi.org/10.1016/j.colsurfa.2020.124647
  • [23] Gökşen Tosun N., Kaplan Ö., Imamoğlu R., Türkekul İ., Gökçe İ., Özgür A. "Green synthesized silver nanoparticles with mushroom extracts of Paxina leucomelas and Rhizopogon luteolus induce ROS-Induced intrinsic apoptotic pathway in cancer cells." Inorganic and Nano-Metal Chemistry 1-10. 10.1080/24701556.2022.2081200
  • [24] Subba Rao Y., Kotakadi V.S., Prasad T.N.V.K.V., Reddy A.V., Sai Gopal D.V.R. (2013). "Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 103, 156-159. https://doi.org/10.1016/j.saa.2012.11.028
  • [25] Chowdhuri A.R., Tripathy S., Haldar C., Chandra S., Das B., Roy S., Sahu S.K. (2015). "Theoretical and experimental study of folic acid conjugated silver nanoparticles through electrostatic interaction for enhance antibacterial activity." RSC Advances 5, 21515-21524. 10.1039/C4RA16785F
  • [26] Xu L., Wang Y.Y., Huang J., Chen C.Y., Wang Z.X., Xie H. (2020). "Silver nanoparticles: Synthesis, medical applications and biosafety." Theranostics 10, 8996-9031. 10.7150/thno.45413
  • [27] Bandyopadhyay A., Roy B., Shaw P., Mondal P., Mondal M.K., Chowdhury P., Bhattacharya S., Chattopadhyay A. (2020). "Cytotoxic effect of green synthesized silver nanoparticles in MCF7 and MDA-MB-231 human breast cancer cells in vitro." The Nucleus 63, 191-202. 10.1007/s13237-019-00305-z
  • [28] El-Hammadi M.M., Delgado Á.V., Melguizo C., Prados J.C., Arias J.L. (2017). "Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil." International Journal of Pharmaceutics 516, 61-70. https://doi.org/10.1016/j.ijpharm.2016.11.012
  • [29] Erdoğar N., Esendağlı G., Nielsen T.T., Şen M., Öner L., Bilensoy E. (2016). "Design and optimization of novel paclitaxel-loaded folate-conjugated amphiphilic cyclodextrin nanoparticles." International Journal of Pharmaceutics 509, 375-390. https://doi.org/10.1016/j.ijpharm.2016.05.040
  • [30] Karuppaiah A., Rajan R., Hariharan S., Balasubramaniam D.K., Gregory M., Sankar V. (2020). "Synthesis and Characterization of Folic Acid Conjugated Gemcitabine Tethered Silver Nanoparticles (FA-GEM-AgNPs) for Targeted Delivery." Curr Pharm Des 26, 3141-3146. 10.2174/1381612826666200316143239
  • [31] Kesharwani P., Banerjee S., Gupta U., Mohd Amin M.C.I., Padhye S., Sarkar F.H., Iyer A.K. (2015). "PAMAM dendrimers as promising nanocarriers for RNAi therapeutics." Materials Today 18, 565-572. https://doi.org/10.1016/j.mattod.2015.06.003
  • [32] Banu H., Sethi D.K., Edgar A., Sheriff A., Rayees N., Renuka N., Faheem S.M., Premkumar K., Vasanthakumar G. (2015). "Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines." Journal of Photochemistry and Photobiology B: Biology 149, 116-128. https://doi.org/10.1016/j.jphotobiol.2015.05.008
  • [33] Kumar P., Tambe P., Paknikar K.M., Gajbhiye V. (2017). "Folate/N-acetyl glucosamine conjugated mesoporous silica nanoparticles for targeting breast cancer cells: A comparative study." Colloids and Surfaces B: Biointerfaces 156, 203-212. https://doi.org/10.1016/j.colsurfb.2017.05.032
  • [34] Kesharwani P., Choudhury H., Meher J.G., Pandey M., Gorain B. (2019). "Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging." Progress in Materials Science 103, 484-508. https://doi.org/10.1016/j.pmatsci.2019.03.003
  • [35] Assaraf Y.G., Leamon C.P., Reddy J.A. (2014). "The folate receptor as a rational therapeutic target for personalized cancer treatment." Drug Resistance Updates 17, 89-95. https://doi.org/10.1016/j.drup.2014.10.002
  • [36] Ramzy L., Nasr M., Metwally A.A., Awad G.A.S. (2017). "Cancer nanotheranostics: A review of the role of conjugated ligands for overexpressed receptors." European Journal of Pharmaceutical Sciences 104, 273-292. https://doi.org/10.1016/j.ejps.2017.04.005
  • [37] Xu L., Bai Q., Zhang X., Yang H. (2017). "Folate-mediated chemotherapy and diagnostics: An updated review and outlook." Journal of Controlled Release 252, 73-82. https://doi.org/10.1016/j.jconrel.2017.02.023
  • [38] Darvish S., Saeed Kahrizi M., Özbolat G., Khaleghi F., Mortezania Z., Sakhaei D. (2022). "Silver nanoparticles: Biosynthesis and cytotoxic performance against breast cancer MCF-7 and MDA-MB-231 cell lines." Nanomedicine Research Journal 7, 83-92

Meme Kanseri Hücrelerini Hedeflemek İçin Box-Behnken Tasarımıyla Folik Asit Konjuge Gümüş Nanopartiküllerin Sentezinin Optimizasyonu

Year 2023, , 100 - 117, 27.12.2023
https://doi.org/10.46740/alku.1326274

Abstract

Bu çalışmada, folik asit konjuge gümüş nanopartiküllerin (FA&AgNP'ler) sentezi optimize edilmiştir. FA&AgNP'ler, kanser hücrelerinde folat reseptörlerini hedeflemek için yaygın olarak kullanılan folik asit ile gümüş nitratın indirgenmesiyle sentezlenmiştir. Gümüş nanopartikül sentezi üzerinde etkili olan beş bağımsız değişken (karıştırma hızı, AgNO3 konsantrasyonu, folik asit konsantrasyonu, AgNO3 hacmi/folik asit hacmi ve sıcaklık) belirlenmiştir. Bağımsız değişkenlere dayanarak, Box-Behnken tasarımı (BBD) kullanılarak 46 deneyden oluşan bir deney planı oluşturulmuştur. Nanopartikül oluşumu, fiziksel renk değişimi, UV-Vis absorpsiyon spektroskopisi, Dinamik Işık Saçılma (DLS) analizi ve Fourier Dönüşümü Kızılötesi (FTIR) analizi ile değerlendirilmiştir. Optimize edilmiş koşullarda üretilen FA&AgNP'lerin ortalama partikül boyutu ve zeta potansiyeli sırasıyla 207±4.3 nm ve -51.6±2.5 mV olarak ölçülmüştür. Meme kanseri hücre hatlarında FA&AgNP'lerin antikanser etkinliğini değerlendirmek için sitotoksisite testleri yapılmıştır. 24 saat ve 48 saatte MDA-MB-231 meme kanseri hücreleri için IC50 değerleri 20.0 µg/mL ve 16.9 µg/mL, MCF-7 hücreleri için ise sırasıyla 26.3 µg/mL ve 31.5 µg/mL olarak bulunmuştur. Bulgular, FA&AgNP'lerin meme kanseri hücrelerinde etkili bir antikanser ajan olma potansiyeline sahip olduğunu göstermiştir.

Project Number

TÜBİTAK-2209A-1919B012106589

References

  • [1] Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. (2021). "Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries." CA: A Cancer Journal for Clinicians 71, 209-249. https://doi.org/10.3322/caac.21660
  • [2] Yao Y., Zhou Y., Liu L., Xu Y., Chen Q., Wang Y., Wu S., Deng Y., Zhang J., Shao A. (2020). "Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance." Front Mol Biosci 7, 193. 10.3389/fmolb.2020.00193
  • [3] Khan I., Saeed K., Khan I. (2019). "Nanoparticles: Properties, applications and toxicities." Arabian Journal of Chemistry 12, 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011
  • [4] Chandrakala V., Aruna V., Angajala G. (2022). "Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems." Emergent Materials 5, 1593-1615. 10.1007/s42247-021-00335-x
  • [5] Gökşen Tosun N., Kaplan Ö., Türkekul İ., Gökçe İ., Özgür A. (2022). "Green synthesis of silver nanoparticles using Schizophyllum commune and Geopora sumneriana extracts and evaluation of their anticancer and antimicrobial activities." Particulate Science and Technology 40, 801-811. 10.1080/02726351.2021.2010846
  • [6] Kaplan Ö., Gökşen Tosun N., İmamoğlu R., Türkekul İ., Gökçe İ., Özgür A. (2022). "Biosynthesis and characterization of silver nanoparticles from Tricholoma ustale and Agaricus arvensis extracts and investigation of their antimicrobial, cytotoxic, and apoptotic potentials." Journal of Drug Delivery Science and Technology 69, 103178. https://doi.org/10.1016/j.jddst.2022.103178
  • [7] Gökşen Tosun N., Kaplan Ö., Imamoğlu R., Türkekul İ., Gökçe İ., Özgür A. (2022). "Green synthesized silver nanoparticles with mushroom extracts of Paxina leucomelas and Rhizopogon luteolus induce ROS-Induced intrinsic apoptotic pathway in cancer cells." Inorganic and Nano-Metal Chemistry 1-10. 10.1080/24701556.2022.2081200
  • [8] Kaplan Ö., Gökşen Tosun N., Özgür A., Erden Tayhan S., Bilgin S., Türkekul İ., Gökce İ. (2021). "Microwave-assisted green synthesis of silver nanoparticles using crude extracts of Boletus edulis and Coriolus versicolor: Characterization, anticancer, antimicrobial and wound healing activities." Journal of Drug Delivery Science and Technology 64, 102641. https://doi.org/10.1016/j.jddst.2021.102641
  • [9] Rudrappa M., Kumar R.S., Nagaraja S.K., Hiremath H., Gunagambhire P.V., Almansour A.I., Perumal K., Nayaka S. (2023). "Myco-Nanofabrication of Silver Nanoparticles by Penicillium brasilianum NP5 and Their Antimicrobial, Photoprotective and Anticancer Effect on MDA-MB-231 Breast Cancer Cell Line." Antibiotics 12, 567
  • [10] Mikhailova E.O. (2020). "Silver Nanoparticles: Mechanism of Action and Probable Bio-Application." J Funct Biomater 11. 10.3390/jfb11040084
  • [11] Tagde P., Kulkarni G.T., Mishra D.K., Kesharwani P. (2020). "Recent advances in folic acid engineered nanocarriers for treatment of breast cancer." Journal of Drug Delivery Science and Technology 56, 101613. https://doi.org/10.1016/j.jddst.2020.101613
  • [12] Moffatt B.A., Ashihara H. (2002). "Purine and pyrimidine nucleotide synthesis and metabolism." Arabidopsis Book 1, e0018. 10.1199/tab.0018
  • [13] Zwicke G.L., Mansoori G.A., Jeffery C.J. (2012). "Utilizing the folate receptor for active targeting of cancer nanotherapeutics." Nano Rev 3. 10.3402/nano.v3i0.18496
  • [14] Martín-Sabroso C., Torres-Suárez A.I., Alonso-González M., Fernández-Carballido A., Fraguas-Sánchez A.I. (2021). "Active Targeted Nanoformulations via Folate Receptors: State of the Art and Future Perspectives." Pharmaceutics 14. 10.3390/pharmaceutics14010014
  • [15] Luong D., Kesharwani P., Alsaab H.O., Sau S., Padhye S., Sarkar F.H., Iyer A.K. (2017). "Folic acid conjugated polymeric micelles loaded with a curcumin difluorinated analog for targeting cervical and ovarian cancers." Colloids and Surfaces B: Biointerfaces 157, 490-502. https://doi.org/10.1016/j.colsurfb.2017.06.025
  • [16] Sabzichi M., Mohammadian J., Khosroushahi A.Y., Bazzaz R., Hamishehkar H. (2016). "Folate-Targeted Nanostructured Lipid Carriers (NLCs) Enhance (Letrozol) Efficacy in MCF-7 Breast Cancer Cells." Asian Pacific Journal of Cancer Prevention 17, 5185-5188. 10.22034/APJCP.2016.17.12.5185
  • [17] Xu L., Yang H., Folate-Decorated Polyamidoamine Dendrimer Nanoparticles for Head and Neck Cancer Gene Therapy, in: L. Dinesh Kumar (Ed.) RNA Interference and Cancer Therapy: Methods and Protocols, Springer New York, New York, NY, 2019, pp. 393-408.
  • [18] Ghaznavi H., Hosseini-Nami S., Kamrava S.K., Irajirad R., Maleki S., Shakeri-Zadeh A., Montazerabadi A. (2018). "Folic acid conjugated PEG coated gold–iron oxide core–shell nanocomplex as a potential agent for targeted photothermal therapy of cancer." Artificial Cells, Nanomedicine and Biotechnology 46, 1594-1604. 10.1080/21691401.2017.1384384
  • [19] Comşa Ş., Cimpean A.M., Raica M. (2015). "The story of MCF-7 breast cancer cell line: 40 years of experience in research." Anticancer research 35, 3147-3154
  • [20] Marshalek J.P., Sheeran P.S., Ingram P., Dayton P.A., Witte R.S., Matsunaga T.O. (2016). "Intracellular delivery and ultrasonic activation of folate receptor-targeted phase-change contrast agents in breast cancer cells in vitro." J Control Release 243, 69-77. 10.1016/j.jconrel.2016.09.010
  • [21] Gökşen Tosun N., Kaplan Ö. (2021). "Optimization of the green synthesis of silver nanoparticle with Box-Behnken design: Using Aloe vera plant extract as a reduction agent." Sakarya University Journal of Science 25, 774-787
  • [22] Lalegani Z., Seyyed Ebrahimi S.A. (2020). "Optimization of synthesis for shape and size controlled silver nanoparticles using response surface methodology." Colloids and Surfaces A: Physicochemical and Engineering Aspects 595, 124647. https://doi.org/10.1016/j.colsurfa.2020.124647
  • [23] Gökşen Tosun N., Kaplan Ö., Imamoğlu R., Türkekul İ., Gökçe İ., Özgür A. "Green synthesized silver nanoparticles with mushroom extracts of Paxina leucomelas and Rhizopogon luteolus induce ROS-Induced intrinsic apoptotic pathway in cancer cells." Inorganic and Nano-Metal Chemistry 1-10. 10.1080/24701556.2022.2081200
  • [24] Subba Rao Y., Kotakadi V.S., Prasad T.N.V.K.V., Reddy A.V., Sai Gopal D.V.R. (2013). "Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 103, 156-159. https://doi.org/10.1016/j.saa.2012.11.028
  • [25] Chowdhuri A.R., Tripathy S., Haldar C., Chandra S., Das B., Roy S., Sahu S.K. (2015). "Theoretical and experimental study of folic acid conjugated silver nanoparticles through electrostatic interaction for enhance antibacterial activity." RSC Advances 5, 21515-21524. 10.1039/C4RA16785F
  • [26] Xu L., Wang Y.Y., Huang J., Chen C.Y., Wang Z.X., Xie H. (2020). "Silver nanoparticles: Synthesis, medical applications and biosafety." Theranostics 10, 8996-9031. 10.7150/thno.45413
  • [27] Bandyopadhyay A., Roy B., Shaw P., Mondal P., Mondal M.K., Chowdhury P., Bhattacharya S., Chattopadhyay A. (2020). "Cytotoxic effect of green synthesized silver nanoparticles in MCF7 and MDA-MB-231 human breast cancer cells in vitro." The Nucleus 63, 191-202. 10.1007/s13237-019-00305-z
  • [28] El-Hammadi M.M., Delgado Á.V., Melguizo C., Prados J.C., Arias J.L. (2017). "Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil." International Journal of Pharmaceutics 516, 61-70. https://doi.org/10.1016/j.ijpharm.2016.11.012
  • [29] Erdoğar N., Esendağlı G., Nielsen T.T., Şen M., Öner L., Bilensoy E. (2016). "Design and optimization of novel paclitaxel-loaded folate-conjugated amphiphilic cyclodextrin nanoparticles." International Journal of Pharmaceutics 509, 375-390. https://doi.org/10.1016/j.ijpharm.2016.05.040
  • [30] Karuppaiah A., Rajan R., Hariharan S., Balasubramaniam D.K., Gregory M., Sankar V. (2020). "Synthesis and Characterization of Folic Acid Conjugated Gemcitabine Tethered Silver Nanoparticles (FA-GEM-AgNPs) for Targeted Delivery." Curr Pharm Des 26, 3141-3146. 10.2174/1381612826666200316143239
  • [31] Kesharwani P., Banerjee S., Gupta U., Mohd Amin M.C.I., Padhye S., Sarkar F.H., Iyer A.K. (2015). "PAMAM dendrimers as promising nanocarriers for RNAi therapeutics." Materials Today 18, 565-572. https://doi.org/10.1016/j.mattod.2015.06.003
  • [32] Banu H., Sethi D.K., Edgar A., Sheriff A., Rayees N., Renuka N., Faheem S.M., Premkumar K., Vasanthakumar G. (2015). "Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines." Journal of Photochemistry and Photobiology B: Biology 149, 116-128. https://doi.org/10.1016/j.jphotobiol.2015.05.008
  • [33] Kumar P., Tambe P., Paknikar K.M., Gajbhiye V. (2017). "Folate/N-acetyl glucosamine conjugated mesoporous silica nanoparticles for targeting breast cancer cells: A comparative study." Colloids and Surfaces B: Biointerfaces 156, 203-212. https://doi.org/10.1016/j.colsurfb.2017.05.032
  • [34] Kesharwani P., Choudhury H., Meher J.G., Pandey M., Gorain B. (2019). "Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging." Progress in Materials Science 103, 484-508. https://doi.org/10.1016/j.pmatsci.2019.03.003
  • [35] Assaraf Y.G., Leamon C.P., Reddy J.A. (2014). "The folate receptor as a rational therapeutic target for personalized cancer treatment." Drug Resistance Updates 17, 89-95. https://doi.org/10.1016/j.drup.2014.10.002
  • [36] Ramzy L., Nasr M., Metwally A.A., Awad G.A.S. (2017). "Cancer nanotheranostics: A review of the role of conjugated ligands for overexpressed receptors." European Journal of Pharmaceutical Sciences 104, 273-292. https://doi.org/10.1016/j.ejps.2017.04.005
  • [37] Xu L., Bai Q., Zhang X., Yang H. (2017). "Folate-mediated chemotherapy and diagnostics: An updated review and outlook." Journal of Controlled Release 252, 73-82. https://doi.org/10.1016/j.jconrel.2017.02.023
  • [38] Darvish S., Saeed Kahrizi M., Özbolat G., Khaleghi F., Mortezania Z., Sakhaei D. (2022). "Silver nanoparticles: Biosynthesis and cytotoxic performance against breast cancer MCF-7 and MDA-MB-231 cell lines." Nanomedicine Research Journal 7, 83-92
There are 38 citations in total.

Details

Primary Language English
Subjects Inorganic Green Chemistry, Animal Cell Culture and Tissue Engineering, Bioengineering (Other), Nanomaterials, Nanoscale Characterisation
Journal Section Makaleler
Authors

Safa Furkan Soylu 0009-0009-1299-8633

Ahmed Zıdan 0009-0007-1287-1689

Nazan Gökşen Tosun 0000-0001-5269-1067

Özlem Kaplan 0000-0002-3052-4556

İsa Gökçe 0000-0002-5023-9947

Project Number TÜBİTAK-2209A-1919B012106589
Early Pub Date December 25, 2023
Publication Date December 27, 2023
Submission Date July 12, 2023
Acceptance Date October 13, 2023
Published in Issue Year 2023

Cite

APA Soylu, S. F., Zıdan, A., Gökşen Tosun, N., Kaplan, Ö., et al. (2023). Optimizing the Synthesis of Folic Acid Conjugated Silver Nanoparticles by Box-Behnken Design to Target Breast Cancer Cells. ALKÜ Fen Bilimleri Dergisi, 5(3), 100-117. https://doi.org/10.46740/alku.1326274
AMA Soylu SF, Zıdan A, Gökşen Tosun N, Kaplan Ö, Gökçe İ. Optimizing the Synthesis of Folic Acid Conjugated Silver Nanoparticles by Box-Behnken Design to Target Breast Cancer Cells. ALKÜ Fen Bilimleri Dergisi. December 2023;5(3):100-117. doi:10.46740/alku.1326274
Chicago Soylu, Safa Furkan, Ahmed Zıdan, Nazan Gökşen Tosun, Özlem Kaplan, and İsa Gökçe. “Optimizing the Synthesis of Folic Acid Conjugated Silver Nanoparticles by Box-Behnken Design to Target Breast Cancer Cells”. ALKÜ Fen Bilimleri Dergisi 5, no. 3 (December 2023): 100-117. https://doi.org/10.46740/alku.1326274.
EndNote Soylu SF, Zıdan A, Gökşen Tosun N, Kaplan Ö, Gökçe İ (December 1, 2023) Optimizing the Synthesis of Folic Acid Conjugated Silver Nanoparticles by Box-Behnken Design to Target Breast Cancer Cells. ALKÜ Fen Bilimleri Dergisi 5 3 100–117.
IEEE S. F. Soylu, A. Zıdan, N. Gökşen Tosun, Ö. Kaplan, and İ. Gökçe, “Optimizing the Synthesis of Folic Acid Conjugated Silver Nanoparticles by Box-Behnken Design to Target Breast Cancer Cells”, ALKÜ Fen Bilimleri Dergisi, vol. 5, no. 3, pp. 100–117, 2023, doi: 10.46740/alku.1326274.
ISNAD Soylu, Safa Furkan et al. “Optimizing the Synthesis of Folic Acid Conjugated Silver Nanoparticles by Box-Behnken Design to Target Breast Cancer Cells”. ALKÜ Fen Bilimleri Dergisi 5/3 (December 2023), 100-117. https://doi.org/10.46740/alku.1326274.
JAMA Soylu SF, Zıdan A, Gökşen Tosun N, Kaplan Ö, Gökçe İ. Optimizing the Synthesis of Folic Acid Conjugated Silver Nanoparticles by Box-Behnken Design to Target Breast Cancer Cells. ALKÜ Fen Bilimleri Dergisi. 2023;5:100–117.
MLA Soylu, Safa Furkan et al. “Optimizing the Synthesis of Folic Acid Conjugated Silver Nanoparticles by Box-Behnken Design to Target Breast Cancer Cells”. ALKÜ Fen Bilimleri Dergisi, vol. 5, no. 3, 2023, pp. 100-17, doi:10.46740/alku.1326274.
Vancouver Soylu SF, Zıdan A, Gökşen Tosun N, Kaplan Ö, Gökçe İ. Optimizing the Synthesis of Folic Acid Conjugated Silver Nanoparticles by Box-Behnken Design to Target Breast Cancer Cells. ALKÜ Fen Bilimleri Dergisi. 2023;5(3):100-17.