Research Article
BibTex RIS Cite

Robust Direct Power Flow Control of Voltage Source Converters

Year 2024, , 66 - 79, 30.04.2024
https://doi.org/10.46740/alku.1399847

Abstract

In this study, a disturbance observer-based power control system is developed for voltage source converters (VSC) to achieve smooth power delivery to the grid. Firstly, modeling of grid connected converter which is used for power delivery in terms of frequency and current dynamics is executed under consideration of modelling errors and uncertainties. This disturbance effects are mainly consist of frequency and amplitude variations, output impedance aging, large dc-link voltage ripple A second order nonlinear observer is integrated into the designed control to reject with model uncertainty and disturbances. Due to the objective of the proposed controller is power regulation, there is no need a voltage and current compensator. Comperative simulations are carried out to verify the robustness of the proposed controller. Also effectiveness of the proposed approach is tested under different grid scenarios (e.g., weak grid, dc-link variation, frequency deviation)

References

  • [1] Z. Zheng, Z. Gao, C. Gu, L. Xu, K. Wang, and Y. Li, “Stability and voltage balance control of a modular converter with multiwinding highfrequency transformer,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4183–4194, Aug. 2014.
  • [2] M. Kabalo, D. Paire, B. Blunier, D. Bouquain, M. G. Simoes, and A. Miraoui, “Experimental evaluation of four-phase floating interleaved boost converter design and control for fule cell applications,” IET Power Electron., vol. 6, no. 2, pp. 215–216, Feb. 2013
  • [3] M. Prodanovic and T. C. Green, “Control and filter design of three-phase inverters for high power quality grid connection,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 373–380, Jan. 2003
  • [4] T. F. Zhao, G. Y. Wang, S. Bhattacharya, and A. Q. Huang, “Voltage and power balance control for a cascaded H-bridge converter-based solid-state transformer,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1523–1532, Apr. 2013.
  • [5] M. Rivera, V. Yaramasu, J. Rodriguez, and B. Wu, “Model predictive current control of two-level four-leg inverters—Part II: Experimental implementation and validation,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3469–3478, Jul. 2013.
  • [6] J. Hu, J. Zhu, and D. G. Dorrell, “Model predictive control of gridconnected inverters for PV systems with flexible power regulation and switching frequency reduction,” IEEE Trans. Ind Appl., vol. 51, no. 1, pp. 587–594, Jan./Feb. 2015.
  • [7] V. Yaramasu, B. Wu, S. Alepuz, and S. Kouro, “Predictive control for low-voltage ride-through enhancement of three-level-boost and NPC converter- based PMSG wind turbine,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6832–6843, Dec. 2014
  • [8] Kato, T., Inoue, K., Ueda, M.: ‘Lyapunov-based digital control of a grid-connected inverter with an LCL filter’, IEEE J. Emerging Sel. Top. Power Electron., 2014, 2, (4), pp. 942–948.
  • [9] Castilla, M., Miret, J., Camacho, A., et al.: ‘Reduction of current harmonic distortion in three-phase grid-connected photovoltaic inverters via resonant current control’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 1464–1472.
  • [10] M. Brenna, F. Foiadelli, and D. Zaninelli, “New stability analysis for tuning PI controller of power converters in railway application,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 533–543, Feb. 2011.
  • [11] Y. Zhang and C. Qu, “Model predictive direct power control of PWM rectifiers under unbalanced network conditions,” IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4011–4022, Jul. 2015.
  • [12] P. Antoniewicz and M. P. Kazmierkowski, “Virtual-flux-based predictive direct power control of AC/DC converters with online inductance estimation,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4381–4390, Dec. 2008.
  • [13] H. Akagi, Y. Kanazawa, and A. Nabae, “Instantaneous reactive power compensators comprising switching devices without energy storage,” IEEE Trans. Ind. Appl., vol. IA-20, no. 3, pp. 625–630, May/Jun. 1984.
  • [14] B. S. Chen and G. Joos, “Direct power control of active filters with averaged switching frequency regulation,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2729–2737, Jun. 2008.
  • [15] M. Malinowski, M. P. Kazmierkowski, S. Hansen, F. Blaabjerg, and G. D. Marquez, “Virtual-flux-based direct power control of three-phase PWM rectifiers,” IEEE Trans. Ind. Appl., vol. 37, no. 4, pp. 1019–1027, Jul./Aug. 2001.
  • [16] R. Portillo, S. Vazquez, J. I. Leon, M. M. Prats, and L. G. Franquelo, “Model based adaptive direct power control for three-level NPC converters,” IEEE Trans. Ind. Informat., vol. 9, no. 2, pp. 1148–1156, May 2013.
  • [17] M. Preindl, E. Schaltz, and P. Thogersen, “Switching frequency reduction using model predictive direct current control for high-power voltage source inverters,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2826– 2835, Jul. 2011.
  • [18] A. Bouafia, F. Krim, and J. P. Gaubert, “Fuzzy-logic-based switching state selection for direct power control of three-phase PWM rectifier,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1984–1992, Jun. 2009.
  • [19] Bouafia, J. P. Gaubert, and F. Krim, “Predictive direct power control of three-phase pulsewidth modulation (PWM) rectifier using spacev ector modulation (SVM),” IEEE Trans. Power Electron., vol. 25, no. 1,pp. 228–236, Jan. 2010.
  • [20] P. Cortes, J. Rodriguez, P. Antoniewicz, and M. Kazmierkowski, “Direct power control of an AFE using predictive control,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2516–2523, Sep. 2008.
  • [21] Q.-C. Zhong, P.-L.Nguyen, Z. Ma, andW. Sheng, “Self-synchronized synchronverters: Inverters without a dedicated synchronization unit,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 617–630, Feb. 2014.
  • [22] M. Monfared, M. Sanatkar, and S. Golestan, “Direct active and reactive power control of single-phase grid-tie converters,” IET Power Electron., vol. 5, no. 8, p. 1544, Sep. 2012.
  • [23] J. Kim, J. M. Guerrero, P. Rodriguez, R. Teodorescu, and K. Nam, “Mode adaptive droop control with virtual output impedances for an inverterbased flexible AC microgrid,” IEEE Trans. Power Electron., vol. 26,no. 3, pp. 689–701, Mar. 2011.
  • [24] ] M. A. Hassan, T. Li, C. Duan, S. Chi, and E. P. Li, ‘‘Stabilization of DC-DC buck power converter feeding a mixed load using passivity-based control with nonlinear disturbance observer,’’ in Proc. IEEE Conf. Energy Internet Energy Syst. Integr. (EI2), Nov. 2017, pp. 1–6.
  • [25] M. A. Hassan, E.-P. Li, X. Li, T. Li, C. Duan, and S. Chi, ‘‘Adaptive passivity-based control of DC–DC buck power converter with constant power load in DC microgrid systems,’’ IEEE J. Emerg. Sel. Topics Power Electron., vol. 7, no. 3, pp. 2029–2040, Sep. 2019.
  • [26] L. Shengquan, L. Juan, T. Yongwei, S. Yanqiu, and C. Wei, ‘‘Modelbased model predictive control for a direct-driven permanent magnet synchronous generator with internal and external disturbances,’’ Trans. Inst. Meas. Control, vol. 42, no. 3, pp. 586–597, Feb. 2020.
  • [27] S. Li, M. Cao, J. Li, J. Cao, and Z. Lin, ‘‘Sensorless-based active disturbance rejection control for a wind energy conversion system with permanent magnet synchronous generator,’’ IEEE Access, vol. 7, pp. 122663–122674, 2019.
  • [28] R. Errouissi, M. Ouhrouche, W.-H. Chen, and A. M. Trzynadlowski, ‘‘Robust cascaded nonlinear predictive control of a permanent magnet synchronous motor with antiwindup compensator,’’ IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3078–3088, Aug. 2012.

Gerilim Kaynaklı Dönüştürücülerin Gürbüz Doğrudan Güç Akış Kontrolü

Year 2024, , 66 - 79, 30.04.2024
https://doi.org/10.46740/alku.1399847

Abstract

In this study, a disturbance observer-based power control system is developed for voltage source converters (VSC) to achieve smooth power delivery to the grid. Firstly, modeling of grid connected converter which is used for power delivery in terms of frequency and current dynamics is executed under consideration of modelling errors and uncertainties. This disturbance effects are mainly consist of frequency and amplitude variations, output impedance aging, large dc-link voltage ripple A second order nonlinear observer is integrated into the designed control to reject with model uncertainty and disturbances. Due to the objective of the proposed controller is power regulation, there is no need a voltage and current compensator. Comperative simulations are carried out to verify the robustness of the proposed controller. Also effectiveness of the proposed approach is tested under different grid scenarios (e.g., weak grid, dc-link variation, frequency deviation)

References

  • [1] Z. Zheng, Z. Gao, C. Gu, L. Xu, K. Wang, and Y. Li, “Stability and voltage balance control of a modular converter with multiwinding highfrequency transformer,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4183–4194, Aug. 2014.
  • [2] M. Kabalo, D. Paire, B. Blunier, D. Bouquain, M. G. Simoes, and A. Miraoui, “Experimental evaluation of four-phase floating interleaved boost converter design and control for fule cell applications,” IET Power Electron., vol. 6, no. 2, pp. 215–216, Feb. 2013
  • [3] M. Prodanovic and T. C. Green, “Control and filter design of three-phase inverters for high power quality grid connection,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 373–380, Jan. 2003
  • [4] T. F. Zhao, G. Y. Wang, S. Bhattacharya, and A. Q. Huang, “Voltage and power balance control for a cascaded H-bridge converter-based solid-state transformer,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1523–1532, Apr. 2013.
  • [5] M. Rivera, V. Yaramasu, J. Rodriguez, and B. Wu, “Model predictive current control of two-level four-leg inverters—Part II: Experimental implementation and validation,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3469–3478, Jul. 2013.
  • [6] J. Hu, J. Zhu, and D. G. Dorrell, “Model predictive control of gridconnected inverters for PV systems with flexible power regulation and switching frequency reduction,” IEEE Trans. Ind Appl., vol. 51, no. 1, pp. 587–594, Jan./Feb. 2015.
  • [7] V. Yaramasu, B. Wu, S. Alepuz, and S. Kouro, “Predictive control for low-voltage ride-through enhancement of three-level-boost and NPC converter- based PMSG wind turbine,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6832–6843, Dec. 2014
  • [8] Kato, T., Inoue, K., Ueda, M.: ‘Lyapunov-based digital control of a grid-connected inverter with an LCL filter’, IEEE J. Emerging Sel. Top. Power Electron., 2014, 2, (4), pp. 942–948.
  • [9] Castilla, M., Miret, J., Camacho, A., et al.: ‘Reduction of current harmonic distortion in three-phase grid-connected photovoltaic inverters via resonant current control’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 1464–1472.
  • [10] M. Brenna, F. Foiadelli, and D. Zaninelli, “New stability analysis for tuning PI controller of power converters in railway application,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 533–543, Feb. 2011.
  • [11] Y. Zhang and C. Qu, “Model predictive direct power control of PWM rectifiers under unbalanced network conditions,” IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4011–4022, Jul. 2015.
  • [12] P. Antoniewicz and M. P. Kazmierkowski, “Virtual-flux-based predictive direct power control of AC/DC converters with online inductance estimation,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4381–4390, Dec. 2008.
  • [13] H. Akagi, Y. Kanazawa, and A. Nabae, “Instantaneous reactive power compensators comprising switching devices without energy storage,” IEEE Trans. Ind. Appl., vol. IA-20, no. 3, pp. 625–630, May/Jun. 1984.
  • [14] B. S. Chen and G. Joos, “Direct power control of active filters with averaged switching frequency regulation,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2729–2737, Jun. 2008.
  • [15] M. Malinowski, M. P. Kazmierkowski, S. Hansen, F. Blaabjerg, and G. D. Marquez, “Virtual-flux-based direct power control of three-phase PWM rectifiers,” IEEE Trans. Ind. Appl., vol. 37, no. 4, pp. 1019–1027, Jul./Aug. 2001.
  • [16] R. Portillo, S. Vazquez, J. I. Leon, M. M. Prats, and L. G. Franquelo, “Model based adaptive direct power control for three-level NPC converters,” IEEE Trans. Ind. Informat., vol. 9, no. 2, pp. 1148–1156, May 2013.
  • [17] M. Preindl, E. Schaltz, and P. Thogersen, “Switching frequency reduction using model predictive direct current control for high-power voltage source inverters,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2826– 2835, Jul. 2011.
  • [18] A. Bouafia, F. Krim, and J. P. Gaubert, “Fuzzy-logic-based switching state selection for direct power control of three-phase PWM rectifier,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1984–1992, Jun. 2009.
  • [19] Bouafia, J. P. Gaubert, and F. Krim, “Predictive direct power control of three-phase pulsewidth modulation (PWM) rectifier using spacev ector modulation (SVM),” IEEE Trans. Power Electron., vol. 25, no. 1,pp. 228–236, Jan. 2010.
  • [20] P. Cortes, J. Rodriguez, P. Antoniewicz, and M. Kazmierkowski, “Direct power control of an AFE using predictive control,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2516–2523, Sep. 2008.
  • [21] Q.-C. Zhong, P.-L.Nguyen, Z. Ma, andW. Sheng, “Self-synchronized synchronverters: Inverters without a dedicated synchronization unit,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 617–630, Feb. 2014.
  • [22] M. Monfared, M. Sanatkar, and S. Golestan, “Direct active and reactive power control of single-phase grid-tie converters,” IET Power Electron., vol. 5, no. 8, p. 1544, Sep. 2012.
  • [23] J. Kim, J. M. Guerrero, P. Rodriguez, R. Teodorescu, and K. Nam, “Mode adaptive droop control with virtual output impedances for an inverterbased flexible AC microgrid,” IEEE Trans. Power Electron., vol. 26,no. 3, pp. 689–701, Mar. 2011.
  • [24] ] M. A. Hassan, T. Li, C. Duan, S. Chi, and E. P. Li, ‘‘Stabilization of DC-DC buck power converter feeding a mixed load using passivity-based control with nonlinear disturbance observer,’’ in Proc. IEEE Conf. Energy Internet Energy Syst. Integr. (EI2), Nov. 2017, pp. 1–6.
  • [25] M. A. Hassan, E.-P. Li, X. Li, T. Li, C. Duan, and S. Chi, ‘‘Adaptive passivity-based control of DC–DC buck power converter with constant power load in DC microgrid systems,’’ IEEE J. Emerg. Sel. Topics Power Electron., vol. 7, no. 3, pp. 2029–2040, Sep. 2019.
  • [26] L. Shengquan, L. Juan, T. Yongwei, S. Yanqiu, and C. Wei, ‘‘Modelbased model predictive control for a direct-driven permanent magnet synchronous generator with internal and external disturbances,’’ Trans. Inst. Meas. Control, vol. 42, no. 3, pp. 586–597, Feb. 2020.
  • [27] S. Li, M. Cao, J. Li, J. Cao, and Z. Lin, ‘‘Sensorless-based active disturbance rejection control for a wind energy conversion system with permanent magnet synchronous generator,’’ IEEE Access, vol. 7, pp. 122663–122674, 2019.
  • [28] R. Errouissi, M. Ouhrouche, W.-H. Chen, and A. M. Trzynadlowski, ‘‘Robust cascaded nonlinear predictive control of a permanent magnet synchronous motor with antiwindup compensator,’’ IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3078–3088, Aug. 2012.
There are 28 citations in total.

Details

Primary Language English
Subjects Power Electronics
Journal Section Makaleler
Authors

Ümit Akın Uslu 0000-0003-0336-2659

Emrah Irmak 0000-0002-7981-2305

Publication Date April 30, 2024
Submission Date December 4, 2023
Acceptance Date December 7, 2023
Published in Issue Year 2024

Cite

APA Uslu, Ü. A., & Irmak, E. (2024). Robust Direct Power Flow Control of Voltage Source Converters. ALKÜ Fen Bilimleri Dergisi, 6(1), 66-79. https://doi.org/10.46740/alku.1399847
AMA Uslu ÜA, Irmak E. Robust Direct Power Flow Control of Voltage Source Converters. ALKÜ Fen Bilimleri Dergisi. April 2024;6(1):66-79. doi:10.46740/alku.1399847
Chicago Uslu, Ümit Akın, and Emrah Irmak. “Robust Direct Power Flow Control of Voltage Source Converters”. ALKÜ Fen Bilimleri Dergisi 6, no. 1 (April 2024): 66-79. https://doi.org/10.46740/alku.1399847.
EndNote Uslu ÜA, Irmak E (April 1, 2024) Robust Direct Power Flow Control of Voltage Source Converters. ALKÜ Fen Bilimleri Dergisi 6 1 66–79.
IEEE Ü. A. Uslu and E. Irmak, “Robust Direct Power Flow Control of Voltage Source Converters”, ALKÜ Fen Bilimleri Dergisi, vol. 6, no. 1, pp. 66–79, 2024, doi: 10.46740/alku.1399847.
ISNAD Uslu, Ümit Akın - Irmak, Emrah. “Robust Direct Power Flow Control of Voltage Source Converters”. ALKÜ Fen Bilimleri Dergisi 6/1 (April 2024), 66-79. https://doi.org/10.46740/alku.1399847.
JAMA Uslu ÜA, Irmak E. Robust Direct Power Flow Control of Voltage Source Converters. ALKÜ Fen Bilimleri Dergisi. 2024;6:66–79.
MLA Uslu, Ümit Akın and Emrah Irmak. “Robust Direct Power Flow Control of Voltage Source Converters”. ALKÜ Fen Bilimleri Dergisi, vol. 6, no. 1, 2024, pp. 66-79, doi:10.46740/alku.1399847.
Vancouver Uslu ÜA, Irmak E. Robust Direct Power Flow Control of Voltage Source Converters. ALKÜ Fen Bilimleri Dergisi. 2024;6(1):66-79.